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Original Article

Abstract − Picture linguistic fuzzy set is the generalize structure over existing
structures of fuzzy linguistic sets to arrange uncertainty and imprecise information
in decision making problems. Viewing the effectiveness of the picture linguistic fuzzy
set, we developed a decision-making approach for the multi-criteria decision-making
problems. We also proposed the GRA technique using Choquet integral deal- ing
uncertainty in decision making problems under picture linguistic fuzzy information.
Lastly, we illustrate an example to shows the effectiveness and reliability of the de-
veloped method.

Keywords − Picture linguistic fuzzy set, Picture linguistic fuzzy Choquet integral weighted averaging (PLF-
CIWA) operator, GRA method.

1. Introduction

Fuzzy set theory concept was first time defined by Zadeh [1]. Fuzzy set are only defined membership
function, but more times, it difficult to express more fuzzy information. To deal successfully with
something difficult, Attanssov [2] defined the intuitionistic fuzzy set, the development of FS, which
included the non-membership degree. After that Attanssov defined interval valued IFS by approach-
ing the positive degree and negative degree to interval number [3–5], and the operational laws and
comparison rules for the IvIFSs are defined. The IvIFS illustrate the fuzzy information and is more
descriptive than the FS and IFS. Wang and Liu defined some geometric and averaging aggregation op-
erators for different IFNs. Latterly, some multi-criteria decision making problems have also proposed
which depend on IFS [6,7].

Murofushi and Sugeno [8] proposed the notion of Choquet integral with respect to a fuzzy measure.
It was defined by Choquet [9] in potential theory with the notion of capacity. The generalization of
the classical Lebesgue integral are Choquet integral and has been tested to many other field. Choquet
integral are used in many areas like as image processing, pattern recognition, information fusion and
data mining [10, 11], and also utilized in economic theory [12, 13], in the context of fuzzy measure
theory [14, 15]. Sugeno integral is the other important kind of fuzzy integral, and are introduced
by Sugeno [16]. Sugeno integral on the fuzzy sets are generalized by Wang and Qiao [17, 18]. Yu et
al. [19] proposed the Choquet integral operator to aggregate the hesitant fuzzy information for MCDM
problems. Zhou [20] extended intuitionistic fuzzy Choquet integral correlation coefficient on the base
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of Shapley index. Li et al. [21] proposed the Generalized Interval Neutrosophic Choquet Aggregation
Operators.

The concepts of picture fuzzy set was proposed by Coung and investigated basic operators and
properties of (PFS) [22]. Picture fuzzy set are basically development of Atanassoves intuitionistic
fuzzy set, which represent a membership, neutral membership and a nonmembership degree, is a very
strong tool to represent vague and an uncertain information in the process of clustering analysis.
When we looksome issue, which have more answers like as: yes, abstain, no, and refusal, in this case
we used picture fuzzy numbers. To deal with clustering problems under the picture fuzzy environment
Son [23] give the concept of generalized picture fuzzy distance measure. The decision making art are
proposed by Wei [24], which is depended on the picture fuzzy weight cross-entropy. Ashraf et al. [25]
proposed the series of aggregation opertors for picture fuzzy information. Zeng et al. [26] proposed
the liguistic picture fuzzy TOPSIS method for picture fuzzy information. For more study, we refer
to [27–32,53–56].

Moreover, in decision position assessment are given by linguistic terms which is a linguistic values
of a linguistic variable. The great deal of qualitative information arise in real decision making problem.
Which is simply convert by linguistic terms, like as “very good”,“good”, “fair”,“bad” and “very bad”,
etc. In some earlier application, linguistic terms were described for triangular fuzzy numbers [33,34],
trapezoidal fuzzy numbers [35, 36]. The notion of Intuitionistic linguistic set are given by Wang and
Li [37], and also derived some decision making methods with ILNs. Pei et al. [38] proposed linguistic
weighted aggregation operator for fuzzy risk analysis. Based on dependent operator Liu [39] derived the
intuitionistic linguistic generalized dependent ordered weighted averaging operator and intuitionistic
linguistic generalized dependent hybrid weighted aggregation operator. Wang et al. [40] defined the
comparison rules, score function and accuracy function between two intuitionistic linguistic numbers.
Wang [41] developed an ILPGWA operator and ILPGOWA operator based on power operator, and
explain some individual cases of these operators with respect to the generalized criterion. Chen et
al. [42] introduced the new notion of linguistic intuitionistic fuzzy number. Liu et al. [43] introduced a
new linguistic term transformation tecnique in linguistic decision making. Based on Einstein T-norm
and T-conorm Liu and You [44] proposed some linguistic intuitionistic fuzzy Heronian mean operators.
Due to the motivation and inspiration of the above study in this article, we defined picture linguistic
fuzzy set (PLFS), which is generalized form of intuitionistic linguistic fuzzy set. The application of
this paper is to introduced the notion of GRA methodology for solving MADM problems under picture
linguistic fuzzy information, in which the data about criteria weights are completely unknown, and
the criteria values occur in the form of picture linguistic fuzzy numbers.

In preliminaries, we shortly review basic definitions and results about Choquet integral, intuition-
istic linguistic fuzzy sets and picture linguistic fuzzy sets. In Section 3, we proposed the concept of
picture linguistic fuzzy sets, and also introduce the GRA method for picture linguistic fuzzy MAGDM
problems with incomplete weight information in Section 4. In Section 5, we illustrate our introduced
algorithm with an example. In Section 6 are conclusion.

2. Preliminary

Some basic definition and notations of IFSs, ILFSs, PFS, PLFS and their operations are discussed.
The concept of fuzzy measure and Choquet integral are aslo studied.

Definition 2.1. [45,46] Let Ĺ = {£p|p = 0, 1, ..., ℓ− 1} be the linguistic set, where as the cardinality
of this set is considered as odd number, i.e. a five linguistic terms set Ĺ can be designate as;

Ĺ = (£0,£1,£2,£3,£4)

= {poor, slightly poor, fair, slightly good, good}.

