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Abstract

The objective of this study is to investigate the relation between the number of items and attributes and to analyze the
manner in which the different rates of missing data affect the model estimations based on the simulation data. A Q-
matrix contains 24 items, and data are generated using four attributes. A dataset of n = 3,000 is generated by
associating the first, middle, and final eight items in the Q-matrix with one, two, and three attributes, respectively,
and 5%, 10%, and 15% of the data have been randomly deleted from the first, middle, and final eight-item blocks in
the Q-matrix, respectively. Subsequently, imputation was performed using the multiple imputation (MI) method with
these datasets, 100 replication was performed for each condition. The values obtained from these datasets were
compared with the values obtained from the full dataset. Thus, it can be observed that an increase in the amount of
missing data negatively affects the consistency of the DINA parameters and the latent class estimations. Further, the
latent class consistency becomes less affected by the missing data as the number of attributes associated with the
items increase. With an increase in the number of attributes associated with the items, the missing data in these items
affect the consistency level of the g parameter (guess) less and the s parameter (slip) more. Furthermore, it can be
observed from the results that the test developers using the cognitive diagnosis models should specifically consider
the item-attribute relation in items with missing data.
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Oz

Bu arastirmanin amaci, farkli oranlarda kayip veri varhginda madde-6zellik sayisi iliskisinin, DINA model
kestirimlerini nasil etkiledigini similasyon verileri tizerinden incelemektir. Verilerin Uretilmesinde dort 6zellik ve 24
maddeden olusan bir Q matris kullanilmistir. Q matrixteki ilk, orta ve son 8 madde sirasiyla 1, 2 ve 3 dzellikle
iliskilendirilerek 3,000 kisilik bir veri seti Uretilmis ve bu verilerde yer alan her 8 maddelik bloktan sirasi ile %5, %10
ve %15 veri rassal silinmistir. Ardindan, bu veri setlerine Mi yéntemi ile imputasyon yapilmistir. Bu islemler, her bir
kosul icin 100 kez tekrarlanmistir. Bu veri setlerinden elde edilen kestirimler, kayipsiz veri setinden elde edilen
degerler ile karsilastirilmistir. Arastirmanin bulgular kayip veri miktarindaki artisin, DINA model parametre ve 6rtilk
sinif kestirimlerindeki tutarligi olumsuz yénde etkiledigini gdstermistir. Maddenin iliskili oldugu 6zellik sayisi
arttikca ortik sinif uyumu kayip veriden daha az etkilenmistir. Maddenin iliskili oldugu attribute sayisi arttik¢a bu
maddelerde gdzlenen kayip veri, testin g parametresi uyum diizeyini daha az, s parametresini daha ¢ok etkilemistir.
Arastirmanin sonuglari 6zellikle CDM modellerini kullanan test gelistiricilerinin kayip veri gozlenen maddelerde,
madde-6zellik iliskisini gbz 6niinde bulundurmalari gerektigini gdstermektedir.

Anahtar sozciikler: DINA model, kayip veri, értiik sinif kestirimi, madde-zellik iliskisi.
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Introduction

Recently, there has been a considerable increase in interest in cognitive diagnosis models
(CDMs) with respect to educational measurement. The item response theory (IRT) and the
classical test theory attempted to assess the overall ability of the respondents, whereas the
CDM s focused on diagnosing the weaknesses and strengths of the examinees based on a set of
specific attributes. Thus, CDMs provide considerably detailed and fine-grained assessments
examining the execution of the examinees with respect to specific skills instead of simply
reporting a single overall test score (Sen and Bradshaw, 2017). Further, the diagnostic
information that is obtained based on the CDM assessment can be used for accurately measuring
the learning status of students and for facilitating better instruction and intervention (Chen,
2017; Sorrel et al., 2016). CDMs are considered to be multidimensional, multivariate, discrete,
and latent trait models (de la Torre & Lee, 2010; Sorrel et al., 2016), and different theoretical
frameworks, such as the restricted latent class models (Haertel, 1989), the IRT (Embretson &
Reise, 2000; Fischer, 1973; van der Linden & Hambleton, 2013), and the rule space method
(Tatsuoka, 1983), have contributed to the development of these models. On the basis of
different approaches, can also be referred to as multiple classification models (Maris, 1999),
restricted latent class models (Haertel, 1989), CDMs (Henson & Douglas, 2005), and structured
IRT models (Rupp & Mislevy, 2007). Various CDMs draw attention in terms of the approaches
that they use in parameter estimates and the item—-attribute relation. Some of these approaches
include deterministic inputs, noisy “AND” gate (DINA; Junker & Sijtsma, 2001), deterministic
inputs, noisy “OR” gate (DINO; Templin & Henson, 2006), noisy inputs, deterministic “AND”
gate (NIDA; Junker & Sijtsma, 2001), noisy input deterministic “OR” gate (NIDO; Templin &
Henson, 2006), reparameterized unified model (RUM; Hartz, 2002), log-linear CDM (Henson,
Templin & Willse, 2009), and general diagnostic model (GDM; von Davier, 2005). Despite the
presence of several CDM formulations, the DINA model was selected in this study because of
its simplicity, ease of interpretability, and good model-data fit (de la Torre & Lee, 2010).
Further, a concise explanation of the DINA model is presented in the following section on the
basis of the study conducted by Junker and Sijtsma (2001).

