On centrally-extended multiplicative (generalized)-(α, β)-derivations in semiprime rings

Najat Muthana ${ }^{1,2}$ © , Zakeiah Alkhamisi*2 ${ }^{\text {(D) }}$
${ }^{1}$ Department of Mathematics, Faculty of Science, University of Jeddah, Jeddah, Saudia Arabia
${ }^{2}$ Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudia Arabia

Abstract

Let R be a ring with center Z and α, β and d mappings of R. A mapping F of R is called a centrally-extended multiplicative (generalized)-(α, β)-derivation associated with d if $F(x y)-F(x) \alpha(y)-\beta(x) d(y) \in Z$ for all $x, y \in R$. The objective of the present paper is to study the following conditions: (i) $F(x y) \pm \beta(x) G(y) \in Z$, (ii) $F(x y) \pm g(x) \alpha(y) \in Z$ and (iii) $F(x y) \pm g(y) \alpha(x) \in Z$ for all x, y in some appropriate subsets of R, where G is a multiplicative (generalized)- (α, β)-derivation of R associated with the map g on R.

Mathematics Subject Classification (2010). 16N60,16W10
Keywords. semiprime ring, left ideal, multiplicative (generalized)-derivation, multiplicative (generalized)-(α, β)-derivation, centrally-extended generalized (α, β)-derivation, centrally-extended multiplicative (generalized)-($\alpha, \beta)$-derivation, generalized (α, β)-derivation

1. Introduction

Throughout this work R will be a ring with center Z. Recall that a ring R is said to be semiprime if $a R a=0$ then $a=0$. For $x, y \in R$, the commutator $x y-y x$ and the anticommutator $x y+y x$ will be written as $[x, y]$ and $(x \circ y)$ respectively. For given $x, y \in R$, put $[x, y]_{0}=x$, then $[x, y]_{k}=\left[[x, y]_{k-1}, y\right]$ for integer $k \geq 1$. Let S be a nonempty subset of R and α a mapping of R. If $\alpha(x y)=\alpha(x) \alpha(y)$ or $\alpha(x y)=\alpha(y) \alpha(x)$ for all $x, y \in S$, then we say that α acts as homomorphism or anti-homomorphism on S, respectively. A map f : $S \rightarrow R$ is said to be α-commuting on S in case $[\alpha(x), f(x)]=0$ satisfies for all $x \in S$. We will make some extensive use of the basic commutator identities $[x, y z]=[x, y] z+y[x, z]$ and $[x y, z]=[x, z] y+x[y, z]$.
Let α and β be mappings of R. A map D on R is called an (α, β)-derivation of R if it is additive and satisfying $D(x y)=D(x) \alpha(y)+\beta(x) D(y)$, for all $x, y \in R$. Let D be an (α, β)-derivation of R, a map F on R is called a generalized (α, β)-derivation if it is additive and satisfying $F(x y)=F(x) \alpha(y)+\beta(x) D(y)$ for all $x, y \in R$.
Recently, Bell and Daif [2] introduced the notion of centrally-extended derivations (CEderivation) on rings. A CE-derivation D of R is a mapping of R such that $D(x+y)-D(x)-$ $D(y) \in Z$ and $D(x y)-D(x) y-x D(y) \in Z$, for all x, y in R. Tammam et al. [5] generalized this notion to the concepts $\operatorname{CE}-(\alpha, \beta)$-derivation and CE -generalized (α, β)-derivation.

[^0]A CE- (α, β)-derivation D of R is a mapping of R such that $D(x+y)-D(x)-D(y) \in Z$ and $D(x y)-D(x) \alpha(y)-\beta(x) D(y) \in Z$ hold for all $x, y \in R$. Let D be a CE- (α, β)-derivation of R, a map F on R is called a CE-generalized (α, β)-derivation if $F(x+y)-F(x)-F(y) \in Z$ and $F(x y)-F(x) \alpha(y)-\beta(x) D(y) \in Z$ are fulfilled for all $x, y \in R$.

A map F on R is said to be a multiplicative (generalized)-(α, β)-derivation (M-(generalized)(α, β)-derivation) associated with a map d on R if $F(x y)=F(x) \alpha(y)+\beta(x) d(y)$ holds for all $x, y \in R$. According to [3], an M-(generalized)-(I, I)-derivation is simply called an M-(generalized)-derivation, where I is the identity map on R.