Definition 2.2. The negation operator: neg (Ĺp) = Ĺq, where q = ℓ− 1;
(1) Be ordered: £p ≤ £q ⇐⇒ p ≤ q;
(2)Maximum operator: max(£p,£q) = £p if £p ≥ £q;
(3) Minimum operator: min(£p,£q) = £p if £p ≤ £q.

£[0,ℓ] = {£p|£0 ≤ £p ≤ £ℓ}, whose elements also get all the characteristics above, and if £p ∈ Ĺ,it
is known as the actual term, otherwise, virtual term.
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To make something stay the same, Herrera et al. [47] suggest that the distinct linguistic term set
Ĺ = (£0 ,£1, ...,£ℓ−1) is expended to a continuous linguistic term set Ĺ = (£θ|θ ∈ (0, G), where G
sufficiently large positive number which satisfies the upper characteristics. For any linguistic variables
£p,£q ∈ Ĺ, the following condition ae satisfied.

1. ϖ ⊗£p = £ϖ·p

2. £p ⊕£q = £p+q

3. £p/£q = £p/q

4. (£p)
q = £kq

Definition 2.3. [2] An IFS Eŭ on the universal set R ̸= ϕ is defined as;

Eŭ = {⟨Pěŭ(r), Iěŭ(r)| r ∈ R⟩} ,

where Pěŭ(r) : R → [0, 1] and Iěŭ(r) : R → [0, 1] are the membership and non-membership degree
of each r ∈ R, respectively. Moreover Pěŭ(r) and Iěŭ(r) satisfy this condition 0 ≤ Pěŭ(r) + Iěŭ(r) ≤
1∀r ∈ R.

Definition 2.4. [48] Let R ̸= ϕ be the universe of discourse. Then Eŭ is defined as;

Eŭ = {⟨£ěŭ(r), Pěŭ(r), Iěŭ(r)| r ∈ R⟩} ,

an ILFS in a set R is denoted by £ěŭ(r) ∈ L are the linguistic term, Pěŭ(r) and Iěŭ(r) : R → [0, 1] be
the membership and non-membership of each r ∈ R, respectively. Moreover Pěŭ(r) and Iěŭ(r) satisfy
this condition0 ≤ Pěŭ(r) + Iěŭ(r) ≤ 1 for all r ∈ R.

Definition 2.5. [22] A PFS Eŭ on the universal set R ̸= ϕ is defined as;

Eŭ = {⟨Pěŭ(r), Iěŭ(r), Něŭ(r)| r ∈ R⟩} .

where Pěŭ(r) : R → [0, 1] , Iěŭ(r) : R → [0, 1] and Něŭ(r) : R → [0, 1] are the positive membership,
neutral membership and negative membership of each r ∈ R, respectively. Furthermore, Pěŭ(r), Iěŭ(r)
and Něŭ(r) satisfy this condition 0 ≤ Pěŭ(r) + Iěŭ(r) +Něŭ(r) ≤ 1∀r ∈ R.

2.1. Fuzzy measure and Choquet integral

Definition 2.6. [9] Let R = {r1, r2, ..., rn} ̸= ϕ be the universe of discourse and p(R) denotes the
power set of R. Then, a fuzzy measure Pěŭ on R is a mapping Pěŭ : p(R) → [0, 1], satisfying the
subsequent conditions;

1) Pěŭ(ϕ) = 0, Pěŭ(R) = 1.

2) If Eŭ1 , Eŭ2 ∈ p(R) and Eŭ1 ⊆ Eŭ2 then Pěŭ(Eŭ1) ≤ Pěŭ(Eŭ2).

Where Pěŭ({r1, r2, ..., rn}) can be considered as the grade of subjective importance of decision
criteria set {r1, r2, ..., rn}. Thus, with the separate weights of criterias can also be defined. Naturally,
we could say the following about any pair of criterias sets Eŭ1 , Eŭ2 ∈ p(R), Eŭ1 ∩ Eŭ2 = ϕ; Eŭ1and
Eŭ2 are considered to be without interaction if

Pěŭ(Eŭ1 ∪ Eŭ2) = Pěŭ(Eŭ1) + Pěŭ(Eŭ2) (1)

which is known as additive measure. Eŭ1and Eŭ2 exhibit a positive synergetic interaction between
them (or are complementary) if

Pěŭ(Eŭ1 ∪ Eŭ2) > Pěŭ(Eŭ1) + Pěŭ(Eŭ2) (2)

which is called a superadditive measure. Eŭ1and Eŭ2 exhibit a negative synergetic interaction between
them (or redundant or substitutive) if

Pěŭ(Eŭ1 ∪ Eŭ2) < Pěŭ(Eŭ1) + Pěŭ(Eŭ2) (3)
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known as sub-additive measure.
Since it is difficult to find the fuzzy measure according to Definition 2.6, therefore, to confirm a

fuzzy measure in MAGDM problems, Sugeno [16] given below, λ-fuzzy measure:

Pěŭ(Eŭ1 ∪ Eŭ2) = Pěŭ(Eŭ1) + Pěŭ(Eŭ2) + λPěŭ(Eŭ1)Pěŭ(Eŭ2) (4)

λ ∈ [−1,∞), Eŭ1 ∩ Eŭ2 = ϕ. The interaction between the criterias are determines the parameter λ .
If we put λ = 0, in Equation 4, then, λ-fuzzy measure become an additive measure. And for negative
and positive λ, the λ-fuzzy measure reduces to subadditive and superadditive measures, respectively.
Meantime, if all the elements in R are independent, and we have

Pěŭ(Eŭ) =

n∑
p=1

Pěŭ({rp}) (5)

If we consider R is a finite set, then ∪np=1rp = R, and λ-fuzzy measure Pěŭ satisfies following
Equation 6

Pěŭ (R) = Pěŭ
(
∪np=1ri

)
=


1
λ

(
n∏
p=1

[1 + λPěŭ (rp)]− 1

)
if λ ̸= 0

n∑
p=1

Pěŭ (rp) if λ = 0

(6)

where rp ∩ rď = ϕ for all p,ď= 1, 2, ..., n and p ̸=ď. A fuzzy density Pěŭ(rp) for a subset with a
single element rp is denoted as Pěŭp = Pěŭ(rp).