The DINA Model

The DINA model has recently become one of the most preferred CDMs. It is one of the simplest
multiple classification models and is preferred by researchers because it provides clear
interpretability and good model—data fit along with simplicity (de la Torre, & Douglas, 2008; de
la Torre, & Lee, 2010; Rupp, & Templin, 2008). The complexity of the DINA model is
unaffected by the number of properties specified in the Q-matrix, which is unlike that observed
in the NIDA and RUM models, because parameters are estimated for each item and not for each
attribute (Rupp, & Templin, 2008). In addition, the DINA model analyses are easily performed
using packages (e.g., [CDM], Robitzsch, Kiefer, George, & Uenlue, 2018; [GDINA], Ma, & de
la Torre, 2018) or using codes compatible with open source software such as R (R Core Team,
2018) and Ox (Doornik, 2018). Similar to other CDMs, the DINA model requires the
construction of a Q-matrix by domain experts (Tatsuoka, 1983). Q-matrix is the key component
of the test construction process based on CDM. Q-matrix comprises 1 x 0 in which the items are
located in rows and the attributes that are required for an item to be accurately answered are
located in columns. In terms of the conjunctive model, the DINA model assumes that a
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candidate should possess all the necessary attributes specified in the Q-matrix to accurately
answer an item. In the context of the restricted latent class, the latent response variables of the
DINA model are presented as (Junker & Sijtsma, 2001)
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denoting whether an examinee possesses all the required attributes for accurately answering
item j. The latent vectors a; = (a@;1, .., @;jx) indicate the presence of skill k, whereas the
latent response vectors (LRVs) &; = (&, ...»¢;;) express the conjunctive process of the
model. Thus, the LRV requires an examinee to possess all the predetermined skills for
succeeding in a task. In the deterministic sense, the LRV should be identical to the observed
response vector; however, because of the slip (s) and guess (g, noise) parameters, the LRV only
represents the ideal response pattern (de la Torre, 2009). Further, the DINA model generates s
and g parameters for each item. The item response function that accurately calculates the
probability of an examinee answering an item is

P[X;j = 1|a,s,g] = (1 - j)‘fifgjl_gfj = Pi(a;)

It has been considered that each &;; is the function of the “AND” gate, and the

probability of an examinee accurately answering an item will be 0 or 1 when there is no g and s.
By presuming local independency and independency among examinees, the joint likelihood for
the DINA model can be obtained as
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Subsequently, the classification accuracy and item parameter estimates of the DINA
model are affected by various factors, for example, the construction of the Q-matrix, the
structure of the latent class, the characteristic of prior distribution, the sample size, the value of
the g and s parameters, and the estimation procedure (de la Torre, Hong, & Deng, 2010).
Additionally, the missing data can affect the accuracy and consistency of the parameter
estimates and may lead to biased estimates in the latent class models (Winship, Mare, &
Warren, 2002). Within the scope of this research, the missing data and methods for handling the
missing data are briefly addressed, and interested readers are encouraged to refer to Little and
Rubin (2002) for obtaining detailed information.

