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Abstract

Under the generalized Lindel6f hypothesis, the exponent in the error term of the prime ge-
odesic theorem for the modular surface is reduced to %—l—s outside a set of finite logarithmic
measure.
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1. Introduction

Let I' = PSL (2,7Z) be the modular group and H the upper half-plane equipped with the
hyperbolic metric. The norms N (Fy) of primitive conjugacy classes Py in I" are sometimes
called pseudo-primes. The length of the primitive closed geodesic on the modular surface
I'\ ¥ joining two fixed points, which are the same for all representatives of Py, equals
log(N(Pp)). The statement about the number 7p(x) of classes Py such that N(FPy) < z,
for x > 0, is known as the prime geodesic theorem, PGT.

The main tool in the proof of PGT is the Selberg zeta function, defined by

o0
Zr(s) = T TI( = N(Po) "), Re(s) > 1,
{Po}k=0
and meromorphicaly continued to the whole complex plane.

The relationship between the prime geodesic theorem and the distribution of zeros of
the Selberg zeta function resembles to a large extent the relationship between the prime
number theorem and the zeros of the Riemann zeta.

The function Zr satisfies the analogue of the Riemann hypothesis. The zeros % + iy =

% +i /A — % of the Selberg Zp lying on Re(s) = % correspond to the eigenvalues A > i of

the essentially self-adjoint Laplace-Beltrami operator A = —/? (88—;2 + g—;) on I'\ H. See,
e.g., [6] for some important applications of the modular group and the modular surface
PSL(2,Z) \ H in physics.

It is an outstanding problem whether the error term in the prime geodesic theorem is
O(m%“) as it would be the case in the prime number theorem once the Riemann hypothesis
be proved. The obstacles in establishing an analogue of von Koch’s theorem [13, p. 84] in
this setting comes from the fact that Zr is a meromorphic function of order 2, while the
Riemann zeta is of order 1 ([12, relation (6.14) on p. 113]).
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In the case of Fuchsian groups I' C PSL (2,R), the best estimate of the remainder term
3
in PGT is still O ( Z2 ) obtained by Randol [18] (see also [2,7] for different proofs). We

log z
2
4dg +dg

note that its analogue O (:13 2d0+1 (log w)_1> is valid also for strictly hyperbolic manifolds

of higher dimensions, where dy = 951 and d > 3 is the dimension of a manifold [4, Theorem

2.1]. ’

The attempts to reduce the exponent % in PGT were successful only in special cases.
The chronological list of improvements for the modular group I' = PSL(2,7Z) includes
35 4+ & (Iwaniec [15]), {5 +¢ (Luo and Sarnak [17]), {55 +¢ (Cai [8]) and the present 2 +¢
(Soundararajan and Young [19]).

Iwaniec [14] remarked that the generalized Lindelof hypothesis for Dirichlet L-functions
would imply % + €.

We proved in [3] that % + ¢ is valid outside a set of finite logarithmic measure. In the
present note, we relate the error term in the Gallagherian PGT (i.e., PGT with an error
term valid outside a set of finite logarithmic measure) on PSL(2,7Z) to the subconvexity
bound for Dirichlet L- functions. This enables us to replace % +¢ by % + ¢ under the gen-
eralized Lindelof hypothesis. More precisely, the main result of this paper is the following
theorem.

Theorem 1.1. Let I' = PSL(2,7Z) be the modular group, € > 0 arbitrarily small and 0 be
such that

2

for some fized A > 0, where D is a fundamental discriminant. There exists a set B of
finite logarithmic measure such that

1
L ( + it,xp) < (1+ [t))*| Do

v di
ﬂp(a:):/o @+0(:p%+%+5) (¢ — 00,z ¢ B).

Inserting the Conrey-Iwaniec [9] value § = % into Theorem 1.1, we obtain
Corollary 1.2.
mr (2) = li(2) + 0 (23%%) (2 > o0,z ¢ B).

Any improvement of 6 immediately results in the obvious improvement of the error term
in PGT. Taking into account that the Lindeloéf hypothesis allows 0 = 0, we get

Corollary 1.3. Under the generalized Lindeldf hypothesis for Dirichlet L-functions in the
conductor aspect, we have

mr (2) = li(2) + 0 (23%%) (2 > 00,z ¢ B).

Remark 1.4. The obtained error term in PGT for strictly hyperbolic Fuchsian groups
1

is O <xT70(log x)_% (loglog w)5+5) outside a set of finite logarithmic measure [1]. This is

in accordance with the above mentioned Luo-Sarnak unconditional exponent 1—70 + € in

PGT for T' = PSL(2,Z). In the case of a cocompact Kleinian group or a noncompact
congruence group for some imaginary quadratic number field, the respective Gallagherian

bound is O (x% (log x)_% (loglog x)%+5> [4, Theorem 1.2].