Especially for every subset Eŭ1 ∈ p(R), we have

Pěŭ (Eŭ1) =


1
λ

(
n∏
p=1

[1 + λPěŭ (rp)]− 1

)
if λ ̸= 0

n∑
p=1

Pěŭ (rp) if λ = 0

(7)

Based on Equation 2, we determined the value of λ from Pěŭ(R) = 1, and is equal to solved this
equation;

λ+ 1 =
n∏
p=1

[
1 + λPěŭp

]
(8)

It should be recognized that the value of λ can be uniquely determined by Pěŭ(R) = 1.

Definition 2.7. [16] Assume that f and Pěŭ be a positive real-valued function and fuzzy measure
on R, respectivily. The discrete Choquet integral of f with respect to Pěŭ is defined by

Cµ(f) =

n∑
p=1

fρ(p)[Pěŭ(Aρ(p))− Pěŭ(Aρ(p-1))] (9)

ρ(p) indicates a permutation on R, where fρ(1) ≥ fρ(2) ≥ ... ≥ fρ(n), Aρ(n) = {1, 2, ..., p}, Aρ(0) = ϕ.

3. Linguistic Picture Fuzzy Set and their Operations

We discussed in this section linguistic picture fuzzy set concept and their operationals laws.

Definition 3.1. [50] Let R ̸= ϕ be a universal set. Then, Eŭ is called a picture linguistic set, and
defined as;

Eŭ = {⟨£ěŭ(r), Pěŭ(r), Iěŭ(r), Něŭ(r)| r ∈ R⟩} ,

where £ěŭ(r) ∈ L, Pěŭ(r) : R → [0, 1] , Iěŭ(r) : R → [0, 1] and Něŭ(r) : R → [0, 1] are the linguistic
term, the positive, neutral and negative membership degrees of each r ∈ R, respectively. Furthermore
Pěŭ(r), Iěŭ(r) and Něŭ(r) satisfy that 0 ≤ Pěŭ(r) + Iěŭ(r) +Něŭ(r) ≤ 1 ∀ r ∈ R.



Journal of New Theory 28 (2019) 5–19 / An Approach for Multi-Criteria Decision Making Problems with ... 9

Definition 3.2. Let Eŭ1 =
⟨
£ěŭ1

, Pěŭ1 , Iěŭ1 , Něŭ1

⟩
and Eŭ2 =

⟨
£ěŭ2

, Pěŭ2 , Iěŭ2 , Něŭ2

⟩
are two PLFNs

define on the universe of discourse R ̸= ϕ, some operations on PLFNs are defined as follows with ψ ≥ 0.

1. Eŭ1 ⊕ Eŭ2 =
{
£ěŭ1+ěŭ2

, Pěŭ1 + Pěŭ2 − Pěŭ1 · Pěŭ2 , Iěŭ1 · Iěŭ2 , Něŭ1
·Něŭ2

}
2. ψ · Eŭ =

{
£ψ.ěŭ , 1− (1− Pěŭ1 )

ψ, (Iěŭ)
ψ, (Něŭ)

ψ
}

3. Eŭ1 ⊗ Eŭ2 =
{
£ěŭ1×ěŭ2 , Pěŭ1 · Pěŭ2 , Iěŭ1 · Iěŭ2 , Něŭ1

+Něŭ2
−Něŭ1

·Něŭ2

}
4. (Eŭ)

ψ =
{
£(ěŭ)

ψ , (Pěŭ)
ψ, (Iěŭ)

ψ, 1− (1−Něŭ)
ψ
}

3.1. Comparison Rules for PLFNs

To rank the PLFNs, we defined some function in this section, which are the following.

Definition 3.3. Let Eŭ = ⟨£ěŭ , Pěŭ , Iěŭ , Něŭ⟩ be any PLFNs. Then

1. sc(Eŭ) =
£ěŭ×(Pěŭ−Iěŭ−Něŭ)

3 (score function).

2. ac(Eŭ) =
£ěŭ
2 (Pěŭ +Něŭ) (accuracy function).

3. cr(Eŭ) =
£ěŭ
2 (Pěŭ) (certainty function).

Definition 3.4. Let Eŭ1 =
⟨
£ěŭ1

, Pěŭ1 , Iěŭ1 , Něŭ1

⟩
and Eŭ2 =

⟨
£ěŭ2

, Pěŭ2 , Iěŭ2 , Něŭ2

⟩
are two PLFNs

define on the universe of discourse R ̸= ϕ. With the help of Definition 3.3, we defined the following
rules,

1. If sc(Eŭ1) ≻ sc(Eŭ2),then Eŭ1 ≻ Eŭ2 .

2. If sc(Eŭ1) ≈ sc(Eŭ2),and ac(Eŭ1) ≻ ac(Eŭ2),then Eŭ1 ≻ Eŭ2 .

3. If sc(Eŭ1) ≈ sc(Eŭ2), ac(Eŭ1) ≈ ac(Eŭ2) and cr(Eŭ1) ≻ cr(Eŭ2), then Eŭ1 ≻ Eŭ2 .

4. If sc(Eŭ1) ≈ sc(Eŭ2), ac(Eŭ1) ≈ ac(Eŭ2) and cr(Eŭ1) ≈ cr(Eŭ2), then Eŭ1 ≈ Eŭ2 .

Definition 3.5. Let any collections Eŭp =
⟨
£ěŭp

, Pěŭp , Iěŭp , Něŭp

⟩
, p ∈ N be the PLFNs and

PLFWA : PLFNn → PLFN, then PLFWA describe as,

PLFWA (Eŭ1 , Eŭ2 , ..., Eŭn) =

n∑
p=1

ψpEŭp , (10)

such that ψ = {ψ1, ψ2, ..., ψn}T be the weight vector of Eŭp =
⟨
£ěŭp

, Pěŭp , Iěŭp , Něŭp

⟩
, p ∈ N , with

ψp ≥ 0 and
∑n

p=1 ψp = 1.