One of the most common problems encountered during educational and psychological
research is missing data (Zhang & Walker, 2008). This problem occurs when examinees fail to
answer the items because of several reasons such as the lack of information, shyness, reluctance,
lack of time, or the design of the researchers in a planned way (Graham, Taylor, Olchowski, &
Cumsille, 2006; Sijtsma & van der Ark, 2003; Little & Rubin, 2002). Consequently, missing
data can lead to serious problems such as biased parameter estimates, information loss, decrease
in statistical power, inflation of standard errors, and attenuation of the generalizability of the
conclusions (Dong & Peng, 2013). The most important issues to be consider in regard to the
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missing data are the rate, pattern, and mechanism of the missing data. Tabachnick and Fidell
(2007) stated that 5% or lower rate of the missing data is negligible in large samples even
though there is no exact criterion that has been provided in the literature. However, Bennet
(2001) expressed that a missing data rate of more than 10% can be attributed to biased
estimation. The missing data pattern indicates the observable values in the dataset and the
missing values; further, the missing data mechanism expresses whether there is a relation
between the missing data pattern and the values of the variables in the data matrix (Little &
Rubin, 2002). Little and Rubin (2002) stated that the following three mechanisms can lead to
missing data: missing completely at random (MCAR); missing at random; and not missing at
random. The MCAR mechanism is based on the assumption that the probability of a missing
variable is independent of the remaining measured variables (Enders, 2010). In this study, the
MCAR missing data mechanism was selected. The missing data are handled using several
methods such as listwise deletion, pairwise deletion, mean substitution, regression substitution,
pattern-matching imputation, stochastic regression, expectation maximization, multiple
imputation (MI), and full information maximum likelihood. Herein, the MI method is preferred
because it provides more accurate and less biased standard errors in case of parameter estimates
when compared to those provided using single imputation methods (Finch, 2008; Schlomer,
Bauman, & Card, 2010). The MI method creates multiple datasets by performing a prespecified
number of imputations (e.g., typically 5 or 10) to the missing data. Subsequently, each of the
completed datasets is analyzed, and the average of the parameter estimates is estimated to
produce a single set of results (Peugh & Enders, 2004). However, introducing other methods for
handling the missing data is beyond the scope of this study.

Consequently, missing data are likely to occur while collecting data from individuals
via educational and psychological tests. Missing data, similar to several other factors, can affect
the item parameter and latent class estimates of the DINA model (Basokcu, Kalkan, &
Ogretmen, 2016). Therefore, it seems important to examine the robustness of the item parameter
and latent class estimates in the presence of missing data. Additionally, determining the effect
imposed by the missing data on the item-attribute relation will provide noteworthy
contributions to construct tests based on cognitive diagnosis.

Method

We designed this study to determine the deviation of the DINA model estimations from the true
item parameters when a missing data imputation procedure is used and also to specify the
effects of the number of attributes that the item is related to with respect to this deviation. The
basic logic of the proposed design is to determine the manner in which an increase in the
number of attributes measured by an item from among the items that exhibit missing data in the
CDM-based tests changes the test parameters. Further, we manipulated both the level and type
of missing data for the test in the pattern. We manipulated the rate of missing data and the
number of attributes related to an item. Thus, in CDM analyses, we have attempted to reveal the
manner in which the structure of the items in the observed missing data affects the model fit.
The relation between an item and attribute is a prior definition in the CDM approach. This
research aims to provide functional information for the test developers before testing rather than
providing the posterior information such as the item difficulty or item discrimination.
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Simulation Study
Design and Analysis

Herein, we examined the attribute—item relations using simulation data. For this purpose, we
used the “CDM” (Robitzsch, Kiefer, Uenlue, & Robitzsch, 2018) package of R (R Core Team,
2018) for data generation and parameter estimations based on CDM; we also used the prodNA
function in the “missForest” (Stekhoven, 2016) package of R for deleting the data completely
random up to the amount specified in the dataset and the “mice” (van Buuren, & Groothuis-
Oudshoorn, 2011) package of R for performing MI. Table 1 presents the Q-matrix used for the
generation of data from four attributes and 24 items.

Table 1. Q-matrix

item o; Oy O3 Oy item o0; O, O3 Oy item o O, O3 Oy
1 1 0 0 O 9 1 1 0 O 7 1 1 1 0
2 0 1 0 O 10 1 0 1 O 18 1 1 0 1
— 3 001 0 «~ 11 1 0 0 1 » 19 1 0 1 1
(2] (2] (2]
- 4 0 0 0 1 & 12 0 1 1 0 oo 20 0 1 1 1
< 4 <
8 5 1 000 8 13 01 0 1 8 21 1 1 1 0
[aa] [aa] [aa]
6 0 1 0 O 14 0 0 1 1 22 1 1 0 1
7 0 0 1 0 15 0 1 0 1 23 1 0 1 1
8 0 0 0 1 16 1 0 1 O 24 0 1 1 1