We begin by the following definitions.

Definition 1.1. Let R be a ring and α be a mapping of R. A map T on R is called a centrally-extended multiplicative left α-centralizer (CEM-left α-centralizer) if $T(x y)-$ $T(x) \alpha(y) \in Z$ holds for all $x, y \in R$.
Definition 1.2. Let R be a ring and α, β be mappings of R. A map D on R is called a CEM- (α, β)-derivation if $D(x y)-D(x) \alpha(y)-\beta(x) D(y) \in Z$ holds for all $x, y \in R$.
Definition 1.3. Let R be a ring and α, β and d be mappings of R. A map F on R is called a CEM-(generalized)- (α, β)-derivation associated with d if $F(x y)-F(x) \alpha(y)-\beta(x) d(y) \in$ Z holds for all $x, y \in R$.

Hence the concept of CEM-(generalized)- (α, β)-derivation covers both the concept of CEM- (α, β)-derivation and the concept of CEM-left α-centralizer. Moreover, every CEgeneralized (α, β)-derivation is a CEM-(generalized)-(α, β)-derivation and every M-(generalized)(α, β)-derivation is a CEM-(generalized)- (α, β)-derivation. Also, every generalized (α, β) derivation is an M -(generalized)- (α, β)-derivation.

In this paper, our aim is to investigate certain identities involving CEM-(generalized)(α, β)-derivations on some appropriate subsets of the ring R.

2. Preliminaries

We shall require throughout this paper to the following results.
Lemma 2.1. Let R be a semiprime ring, U a left ideal of R and α, β mappings of R such that $\beta(U) \subseteq U$. If either $[x y \alpha(z), \beta(z)]=0$ or $x[y \alpha(z), \beta(z)]=0$ holds for all $x, y, z \in U$, then $U[\alpha(z), \beta(z)]=(0)$ for all $z \in U$.

Proof. First assume that

$$
\begin{equation*}
[x y \alpha(z), \beta(z)]=0 \quad \text { for all } x, y, z \in U \tag{2.1}
\end{equation*}
$$

Substituting $r x$ for x in (2.1), where $r \in R$, and then using (2.1), we obtain

$$
\begin{equation*}
[r, \beta(z)] x y \alpha(z)=0 \quad \text { for all } x, y, z \in U, r \in R \tag{2.2}
\end{equation*}
$$

Replacing x by $\alpha(z) s x$, where $s \in R$, we get $[r, \beta(z)] \alpha(z) s x y \alpha(z)=0$, which implies

$$
\begin{equation*}
[r, \beta(z)] \alpha(z) R x y \alpha(z)=(0) \quad \text { for all } x, y, z \in U, r \in R \tag{2.3}
\end{equation*}
$$

Interchanging x and y then subtracting one from the other, we get

$$
\begin{equation*}
[r, \beta(z)] \alpha(z) R[x, y] \alpha(z)=(0) \quad \text { for all } x, y, z \in U, r \in R \tag{2.4}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
[x, \beta(z)] \alpha(z) R[x, \beta(z)] \alpha(z)=(0) \quad \text { for all } x, z \in U \tag{2.5}
\end{equation*}
$$

The semiprimeness of R yields that

$$
\begin{equation*}
[x, \beta(z)] \alpha(z)=0 \quad \text { for all } x, z \in U \tag{2.6}
\end{equation*}
$$

Right multiplying (2.6) by $\beta(z)$, we get

$$
\begin{equation*}
[x, \beta(z)] \alpha(z) \beta(z)=0 \quad \text { for all } x, z \in U \tag{2.7}
\end{equation*}
$$

Replace x by $x \beta(z)$ in (2.6) to get

$$
\begin{equation*}
[x, \beta(z)] \beta(z) \alpha(z)=0 \quad \text { for all } x, z \in U . \tag{2.8}
\end{equation*}
$$

Now (2.7) and (2.8) together imply that

$$
\begin{equation*}
[x, \beta(z)][\alpha(z), \beta(z)]=0 \quad \text { for all } x, z \in U . \tag{2.9}
\end{equation*}
$$