Theorem 3.6. Suppose that Eŭp =
⟨
£ěŭp

, Pěŭp , Iěŭp , Něŭp

⟩
, p ∈ N be the collection of PLFNs.

Then by using the Definition 3.5 and operational properties of PLFNs, we can obtained the following
outcome.

PLFWA (Eŭ1 , Eŭ2 , ..., Eŭn) =


£ n∑
p=1

ψp·ěŭp
, 1−Πnp=1(1− Pěŭp )

ψp ,

Πnp=1(Iěŭp )
ψp ,

Πnp=1(Něŭp
)ψp

 (11)
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Definition 3.7. Let any collections Eŭp =
⟨
£ěŭp

, Pěŭp , Iěŭp , Něŭp

⟩
, p ∈ N be the PLFNs and

PLFOWA : PLFNn → PLFN, then PLFOWA describe as,

PLFOWA (Eŭ1 , Eŭ2 , ..., Eŭn) =

n∑
p=1

ψpEŭρ(p) , (12)

In which ψ = {ψ1, ψ2, ..., ψn} be the weight vector of Eŭp =
⟨
£ěŭp

, Pěŭp , Iěŭp , Něŭp

⟩
, p ∈ N , with

ψp ≥ 0 and
∑n

p=1 ψp = 1 and ρ(p) indicates a permutation on R.

Theorem 3.8. Suppose that Eŭp =
⟨
£ěŭp

, Pěŭp , Iěŭp , Něŭp

⟩
, p ∈ N be the collections of PLFNs.

Then, by using the Definition 3.7 and operational properties of PLFNs, the following equation is
obtained.

PLFOWA (Eŭ1 , Eŭ2 , ..., Eŭn) =


£ n∑
p=1

ψp·ěŭρ(p)
, 1−Πnp=1(1− Pěŭρ(p)

)ψp ,

Πnp=1(Iěŭρ(p)
)ψp ,

Πnp=1(Něŭρ(p)
)ψp

 (13)

Theorem 3.9. Suppose that Eŭp =
⟨
£ěŭp

, Pěŭp , Iěŭp , Něŭp

⟩
, p ∈ N be the collections of PLFNs and λ

be a fuzzy measure on R. Based on fuzzy measure, a Picture linguistic fuzzy Choquet integral weighted
averaging (PLFCIWA) operator of dimension n is a mapping PLFCIWA : PLFNn → PLFN such
that

PLFCIWA (Eŭ1 , Eŭ2 , ..., Eŭn) (14)

=


£ n∑
p=1

λ(Aρ(p))−λ(Aρ(p-1))·ěŭρ(p)
, 1−Πnp=1(1− Pěŭρ(p)

)λ(Aρ(p))−λ(Aρ(p-1)),

Πnp=1(Iěŭρ(p)
)λ(Aρ(p))−λ(Aρ(p-1)),

Πnp=1(Něŭρ(p)
)λ(Aρ(p))−λ(Aρ(p-1))


where ρ(p) indicates a permutation on R and Aρ(n) = {1, 2, ..., p}, Aρ(0) = ϕ.

Definition 3.10. Let R ̸= ϕ be the universal set, and Ej , El be the any two picture linguistic fuzzy
sets. Then, normalized Hamming distance dNHD(Ej , El) is given as for all r ∈ R,

dNHD(Eŭj , Eŭl) =
1

2 (l − 1)

n∑
p=1

∣∣∣∣∣∣
(
Pěŭj

(rp)− Iěŭj (rp)−Něŭj
(rp)

)
£ěŭj

−(
Pěŭl (rp)− Iěŭl (rp)−Něŭl

(rp)
)
£ěŭl

∣∣∣∣∣∣ (15)

4.Approach for Multiple criteria Decision Making with Incomplete Weight Infor-
mation Using GRA Method under the Picture Linguistic Fuzzy Enviourment

Assume that A = (a1, ..., am) be the m alternatives and C = {c1, c2, ..., cn}, denoted n criteria, and
weight criteria is ϖ = (ϖ1, ϖ2, ..., ϖn)

T , where ϖk ≥ 0 (k = 1, 2, ..., n), Σnk=1ϖk = 1. Let assume that
DM deliver information about weights of criteria may be denotes in the following form [51], for j ̸= k,

(a) If {ϖj ≥ ϖk} , then, the ranking is weak.
(b) If {ϖj −ϖk ≥ λj(> 0)} , then, the ranking is strict.
(c) If {ϖj ≥ λjϖk} , 0 ≤ λj ≤ 1,then, the ranking is multiple ranking.
(d) If {λj ≤ ϖj ≤ λj + δj} , 0 ≤ λj ≤ λj + δj ≤ 1, then, the ranking is an interval ranking.
For facility, ∆ stand for the set of the known information about criteria weights contribute by the

experts.

Let Rk =
[
E
(k)
ŭpq

]
m×n

be an picture linguistic fuzzy decision matrix, provided by decision maker
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dk(k = 1, 2, ..., l), as the following form:

Rk =
[
E

(k)
ŭpq

]
m×n

=

c1 c2 · · · cn

a1 E
(k)
ŭ11

E
(k)
ŭ12

· · · E
(k)
ŭ1n

a2 E
(k)
ŭ21

E
(k)
ŭ22

· · · E
(k)
ŭ2n

· · · · ·
· · · · ·
· · · · ·
am E

(k)
ŭm1

E
(k)
ŭm2

· · · E
(k)
ŭmn

(16)

where E
(k)
ŭpq

=
(
£

(k)
ěŭpq

, P (k)
ŭpq
, I(k)
ŭpq
, N (k)

ŭpq

)
is an PLFN representing the performance rating of the

alternative ap ∈ A with respect to the criteria cp ∈ C provided by the decision makers dk.
To extend GRA method in the process of group decision making, we first need to fuse all individual

decision matrices into a collective matrix by using PLFCIWA operator.