In this study, the number of attributes for data generation is four. Thus, there will be
potentially 16 attribute patterns that may be available for participants and 15 property patterns
that may be available for items. In this case, the minimum number of items should be 15 to
ensure that an assessment reflects all the possible attribute patterns through items (Rupp &
Templin, 2008). On the basis of the minimum number of items, a test was constructed using 24
items. In the Q-matrix configuration, the first eight items (1-8, [blockl, B1]) were associated
with one attribute, the next eight items (9-16, [block2, B2]) were associated with two attributes,
and the final eight items (17-24, [block3, B3]) were associated with three attributes. Thus, in
each block (B1, B2, and B3) and, overall, we constructed a Q-matrix with an equal number of
items associated with each attribute. Therefore, the total number of rows and columns of the Q-
matrix for each block were equal (de la Torre, 2008, 2011; de la Torre ve Douglas, 2008; Rupp
& Templin, 2008). Initially, a dataset with a sample size of 3,000 and in which g and s vary
between 0.1 and 0.3 was generated. We obtained the g and s parameters and the latent class
estimations by analyzing this dataset. We accepted these obtained parameters as the true
parameters. Within the scope of this study, we determined three different missing data rates as
5%, 10%, and 15%. Furthermore, we randomly deleted 5%, 10%, and 15% of the data were
randomly deleted from the initially produced complete dataset for the first 8 (B1), middle 8
(B2), and final 8 (B3) items, respectively. Subsequently, we performed imputation of these
datasets using the MI method (n = 5). We performed 100 replications for each condition.
Subsequently, we compared the g and s parameters and the latent class estimations obtained
from these datasets with the true values obtained from the complete dataset. We performed
these comparisons based on the absolute mean difference and the consistency percentages.
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Findings

Latent Class Estimations

The imputations were performed using the MI method (n = 5) after 5%, 10%, and 15% of the
data were randomly deleted from the B1, B2, and B3 blocks of the complete dataset. We
performed 100 replications for each condition. The minimum, maximum, and mean values of
the consistency percentage between the latent class estimations obtained from the complete
datasets and the latent class estimation of the complete dataset were calculated. Figure 1 depicts
these consistency percentages.

0.98
0.96 P ——
0.94
0.92 /1 ™\
0.9 '
0.88
0.86
0.84
0.82
0.8

5% 10% 15% 5% 10% 15% 5% 10% 15%
B1 B2 B3

-8 Min Max Mean

Figure 1. Consistency percentages of the latent class estimates

In Figure 1, the minimum values of the latent class estimations obtained from 100
different datasets for each condition are denoted in blue; further, the mean values are denoted in
gray, whereas the maximum values are denoted in red. It can be observed from Figure 1 that the
latent class estimations become approximately equal to the true value when the number of
attributes associated with the items increases. For example, each item is related with one
attribute in Bl block. After deleting 5% of the data from the Bl block and performing
imputation using the MI method, the consistency of the obtained latent class estimations
exhibited a minimum of 0.91, maximum of 0.97, and mean of 0.95. The values were observed to
become 0.97, 1.00, and 0.96, respectively, in the B3 block, where each item was related with
three attributes. Similar results were observed in case of other missing data values.

Furthermore, it was observed that an increase in the amount of missing data resulted in a
decrease in the consistency values between the latent class estimates and the true values.
However, the latent class estimations based on the B3 block were the least affected by the
missing data, and they exhibited the most consistent estimations.

Item Parameters

The effect of the change in the percentage of missing data on the g parameter is depicted in
Figure 2 by considering the number of attributes related to an item. In Figure 2, the B1 block is
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gray, the B2 block is blue, and the B3 block is red. The RMSE values with respect to the g
parameter obtained in case of deletion of data from the B1, B2, and B3 blocks are depicted in
Figure 2 for each percentage amount. For example, the average RMSE value with respect to the
g parameter was observed to be 0.005 when the amount of missing data for the B1 block, where
the items were related with a single attribute, was 5%; the RMSE value with respect to the g
parameter was observed to be approximately 0.007 when the percentage of missing data was
10% and 0.01 when the percentage of missing data was 15%. Further, a similar increase was
observed in case of the B2 and B3 blocks. As the percentage of the missing data increased, the g
parameters were observed to stray from their true values.

gparameters
0.012
0.01
0.008
0.006
0.004 I I
0.002 I ’_‘ I ‘
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5% 10% 15%

mBl mB2 mB3

Figure 2. The item-attribute relation and the effect of the percentage of missing data on
the g parameters.

When the number of attributes related with the items was considered, the effects of the
change in the percentage of missing data on the s parameter is depicted in Figure 3. In Figure 3,
the B1 block is denoted in gray, the B2 block is denoted in blue, and the B3 block is denoted in
red. Figure 3 denotes RMSE values obtained with respect to the s parameter when data are
deleted from the B1, B2, and B3 blocks for each percentage amount. For example, the RMSE
value with respect to the s parameter is 0.0048 when the amount of missing data for the B1
block, where items are related with a single attribute, was 5%; the RMSE value with respect to
the s parameter was approximately 0.0073 when the percentage of missing data was 10% and
0.01 when the percentage of missing data was 15%. A similar increase was observed in case of
the B2 and B3 blocks. As the percentage of the missing data increased, the s parameters were
observed to stray from their true values.
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Figure 3. The item-attribute relation and the effect of the percentage of missing data on the s
parameters.