Replacing x by $\alpha(z) x$ in the last expression, we obtain

$$
\begin{equation*}
[\alpha(z), \beta(z)] x[\alpha(z), \beta(z)]=0 \quad \text { for all } x, z \in U, \tag{2.10}
\end{equation*}
$$

that is

$$
\begin{equation*}
U[\alpha(z), \beta(z)] R U[\alpha(z), \beta(z)]=(0) \quad \text { for all } z \in U . \tag{2.11}
\end{equation*}
$$

Hence, since R is a semiprime ring,

$$
\begin{equation*}
U[\alpha(z), \beta(z)]=(0) \quad \text { for all } z \in U . \tag{2.12}
\end{equation*}
$$

Now suppose that

$$
\begin{equation*}
x[y \alpha(z), \beta(z)]=0 \quad \text { for all } x, y, z \in U . \tag{2.13}
\end{equation*}
$$

Replacing y with $\alpha(z) y$ in (2.13), we get

$$
\begin{equation*}
x[\alpha(z) y \alpha(z), \beta(z)]=0 \quad \text { for all } x, y, z \in U . \tag{2.14}
\end{equation*}
$$

Now replacing y by $y \alpha(z) u$, where $u \in U$, we have

$$
\begin{equation*}
x[\alpha(z) y \alpha(z) u \alpha(z), \beta(z)]=0 \quad \text { for all } x, y, z, u \in U . \tag{2.15}
\end{equation*}
$$

This implies

$$
\begin{equation*}
x[\alpha(z) y \alpha(z), \beta(z)] u \alpha(z)+x \alpha(z) y \alpha(z)[u \alpha(z), \beta(z)]=0 \quad \text { for all } x, y, z, u \in U . \tag{2.16}
\end{equation*}
$$

Then using (2.14), we obtain

$$
\begin{equation*}
x \alpha(z) y \alpha(z)[u \alpha(z), \beta(z)]=0 \quad \text { for all } x, y, z, u \in U, \tag{2.17}
\end{equation*}
$$

and this is equivalent to

$$
\begin{equation*}
x \alpha(z) y([\alpha(z) u \alpha(z), \beta(z)]-[\alpha(z), \beta(z)] u \alpha(z))=0 \quad \text { for all } x, y, z, u \in U . \tag{2.18}
\end{equation*}
$$

Again, using (2.14), we get

$$
\begin{equation*}
x \alpha(z) y[\alpha(z), \beta(z)] u \alpha(z)=0 \quad \text { for all } x, y, z, u \in U . \tag{2.19}
\end{equation*}
$$

Replacing y with $\beta(z) y$ in (2.19), we obtain

$$
\begin{equation*}
x \alpha(z) \beta(z) y[\alpha(z), \beta(z)] u \alpha(z)=0 \quad \text { for all } x, y, z, u \in U . \tag{2.20}
\end{equation*}
$$

Now replace x by $x \beta(z)$ in (2.19) to get

$$
\begin{equation*}
x \beta(z) \alpha(z) y[\alpha(z), \beta(z)] u \alpha(z)=0 \quad \text { for all } x, y, z, u \in U . \tag{2.21}
\end{equation*}
$$

Subtracting (2.21) from (2.20), we have

$$
\begin{equation*}
x[\alpha(z), \beta(z)] y[\alpha(z), \beta(z)] u \alpha(z)=0 \quad \text { for all } x, y, z, u \in U . \tag{2.22}
\end{equation*}
$$

Right multiplying (2.22) by $\beta(z)$, we get

$$
\begin{equation*}
x[\alpha(z), \beta(z)] y[\alpha(z), \beta(z)] u \alpha(z) \beta(z)=0 \quad \text { for all } x, y, z, u \in U . \tag{2.23}
\end{equation*}
$$

Replacing u by $u \beta(z)$ in (2.22), we obtain

$$
\begin{equation*}
x[\alpha(z), \beta(z)] y[\alpha(z), \beta(z)] u \beta(z) \alpha(z)=0 \quad \text { for all } x, y, z, u \in U . \tag{2.24}
\end{equation*}
$$