Step 1 Suppose that for every A = {a1, a2, ..., am}, m alternative, each expert dk (k = 1, 2, ..., r) is
invited to express their individual evaluation or preference according to each criterias Cq(q =

1, 2, ..., n) by an picture liguistic fuzzy numbers E
(k)
ŭpq

=
(
£

(k)
ěŭpq

, P (k)
ŭpq
, I(k)
ŭpq
, N (k)

ŭpq

)
(p = 1, 2, ...,m; q =

1, 2, ..., n, k = 1, 2, ..., r) expressed by the exparts dk. In this step we construct the picture ligu-

istic fuzzy decision making matrices, Ds =
[
E

(s)
ip

]
m×n

(s = 1, 2, ..., k) for decision. If the criteria

have two types, such as benefit criteria and cost criteria, then the picture liguistic fuzzy decision

matrices, Ds =
[
Esip

]
m×n

can be converted into the normalized linguistic picture fuzzy decision

matrices, Rk =
[
E
(k)
ŭpq

]
m×n

, where E
(k)
ŭpq

=

 E
(k)
ŭpq
, for benefit criteria Ap

E
(k)
ŭpq
, for cost criteria Ap,

j = 1, 2, ..., n, and

E
(k)
ŭpq

is the complement of E
(k)
ŭpq
.The normalization are not requrid, if all the criteria have the

same type. Then, we obtain the decision making matrix as follow:

Rk =
[
E

(k)
ŭpq

]
m×n

=

c1 c2 · · · cn

a1 E
(k)
ŭ11

E
(k)
ŭ12

· · · E
(k)
ŭ1n

a2 E
(k)
ŭ21

E
(k)
ŭ22

· · · E
(k)
ŭ2n

· · · · ·
· · · · ·
· · · · ·
am E

(k)
ŭm1

E
(k)
ŭm2

· · · E
(k)
ŭmn

Step 2 Confirm the fuzzy density Pěŭp = Pěŭ(ap) of each expert. According to Eq.(8), parameter λ1
of expert can be determined.

Step 3 By Definition 2.7, E
(k)
ŭpq

is reordered such that E
(k)
ŭpq

≥ E
(k−1)
ŭpq

. Utilize the picture liguistic
fuzzy Choquet integral average operator;

PFCIWA
(
E

(1)
ŭpq
, E

(2)
ŭpq
, ..., E

(r)
ŭpq

)
(17)

=


£ r∑
p=1

λ(Aρ(p))−λ(Aρ(p−1))·ěŭρ(p)
, 1−Πrp=1(1− Pěŭρ(p)

)λ(Aρ(p))−λ(Aρ(p-1)),

Πrp=1(Iěŭρ(p)
)λ(Aρ(p))−λ(Aρ(p−1)),

Πrp=1(Něŭρ(p)
)λ(Aρ(p))−λ(Aρ(p−1))


to aggregate all the picture linguistic fuzzy decision matrices Rk =

[
E
(k)
ŭpq

]
m×n

(k = 1, 2, ..., r) into

a collective picture linguistic fuzzy decision matrix R =
[
E
(k)
ŭpq

]
m×n

where E
(k)
ŭpq

=
(
£

(k)
ěŭpq

, P (k)
ŭpq
,

I(k)
ŭpq
, N (k)

ŭpq

)
(p = 1, 2, ...,m; q = 1, 2, ..., n, k = 1, 2, ..., r), where ρ(p) indicates a permutation on

R and Aρ(n) = {1, 2, ..., p}, Aρ(0) = ϕ and Pěŭ(ap) are find by Equation (9).
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Step 4 The picture linguistic fuzzy positive-ideal solution (PLFPIS), stand for P+ =
{
P+
1 , P

+
2 , ..., P

+
m

}
and the picture linguistic fuzzy negative-ideal solution (PLFNIS), stand for P− =

{
P−
1 , P

−
2 , ..., P

−
m

}
are defined as

P+
p = max

q
scpq, (18)

and
P−
p = min

q
scpq, (19)

where P+ =
(
£+
ŭp
, P+

ŭp
, I+
ŭp
, N+

ŭp

)
and P− =

(
£−
ŭp
, P−

ŭp
, I−
ŭp
, N−

ŭp

)
p = 1, 2, ..,m.

Step 5 According to linguistic picture fuzzy distance, find the distance between the alternative ap
and the PLFPIS P+ and the PLFNIS P−, respectively;

d(Eŭj , Eŭl) =
1

2 (l − 1)

n∑
p=1

∣∣∣∣∣∣
(
Pěŭj

(rp)− Iěŭj (rp)−Něŭj
(rp)

)
£ěŭj

−(
Pěŭl (rp)− Iěŭl (rp)−Něŭl

(rp)
)
£ěŭl

∣∣∣∣∣∣ (20)

The above defined distance is called the Normalized Hamming distance [22] d(ej , ek), and form a
linguistic picture fuzzy positive-ideal separation matrix D+ and linguistic picture fuzzy negative-
ideal separation matrix D− as follows;

D+ = (D+
pq)m×n =



d
(
Eŭ11 , P

+
1

)
d
(
Eŭ12 , P

+
2

)
... d (Eŭ1n , P

+
n )

d
(
Eŭ21 , P

+
1

)
d
(
Eŭ22 , P

+
2

)
... d (Eŭ1n , P

+
n )

.

.

.

.

.

.
...

.

.