In addition, when missing data were observed in items (B1) related with a single
attribute, the RMSE values with respect to the s parameter for the other blocks in the test were
almost equal. Furthermore, if the missing data were observed in the B2 and B3 blocks, the B1
block produced the closest values to the true value.

The general state of difference between the true values and the estimated values for the
two parameters is presented in Table 2.

Table 2. The RMSE values for the true and estimated parameter differences

9] S

Bl B2 B3 Mean Bl B2 B3 Mean
B1 0.0049 0.0020 0.0011 0.0027 0.0048 0.0018 0.0011 0.0026
B2 0.0010 0.0032 0.0006 0.0016 0.0025 0.0068 0.0020 0.0038
B3 0.0004 0.0005 0.0026 0.0011 0.0024 0.0033 0.0085 0.0047
Mean 0.0021 0.0019 0.0014 0.0032 0.0040 0.0038

5%

Bl 0.0077 0.0029 0.0016 0.0041 0.0073 0.0028 0.0016 0.0039
B2 0.0016 0.0052 0.0009 0.0026 0.0041 0.0116 0.0027 0.0062

10% B3 0.0006 0.0007 0.0037 0.0017 0.0039 0.0047 0.0133 0.0073
Mean  0.0033 0.0029 0.0021 0.0051 0.0064 0.0059
Bl 0.0103 0.0035 0.0022 0.0053 0.0103 0.0034 0.0021 0.0052
15% B2 0.0020 0.0070 0.0013 0.0035 0.0051 0.0161 0.0037 0.0083

B3 0.0008 0.0009 0.0050 0.0023 0.0050 0.0066 0.0181 0.0099
Mean  0.0044 0.0038 0.0028 0.0068 0.0087 0.0080

Table 2 presents the RMSE values with respect to the manner in which the variance in
the item block, where the missing data were observed, affected the g and s parameter
estimations during the entire test. The average RMSE value with respect to the g parameters of
the entire test was calculated to be 0.0021 if 5% of the missing data were from the B1 block,
0.0019 in the B2 block, and 0.0014 in the B3 block when the effect of variance in the item
block, where the missing value observed, was analyzed by performing the g parameter
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estimation of the entire test. Similar findings were also observed for 10% and 15% of missing
data. Based on these observations, it can be stated that the missing data leads to more difference
on g parameters of test than the items related with more attributes (B2 and B3) when the
missing data is observed on the items related with a single attribute. In other words, the g
parameter estimations obtained from the items related with a large number of attributes were
observed to be less affected by the missing data when compared with the g parameter
estimations obtained from the items related with less number of attributes.

In addition, the average RMSE value with respect to the s parameters of the entire test
was calculated as 0.0032 if 5% of the missing data were located in the B1 block, 0.0040 in the
B2 block, and 0.0038 in the B3 block when the effect of variance in the item block, where the
missing value was observed, was analyzed with respect to the g parameter estimation during the
entire test. Similar findings were observed for 10% and 15% of the missing values. Thus, it was
observed that the missing data lead to less difference with respect to the s parameters of the test
than the items related with more attributes (B2 and B3) when the missing data are observed on
the items related with single attribute. In other words, the s-parameter estimations obtained from
the items related to a single attribute were observed to be less affected by the missing data than
the s-parameter estimations obtained from the items related with more attributes.

In conclusion, Table 2 presents that an increase in the missing data rate adversely
affects the item parameters for all the conditions. Furthermore, it was observed that the values
for a block exhibiting missing data for the item parameters denoted more deviation from the true
value when compared to the deviation exhibited by the values of the remaining blocks.
Therefore, when the average RMSE values for the entire test were considered in the presence of
missing data, the g parameters were observed to be less affected by the missing data than the s
parameters.

Discussion and Conclusion

This study discussed the manner in which the item—-attribute relation affected the item parameter
and latent class estimates in case of different missing data rates. When the missing data rate was
5%, the g parameter RMSE values from the B1, B2, and B3 blocks were observed to vary
between 0.0004 and 0.005; the s-parameter RMSE values were observed to change from 0.001
to 0.0085. The consistency mean of the latent class estimation varied between 0.95 and 0.98.
This observation supports the finding reported by Tabachnick and Fidell (2007) in which 5% or
less amount of missing data do not lead to significant problems in large samples. Increasing the
amount of missing data was observed to increase the RMSE values with respect to both the g
and s parameters, whereas the latent class estimations decreased the consistency values. This
result regarding an increase in the missing data is, in fact, an expected situation. Increasing the
amount of missing data was observed to negatively affect the consistency of the measurement
results for all the models. This condition was observed both with respect to the change in item
parameters and in the level of consistency of the latent classes.