2. Preliminaries

The motivation for Theorem 1.1 comes from several sources, including Gallagher [11],
Iwaniec [15] and Balkanova and Frolenkov [5].
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Recall that 7y () = li (z) + O (;U%JF%H) is equivalent to ¢r (z) = z + O ($g+§+€>,

where Y () = Y. log N (P) is the I analogue of the classical Chebyshev function
N(Py)F<z
.

Under the Riemann hypothesis, Gallagher improved von Koch’s remainder term in the
prime number theorem from ¢ (z) =z + O (x%(log m)2) to(z) =2+ 0 (x%(log log x)2)
outside a set of finite logarithmic measure.

Following Koyama [16], we shall apply the next lemma due to Gallagher [10] to our
setting.

Lemma 2.A. Let A be a discrete subset of R and n € (0,1). For any sequence ¢(v) € C,
v € A, let the series
— ZC (I/) e?ﬂiuu

veA
be absolutely convergent. Then

/(ZJ| ()| du S(sg?rn) /J:OZ Z c(v)| dt.

t<v<t+#

Iwaniec [15] established the following explicit formula with an error term for ¢r on
I'=PSL(2,Z).

Lemma 2.B. For 1 <T < one has

l
(logz)*’

where p = % + i7y denote zeros of Zr lying on Re(s) = % and counted with their multiplic-
ities.

Recently, O. Balkanova and D. Frolenkov [5] have proved the following estimate.

Lemma 2.C.
]

Zx“ < max(xiJrgY% x2Y )log Y,

<Y
14
Y 27 < Ylog’Y if Y >
lyI<Y ( )’
where p = % + iy are the zeros of Zr, 6 is the subconvexity exponent for Dirichlet

L—functions, and k () is the distance from /x + 5 to the nearest integer.

3. Proof of Theorem 1.1

1

ﬁ into Lemma 2.B, we obtain

Proof. Inserting T' =
dr(@)=z+ Y ” 10 (22 (log)*). (3.1)

i<t P

We would like to bound the expression Y %, where Y € (0,7 is a parameter to be
<Y
determined later on.
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>z

Let n = [logz] and B, = { € [nen)
V<Y

> xEYé}. Looking at the loga-

rithmic measure of B,,, we get

entl 12
dx dx ¥ dx
* — _ 2¢e
WB, = /;—/ Yxmayﬁ / > - | Ty (32)
B, B, en |VISY
n+1
dz
< 27LEY / ’
¢ iy P e
After substitution z = €™ - eQW(uJFﬁ), the last integral becomes

1

= 2

4z n+i iy

21 Z Qe%iW du.
sy P
4m
n+l i
Applying Lemma 2.A, withn =U = and cy = el p2) ~ for 7| <Y, ¢y = 0 otherwise,
we get

) 2
Tl el P

e du< [ -1 / = 3.3
P - (Sin1> 2 o (33)
1 |[yISY i/ t<y<t+1
Tan i<y

Note that >, <11 L =0(1) since #{y:t < |y|<t+1} = O(t) by the Weyl law.

lpl
Thus,
2
+oo 1 Y
/ S = |a=0 /dt —0(Y). (3.4)
oo | t<r<t+1 o]
ly|<Y 3
The relations (3.2), (3.3) and (3.4) imply pu*B,, < 62n5Y eglm. Hence, the set B = UB,,
has a finite logarithmic measure.
For z ¢ B, we have | 3 &1| < a;EY%, ie.
[v<Y
x’ i1
> =l <arteye, (3.5)
i<y P
Now, we rely on Lemma 2.C to estimate S 220 Let us put S(z,7) = 3 2™
Y<|y|<T lyI<T

By Abel’s partial summation, we have

' T
S W:S(x,T)S(JJ,Y)jLi/(S(WdU.

T - T - 2
y<pl<r P g il g+ 1+ zu)

Multiplying the last relation by 23 and recalling that Lemma 2.C yields > 2?7 <«
[v<Y
1
4+ +€Y2 forY <T = W, we get
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3,0 6 1 3
P xatate xﬁ +e pitsteys xatate
> < e +/ du < ———. (3.6)
Y<|y|<T P Tz Y2

Combining (3.5) and (3.6), we see that the optlmal choice for the parameter Y is
Y ~git . Then, > % =0 (x%+6Y%> =0 <m§+g+5) for x ¢ B.

yI<T

The relation (3.1) becomes

Yr () :a:+0(xg+%+6> (x - 00, x ¢ B),

as asserted. O
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