.
d
(
Eŭm1 , P

+
1

)
d
(
Eŭm2 , P

+
2

)
... d (Eŭmn , P

+
n )

 (21)

and

D− = (D−
q)m×n =



d
(
Eŭ11 , P

−
1

)
d
(
Eŭ12 , P

−
2

)
... d (Eŭ1n , P

−
n )

d
(
Eŭ21 , P

−
1

)
d
(
Eŭ22 , P

−
2

)
... d (Eŭ1n , P

−
n )

.

.

.

.

.

.
...

.

.

.
d
(
Eŭm1 , P

−
1

)
d
(
Eŭm2 , P

−
2

)
... d (Eŭmn , P

−
n )

 (22)

Step 6 Grey coefficient for every alternative is calculated from PIS and NIS by using the following
equation. The grey coefficient for each alternative calculated from PIS is provided as

ξ+pq =
min1≤p≤mmin1≤q≤nd

(
Eŭpq , P

+
p

)
+ ρmax1≤p≤mmax1≤q≤nd

(
Eŭpq , P

+
p

)
d
(
Eŭpq , P

+
p

)
+ ρmax1≤p≤mmax1≤q≤nd

(
Eŭpq , P

+
p

) (23)

Where p = 1, ...,m and q = 1, ..., n. Correspondingly, the grey coefficient of each alternative
calculated from NIS is given as

ξ−pq =
min1≤p≤mmin1≤q≤nd

(
Eŭpq , P

−
k

)
+ ρmax1≤p≤mmax1≤q≤nd

(
Eŭpq , P

−
k

)
d
(
Eŭpq , P

−
k

)
+ ρmax1≤p≤mmax1≤q≤nd

(
Eŭpq , P

−
k

) (24)

Where p = 1, ...,m and q = 1, ..., n and the identification coefficient ρ = 0.5.

Step 7 Using these equation, to find the grey coefficient degree for each alternative from PIS and
NIS, respectively,

ξ+p =
n∑
q=1

ϖqξ
+
pq (25)

ξ−p =
n∑
q=1

ϖqξ
−
pq
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Basic principle of the Grey method are “the chosen alternative should have the largest degree of
grey relation from the PIS and the smallest degree of grey relation from the NIS”. Obviously,
the weights are known, the smaller ξ−p and the larger ξ+p , the finest alternative ap as. But
incomplete information about weights of alternatives is known. So, in this case the ξ−p and ξ+p
information about weight are determined initially. So, we provide the following optimization
models or multiple objective to determined the information about weight,

(OM1)

{
min ξ−p =

∑n
q=1ϖqξ

−
pq p = 1, 2, ...,m

max ξ+p =
∑n

q=1ϖqξ
+
pq p = 1, 2, ...,m

(26)

Since it given that each alternative is non-inferior, then all the alternatives have no preference
relation. The above optimization models are aggregated with equal weights, into single objective
optimization model,

(OM2)

min ξp =

m∑
p=1

n∑
q=1

(
ξ−pq − ξ+pq

)
ϖq (27)

To finding solution of OM2, we obtain optimal solution ϖ = (ϖ1, ϖ2, ..., ϖm)
T , which utilized

as weights information alternatives. Then, we obtain ξ+p (p = 1, 2, ...,m) and ξ−p (p = 1, 2, ...,m)
as using the above formula, respectively.

Step 8 To find the relative closeness degree for each alternative, using the following equation;

ξp =
ξ+p

ξ−p + ξ+p
(28)

Step 9 According to the ξp value, give ranking to the alternatives ap and select the finest ones.

5.Discriptive Example

We shall present a numerical examples, in this section with linguistic picture fuzzy information to
explain the developed approach of the paper.

Example 5.1. Let us assume that a board with four possible develop technology enterprises Zi
(i = 1, ..., 4). There are four experts, and also choose four criteria to classify the four possible develop
technology enterprises:

1. (Ă1), the industrial development;

2. (Ă2), the feasible market risk;

3. (Ă3), the industrialization infrastructure, human resources and financial conditions;

4. (Ă4), the job production and the development of science and technology.

Step 1 Three decision maker offering their own opinions regarding the results obtained with each
emerging technology enterprise are given from the table 1-3.

Table 1. Linguistic picture fuzzy information D1

Ă1 Ă2 Ă3 Ă4

Z1 (£5, 0.2, 0.1, 0.6) (£4, 0.5, 0.3, 0.1) (£2, 0.3, 0.1, 0.5) (£3, 0.4, 0.3, 0.2)
Z2 (£2, 0.1, 0.4, 0.4) (£3, 0.6, 0.2, 0.1) (£1, 0.2, 0.2, 0.5) (£5, 0.2, 0.1, 0.6)
Z3 (£4, 0.2, 0.3, 0.3) (£2, 0.4, 0.3, 0.2) (£5, 0.3, 0.1, 0.4) (£1, 0.3, 0.2, 0.4)
Z4 (£1, 0.3, 0.1, 0.6) (£5, 0.3, 0.2, 0.4) (£3, 0.1, 0.3, 0.5) (£2, 0.2, 0.3, 0.3)

Table 2. Linguistic picture fuzzy information D2

Ă1 Ă2 Ă3 Ă4

Z1 (£2, 0.1, 0.3, 0.5) (£5, 0.4, 0.3, 0.2) (£3, 0.1, 0.1, 0.6) (£4, 0.2, 0.3, 0.4)
Z2 (£5, 0.2, 0.2, 0.4) (£3, 0.4, 0.3, 0.2) (£4, 0.3, 0.2, 0.4) (£2, 0.4, 0.1, 0.4)
Z3 (£3, 0.1, 0.2, 0.6) (£4, 0.6, 0.1, 0.1) (£2, 0.2, 0.2, 0.4) (£5, 0.5, 0.2, 0.2)
Z4 (£1, 0.4, 0.1, 0.5) (£2, 0.5, 0.1, 0.3) (£5, 0.3, 0.3, 0.3) (£3, 0.6, 0.2, 0.1)
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Table 3. Linguistic picture fuzzy information D3