Another finding was that the level of effect of the general parameters of the test was
observed to be related to the items in which the missing data were observed. Because of the
analysis, the parameters related to the items containing missing data varied from the true values
at a significant level according to the parameters of the other items in the test, as expected.
When the findings were examined, the parameter change of the block that contained the missing
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data was higher than that observed in the other blocks for all the conditions in the research
pattern.

When the results of the main study problem were examined, the findings that were to be
considered for performing the CDM analysis were obtained. The effect of missing data on the
test parameters was observed to be variable when the density of the item-attribute relation was
considered. The stochastic element of the DINA model ensures that the response behavior is not
deterministic but probabilistic; this occurs because the respondents make false-positive and
false-negative errors at an item level while responding. Therefore, the possibility of accurately
responding to an item is determined by two different error probabilities (Rupp, & Templin,
2008). Thus, the g and s parameters in the CDM are associated with false-positive and true-
negative errors in various models. The most common definition of the g parameter corresponds
to the probability of individuals who do not have at least one of the attributes required to
accurately answer an item. Further, the s parameter corresponds to the false response
possibilities of the individuals who possess all the required attributes (de La Torre, & Douglas,
2004). These two possibilities have been separately discussed in this research. First, the
observation of missing data on the items related to a single attribute (B1) more adversely
affected the g parameter estimation when compared with the missing data located in items
related with more attributes (B2 and B3). In other words, as the number of attributes related to
an item increased, the missing data in these items minorly affected the consistency level of the g
parameter of the test. However, the situation was observed to be the opposite for the s
parameter. The highest consistency in the s parameters was observed when the missing data
were located in the items associated with a single attribute. Further, the missing data in the items
associated with a single attribute were observed to minorly affect the s parameter consistency
level. This can be mainly attributed to the false-positive and true-negative property of the g
parameter, as described above. Each true-negative decision that occurred during the missing
data imputations for items that were associated with large number of attributes changed the g
parameter for each attribute. However, the true-negative decision in this item was observed to
affect only that item. This situation was observed to occur in the opposite manner for the s
parameter. The s parameter was also basically determined using the false-negative and true-
positive decisions. The s parameter exhibits the possibility of a non-mastery decision about an
examinee who essentially possesses the necessary attributes for answering an item. Further, the
false-negative possibility increases as the item—attribute relation increases.

One of the remarkable findings observations of this research was the amount of change
in latent class assignments in the presence of missing data. The latent class consistency
decreased as the amount of missing data increased. However, as the number of attributes
associated with an item increased, the latent class consistency was observed to be less affected
by the missing data. In other words, the latent class consistency, which was observed in items
exhibiting high item-attribute relations, was higher when compared with that in the items with
less item-attribute relation in the presence of missing data. Thus, it can be said that the highly
saturated items may have a minor negative impact on the missing data studies because of the
effect of the g parameter while determining the latent classes.

Conducting the research using a single CDM model results in a limitation with respect
to the generalizability of the findings. However, some information has been obtained in case of
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CDM studies while considering the consistency of findings and the significance of the
differences. The research results denoted that the test developers who use the CDM models
should consider the relation between an item and the attribute in case of items with missing
data. In future studies, verifying the conditions of variables, such as item discrimination, item
difficulty, test length, sample size, ability level of the sample, and the application of different
CDM maodels, will contribute to the literature to reveal the effects of the missing data and the
item—attribute relation better.
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Genisletilmis Ozet