Ă1 Ă2 Ă3 Ă4

Z1 (£1, 0.3, 0.1, 0.3) (£3, 0.4, 0.2, 0.1) (£5, 0.2, 0.3, 0.4) (£4, 0.5, 0.2, 0.1)
Z2 (£4, 0.1, 0.5, 0.3) (£5, 0.6, 0.1, 0.2) (£1, 0.1, 0.1, 0.7) (£3, 0.3, 0.1, 0.3)
Z3 (£5, 0.4, 0.2, 0.3) (£2, 0.4, 0.2, 0.2) (£4, 0.2, 0.2, 0.5) (£1, 0.6, 0.2, 0.1)
Z4 (£3, 0.1, 0.2, 0.6) (£4, 0.6, 0.2, 0.1) (£2, 0.3, 0.1, 0.4) (£2, 0.7, 0.1, 0.1)

Since Ă1, Ă2 are cost-type criteria and Ă3, Ă4 are benefit-type criteria. First of all we normalize
linguistic picture fuzzy information, which are shown in table 4,5,6.:

Table 4. Normalized linguistic picture fuzzy information R1

Ă1 Ă2 Ă3 Ă4

Z1 (£5, 0.6, 0.1, 0.2) (£4, 0.5, 0.3, 0.1) (£2, 0.5, 0.1, 0.3) (£3, 0.4, 0.3, 0.2)
Z2 (£2, 0.4, 0.4, 0.1) (£3, 0.6, 0.2, 0.1) (£1, 0.5, 0.2, 0.2) (£5, 0.2, 0.1, 0.6)
Z3 (£4, 0.3, 0.3, 0.2) (£2, 0.4, 0.3, 0.2) (£5, 0.4, 0.1, 0.3) (£1, 0.3, 0.2, 0.4)
Z4 (£1, 0.6, 0.1, 0.3) (£5, 0.3, 0.2, 0.4) (£3, 0.5, 0.3, 0.1) (£2, 0.2, 0.3, 0.3)

Table 5. Normalized linguistic picture fuzzy information R2

Ă1 Ă2 Ă3 Ă4

Z1 (£2, 0.5, 0.3, 0.1) (£5, 0.4, 0.3, 0.2) (£3, 0.6, 0.1, 0.1) (£4, 0.2, 0.3, 0.4)
Z2 (£5, 0.4, 0.2, 0.2) (£3, 0.4, 0.3, 0.2) (£4, 0.4, 0.2, 0.3) (£2, 0.4, 0.1, 0.4)
Z3 (£3, 0.6, 0.2, 0.1) (£4, 0.6, 0.1, 0.1) (£2, 0.4, 0.2, 0.2) (£5, 0.5, 0.2, 0.2)
Z4 (£1, 0.5, 0.1, 0.4) (£2, 0.5, 0.1, 0.3) (£5, 0.3, 0.3, 0.3) (£3, 0.6, 0.2, 0.1)

Table 6. Normalized linguistic picture fuzzy information R3

Ă1 Ă2 Ă3 Ă4

Z1 (£1, 0.3, 0.1, 0.3) (£3, 0.4, 0.2, 0.1) (£5, 0.4, 0.3, 0.2) (£4, 0.5, 0.2, 0.1)
Z2 (£4, 0.3, 0.5, 0.1) (£5, 0.6, 0.1, 0.2) (£1, 0.7, 0.1, 0.1) (£3, 0.3, 0.1, 0.3)
Z3 (£5, 0.3, 0.2, 0.4) (£2, 0.4, 0.2, 0.2) (£4, 0.5, 0.2, 0.2) (£1, 0.6, 0.2, 0.1)
Z4 (£3, 0.6, 0.2, 0.1) (£4, 0.6, 0.2, 0.1) (£2, 0.4, 0.1, 0.3) (£2, 0.7, 0.1, 0.1)

Let us assume that the criteria weights information given by experts, are partly known;

∆ =


0.2 ≤ w1 ≤ 0.25,
0.15 ≤ w2 ≤ 0.2,
0.28 ≤ w3 ≤ 0.32,
0.35 ≤ w4 ≤ 0.4

 , wp ≥ 0, p = 1, 2, 3, 4,
4∑
p=1

wp = 1

Then, we utilize the developed approach to get the most desirable alternative(s).

Step 2 Firstly, find fuzzy density of each decision maker, and its λ parameter. Assume that Pěŭ(A1) =
0.30, Pěŭ(A2) = 0.40, Pěŭ(A3) = 0.50. Then λ of adept can be obtained: λ = −0.45. By Eq.(6),
we have Pěŭ(A1, A2) = 0.65, Pěŭ(A1, A3) = 0.73, Pěŭ(A2, A3) = 0.81, Pěŭ(A1, A2, A3) = 1.

Step 3 According to Definition 3.4, E
(k)
ŭpq

is reordered such that E
(k)
ŭpq

≥ E
(k−1)
ŭpq

. Then, utilized the
picture fuzzy Choquet integral weighted operator

PFCIWA (Eŭ1 , Eŭ2 , ..., Eŭn) =


1−Πnp=1(1− Pěŭρ(p)

)λ(Aρ(p))−λ(Aρ(p-1)),

Πnp=1(Iěŭρ(p)
)λ(Aρ(p))−λ(Aρ(p-1)),

Πnp=1(Něŭρ(p)
)λ(Aρ(p))−λ(Aρ(p-1))