Giris

Egitimsel ve psikolojik dlgmelerde, Bilissel Tani Modelleri'ne (BTM) olan ilgi son yillarda
dikkate deger bir artis gostermektedir. Klasik Test Kurami (KTK) ve Madde Tepki Kurami
(MTK) katilimcilarin genel yeteneklerini degerlendirmeye ¢alisirken, BTM'ler, belirli bir 6zellik
kiimesine dayanarak adaylarin zayif ve gicli yonlerini belirlemeye odaklanir. Bu nedenle,
CDM'ler sinavlarda adaylarin tek bir genel sinav puanini rapor etmek yerine, belirli
becerilerdeki uygulamalarini gosteren daha ayrintili bir degerlendirme sunarlar (Sen ve
Bradshaw, 2017). Literatirde bircok CDM modeli bulunmasina ragmen, basit formil,
yorumlama kolayhgdi ve iyi model-veri uyumu saglamasi nedeniyle DINA model birgok
arastirmaci tarafindan tercih edilmektedir (de la Torre ve Douglas, 2008; de la Torre ve & Lee,
2010, Rupp ve Templin, 2008). DINA modeli siniflandirma dogrulugu ve madde parametresi
tahminleri; Q matris yapisi, ortik sinif yapisi, énsel karakteristigi, érneklem buyukligu, tahmin
ve kaydirma parametre degerleri ve kestirim yontemi gibi cesitli faktorlerden etkilenmektedir
(De La Torre, Hong, & Deng, 2010). Bunlara ek olarak, kayip veriler parametre tahminlerinin
dogrulugunu ve tutarlihgini etkileyebilir ve ortik sinif modellerinde yanl kestirimlere yol
acabilirler (Winship, Mare ve Warren, 2002). Egitimsel ve psikolojik testlerle bireylerden veri
toplandiginda, kayip verilerle karsilasiimasi muhtemeldir. Kayip veriler diger bircok faktor gibi,
DINA model madde ve ortiik sinif kestirimlerini etkileme potansiyeline sahiptir (Basokgu,
Kalkan ve Ogretmen, 2016). Bu nedenle, eksik veri varhiginda madde parametresi ve ortiik sinif
kestirimlerinin tutarlihgini incelemek 6nemli gorinmektedir. Ayrica, madde-6zellik iliskisinin
kayip verilerden nasil etkilendiginin belirlenmesi, bilissel taniya dayali testlerin olusturulmasina
onemli katkilar saglayacaktir. Bu arastirmanin amaci; farkh miktarlarda kayip veri varliginda
madde-6zellik iliskisinin, DINA model madde parametre ve Ortik sinif kestirimlerini nasil
etkiledigini incelemektir.

Yoéntem

Arastirma kapsaminda 6zellik-madde iliskileri similasyon verileri ile incelenmistir. Bu amacla;
veri Uretimi ve parametre kestirimleri icin “CDM” (Robitzsch, Kiefer, Uenlue, & Robitzsch,
2018), veri silme icin “missForest” (Stekhoven, 2016), Multiple Imputation (MI) i¢in “mice”
(van Buuren, & Groothuis-Oudshoorn, 2011), R (R Core Team, 2018) paketleri kullaniimistir.
Verilerin Uretilmesinde 4 6zellik ve 24 maddeden olusan bir Q matris kullaniimistir. Q matris
yaptlandirilirken ilk 8 madde (1-8, [blockl, B1]) 1, sonraki 8 madde (9-16, [block2, B2]) 2, son
8 madde (17-24, [block3, B3]) ise 3 dzellik ile iliskilendirilmistir. Boylece her bir blokta (B1,
B2, B3) ve toplamda her bir ozellik ile iliskili esit sayida maddeye sahip bir Q matris elde
edilmistir. Baslangigta g ve s’nin 0.1-0.3 arasinda degistigi 3000 Kisilik bir veri seti tretilmistir.
Bu veri setleri analiz edilerek guess (g) ve slip (s) parametreleri ve ortik sinif kestirimleri elde
edilmistir. Elde edilen bu parametreler gercek deger olarak kabul edilmistir. Arastirma
kapsaminda %5, %10 ve %15 olmak Uzere 3 farkh kayip miktar1 belirlenmistir. Baslangicta
uretilen veri setinden ilk 8 (B1), orta 8 (B2) ve son 8 (B3) madde icin sirasi ile rassal %5, %10
ve %15 veri silinmistir. Ardindan, bu veri setlerine MI yontemi ile imputasyon (n=5)
gerceklestirilmistir. Bu islemler, her bir kosul igin 100 kez tekrarlanmistir. Daha sonra, bu veri
setlerinden elde edilen g ve s parametreleri ve ortiik sinif kestirimleri kayipsiz veri setinden elde
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edilen gercek degerler ile karsilastiriimistir. Bu karsilastirmalar ortalama mutlak fark ve uyum
oranlari Gzerinden yaptlmistir.