Table 7. Collective picture fuzzy information

Ă1 Ă2 Ă3 Ă4

Ž1 ⟨£2.55, 0.696, 0.417, 0.225⟩ ⟨£4.00, 0.625, 0.361, 0.331⟩ ⟨£3.40, 0.633, 0.545, 0.391⟩ ⟨£3.70, 0.488, 0.204, 0.313⟩
Ž2 ⟨£3.75, 0.739, 0.488, 0.254⟩ ⟨£3.70, 0.488, 0.670, 0.162⟩ ⟨£2.05, 0.739, 0.311, 0.335⟩ ⟨£3.25, 0.613, 0.193, 0.374⟩
Ž3 ⟨£4.00, 0.405, 0.654, 0.361⟩ ⟨£2.70, 0.732, 0.274, 0.200⟩ ⟨£3.60, 0.739, 0.260, 0.265⟩ ⟨£2.40, 0.600, 0.278, 0.304⟩
Ž4 ⟨£1.70, 0.769, 0.331, 0.418⟩ ⟨£3.60, 0.638, 0.562, 0.311⟩ ⟨£3.35, 0.613, 0.354, 0.311⟩ ⟨£2.35, 0.511, 0.265, 0.358⟩
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Step 4 Utilize eq.(18 and eq.(19) we obtain the positive-ideal and negative-ideal solution respectively,
are:

P+ =

{
⟨£2.55, 0.696, 0.417, 0.225⟩ , ⟨£2.70, 0.732, 0.274, 0.200⟩ ,
⟨£3.60, 0.739, 0.260, 0.265⟩ , ⟨£3.25, 0.613, 0.193, 0.374⟩

}
P− =

{
⟨£4.00, 0.405, 0.654, 0.361⟩ , ⟨£3.70, 0.488, 0.670, 0.162⟩ ,
⟨£3.40, 0.633, 0.545, 0.391⟩ , ⟨£2.35, 0.511, 0.265, 0.358⟩

}
Step 5 Utilize equation (21) and (22) to get the positive ideal and negative ideal separation matrix,

respectively as follow;

Table 8. Positive-ideal separation matrix

D+ =

Ă1 Ă2 Ă3 Ă4

Ž1 0.0000 0.0808 0.1500 0.0214

Ž2 0.0123 0.1645 0.0482 0.0000

Ž3 0.2145 0.0000 0.0000 0.0088

Ž4 0.0084 0.1289 0.0787 0.0344

Table 9. Negative-ideal separation matrix

D− =

Ă1 Ă2 Ă3 Ă4

Ž1 0.2145 0.0837 0.0000 0.0129

Ž2 0.2021 0.0000 0.1017 0.0344

Ž3 0.0000 0.1645 0.1500 0.0256

Ž4 0.2060 0.0356 0.0712 0.000

Step 6 Utilize equations (23) and (24) to get the grey relational coefficient matrices in which every
alternative is obtained from PIS and NIS as follow:

[
ζ+ij

]
=


0.6518 0.5721 0.8295 0.4711

0.3667 1.0000 1.0000 0.3333

0.5254 0.7829 0.6383 0.6744

1.0000 0.6875 0.5562 1.0000


[
ζ−ij

]
=


0.4560 1.0000 0.5937 0.4039

1.0000 0.5721 0.5562 1.0000

0.5483 0.6689 0.7699 0.3745

0.3667 0.5372 0.5184 0.3333


Step 7 To developed the single-objective programming model, using the model (M2):

min ξ (w) = −0.0709w1 + 0.4283w2 − 0.2594w3 − 1.5440w4

We gain the weight vector of criterias, to solved this model:

w = (0.330, 0.144, 0.366, 0.157)

Now from the PIS and NIS, we get the degree of grey relational coefficient of every alternative:

ξ+1 = 0.6001, ξ+2 = 0.5439, ξ+3 = 0.6331, ξ+4 = 0.8823,

ξ−1 = 0.5355, ξ−2 = 0.8657, ξ−3 = 0.5352, ξ−4 = 0.4016.

Step 8 To find the relative relational degree of the alternative, we utilize Equation 28, and PIS and
NIS:

ξ1 =
ξ+1

ξ−1 + ξ+1
=

0.6001

0.5355 + 0.6001
= 0.5284

ξ2 =
ξ+2

ξ−2 + ξ+2
=

0.5439

0.8657 + 0.5439
= 0.3858

ξ3 =
ξ+3

ξ−3 + ξ+3
=

0.6331

0.5352 + 0.6331
= 0.5418

ξ4 =
ξ+4

ξ−4 + ξ+4
=

0.8823

0.4016 + 0.8823
= 0.6872
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Step 9 With the help of relative relational degree, ranking of the alternatives are the following:

Z4 > Z3 > Z1 > Z2,

and thus the most desirable alternative is Z4.

5.1. Comparative Analysis

To justify the effectivity and efficiency of the advised procedure, we conducted a comparative analysis
for comparison of our suggest approach with the GRA method for intuitionistic fuzzy set [52].

5.1.1. Comparison between intuitionistic fuzzy and picture fuzzy GRA relation Approache

In the ntuitionistic fuzzy numbers, we have only study the uncertain things from positive and negative
membership degrees. They bring an effictive execution to imply the vagueness of DM. On the other
hand, as stated already, in IFN the things from good and bad appearance of these two collection of
fuzzy numbers, can throw away the thinking of DM perfectly. After all, dissimilar the PFNs, in some
conditions the IFNs are not serviceable. The IFNs must satisfy the condition that the membership
and non-membership degree sume belongs to [0, 1]. Thus, in some cases, there exists some problems
which cannot handle by IFNs. For example, the peoples requried their opinions contain more type of
answer like as: “yes”, “abstain”, “No” and “Refusal”, in that situations picture fuzzy set are more
suitable. Thus, in summary, in decision making theory, PFNs have suitable capacity to process these
information.

6. Conclusion

The classical grey relational analysis method are normally applicable for tackle the MAGDM problems,
in which the data occur in the form of numerical values, and still they will flop when MAGDM problems
contains picture linguistic fuzzy information. In the developed approach we use the picture linguistic
fuzzy Choquet integral weighted averaging (PLFCIWA) operator to marge all the individual matrices.
Then, based on the traditional GRA method, an approach are given to deal with picture linguistic
fuzzy MAGDM problems in which the information are incomplete. Lastly, a decision problem are
developed based on the defined operators, to rank more alternatives. Thus, the proposed operations
gives clear track to catch the inexact data all over the decision problem procedure.
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