Bulgular ve Tartisma

Bu ¢alisma farkli oranlarda kayip veri varhiginda, madde-6zellik iliskisinin, DINA model madde
parametre ve ortik 6zellik kestirimlerini nasil etkiledigini ele almaktadir. Kayip veri orani 5%
iken B1, B2 ve B3 bloklarindan elde edilen g parametre RMSE degerleri .0004-.005 araliginda,
s parametre RMSE degerleri .001-.0085 arah§inda degismistir. Ortiik sinif kestirim uyum
ortalamalar ise .95-.98 aralijinda degismistir. Bu bulgu Tabachnick ve Fidell (2007) tarafindan
rapor edilen buyik o6rneklemlerde 5% veya daha az kayip verinin 6nemli sorunlara yol
acmayacagl bulgusunu desteklemektedir. Kayip veri miktarinin artmasi g-s parametre RMSE
degerlerinde bir artisa neden olurken, ortiik sinif kestirimleri uyum degerlerinde ise bir distse
neden olmaktadir. Kayip veri artisi ile ilgili bu sonug aslinda beklenen bir durumdur. Kayip veri
miktarinin artmasi bltiin modeller igin 6lgme sonuclarinin tutarhiligini olumsuz yonde etkileyen
bir faktordir. Bu durum hem madde parametrelerindeki degisimde hem de 6rtiik siniflarin uyum
diizeyinde gozlenmektedir.

Arastirmadan elde edilen bir diger bulgu ise kayip verinin gézlendigi maddeler ile testin
genel parametrelerinin etkilenme dizeylerinin iliskili olmasidir. Analizler sonucunda
beklenildigi gibi kayip verinin bulundugu maddelere iliskin parametreler, testte yer alan diger
maddelerin parametrelerine gore dnemli diizeyde gercek degerlerinden uzaklasmaktadir. Elde
edilen bulgular incelendiginde arastirma deseninde yer alan battin kosullar i¢in kayip verinin yer
aldig1 bloga ait parametre degisiminin diger bloklardan daha yiiksek oldugu gorilmustur.

Arastirmanin asil problemine iliskin sonuclar incelendiginde, CDM analizleri icin
dikkate alinmasi gereken bulgulara ulasildigr gorulmektedir. Madde 6zellik iliskisinin
yogunlugu goz ontne alindiginda kayip verinin test parametrelerine etkisi de degiskenlik
gostermistir. Oncelikle g parametreleri incelendiginde tek ozellikle iliskili maddelerde (B1)
kayip verinin gozlenmesinin, daha ¢ok Ozellikle iliskili maddelerde yer alan kayip veriye gore
(B2, B3) parametre kestirimini daha fazla olumsuz etkiledigi gortlmustir. Bu durumun temel
nedeni g parametresinin false pozitif ve true negatif 6zelliginden kaynaklamaktadir. Daha fazla
ozellik ile iliskili olan maddelere yonelik yapilan kayip veri atamalarinda gerceklesen her true
negatif karar her bir 6zellik igin g parametresinde degisime yol agmaktadir. Ancak, bu durum s
parametresi icin tam tersi bir dagilim gostermektedir. s parametrelerinde en yiksek tutarhlik bir
ozellik ile iliskili olan maddelerde kayip veri gozlendiginde ortaya ¢cikmaktadir. s parametresi de
temelde false negatif ve true pozitif kararlari ile belirlenmektedir. s parametresi madde icin
temelde gerekli 6zelliklere sahip olan cevaplayici hakkinda “6zelliklere sahip olmadigi” karari
verilmesi durumlarinin bir olasihgini géstermektedir. Bu noktada madde 6zellik iliskisi arttikca
false negatif olasiligi da artmaktadir.

Arastirmanin dikkat cekici bulgularindan biride kayip veri varliginda ortik sinif
atamalarindaki degisim miktaridir. Ortiik sinif uyumlari kayip veri miktari arttikga diismektedir.
Ancak maddenin iliskili oldugu 6zellik sayisi arttikga orttik sinif uyumu kayip veriden daha az
etkilenmektedir. Bu durum o6zellikle g parametresinin 6rtik siniflari belirlemekteki etkisi ile
birlikte daha doygun maddelerin kayip veri ¢alismalarinda sonuclari daha az diizeyde olumsuz
yonde etkileyecegine isaret ettigi de sdylenebilir.
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Arastirmanin tek bir CDM modeli Gzerinde ylritilmesi ulasilan bulgularin genellenebilirligi
acisindan bir sinirlilik teskil etmekle birlikte, bulgularin kararlihgi ve farklarin anlamhhgi géz
ondne alindiginda, CDM calismalari igin Uzerinde durulmasi gereken bazi bilgilere ulasildigi da
iddia edilebilir. Arastirmanin sonuglari 6zellikle CDM modellerini kullanan test gelistiricilerinin
kay1p veri gozlenen maddelerde, madde-6zellik iliskisini g6z éniinde bulundurmalari gerektigini
ortaya koymaktadir.