Now (2.23) and $(2,24)$ together imply that

$$
\begin{equation*}
x[\alpha(z), \beta(z)] y[\alpha(z), \beta(z)] u[\alpha(z), \beta(z)]=0 \quad \text { for all } x, y, z, u \in U, \tag{2.25}
\end{equation*}
$$

that is

$$
\begin{equation*}
(U[\alpha(z), \beta(z)])^{3}=(0) \quad \text { for all } z \in U . \tag{2.26}
\end{equation*}
$$

Since a semiprime ring contains no nonzero nilpotent left ideals, it follows that

$$
\begin{equation*}
U[\alpha(z), \beta(z)]=(0) \quad \text { for all } z \in U . \tag{2.27}
\end{equation*}
$$

Lemma 2.2. Let R be a semiprime ring and U a left ideal of R. If $\left[y[x, z]_{2}, z\right]=0$ for all $x, y, z \in U$, then $U[U, U]=(0)$.

Proof. By the hypothesis, we have

$$
\begin{equation*}
\left[y[x, z]_{2}, z\right]=0 \quad \text { for all } x, y, z \in U \tag{2.28}
\end{equation*}
$$

Substituting y by $x y$ in (2.28) and then using (2.28), we obtain

$$
\begin{equation*}
[x, z] y[x, z]_{2}=0 \quad \text { for all } x, y, z \in U \tag{2.29}
\end{equation*}
$$

that is

$$
\begin{equation*}
U[x, z]_{2} R U[x, z]_{2}=(0) \quad \text { for all } x, z \in U \tag{2.30}
\end{equation*}
$$

The semiprimeness of R forces that

$$
\begin{equation*}
U[x, z]_{2}=(0) \quad \text { for all } x, z \in U \tag{2.31}
\end{equation*}
$$

Linearizing (2.31) with respect to z , we have

$$
\begin{equation*}
U([[x, u], v]+[[x, v], u])=(0) \quad \text { for all } x, u, v \in U \tag{2.32}
\end{equation*}
$$

Replacing u with $u v$ in (2.32), then using (2.31) and (2.32) to get

$$
\begin{equation*}
U[u, v][x, v]=(0) \quad \text { for all } x, u, v \in U \tag{2.33}
\end{equation*}
$$

Now substituting x by $x u$, we obtain

$$
\begin{equation*}
U[u, v] x[u, v]=(0) \quad \text { for all } x, u, v \in U \tag{2.34}
\end{equation*}
$$

that is

$$
\begin{equation*}
U[u, v] R U[u, v]=(0) \quad \text { for all } u, v \in U \tag{2.35}
\end{equation*}
$$

Hence, the semiprimeness of R yields that $U[U, U]=(0)$.
Lemma 2.3 ([4], Theorem 2). Let R be a semiprime ring and U a nonzero left ideal of R. For integers $n, k \geq 1$, and some $a \in R$, if $\left[a, x^{k}\right]_{n}=0$ for all $x \in U$, then $[a, U]=(0)$.

3. The results

Theorem 3.1. Let R be a semiprime ring, U a left ideal of R, α, β, d and g mappings of R, F a $C E M$-(generalized)-(α, β-derivation of R associated with d and G an M-(generalized)(α, β)-derivation of R associated with g, where $\alpha(U) \subseteq U, \beta(U)=U$ and β acts as homomorphism on U. If $F(x y) \pm \beta(x) G(y) \in Z$ for all $x, y \in U$, then $U[(d \pm g)(x), \alpha(x)]=$ (0) for all $x \in U$. Moreover, if U is an ideal of $R, d \pm g$ is an α-commuting map on U.

Proof. By the hypothesis, we have

$$
\begin{equation*}
F(x y) \pm \beta(x) G(y) \in Z \quad \text { for all } x, y \in U \tag{3.1}
\end{equation*}
$$

Replacing y with $y z$ in (3.1), where $z \in U$, and then we get

$$
\begin{align*}
F(x y z) \pm \beta(x) G(y z) & =F(x y) \alpha(z)+\beta(x y) d(z)+a \pm \beta(x) G(y) \alpha(z) \\
& \pm \beta(x) \beta(y) g(z) \\
& =(F(x y) \pm \beta(x) G(y)) \alpha(z)+\beta(x) \beta(y)(d \pm g)(z)+a \tag{3.2}
\end{align*}
$$

where $a \in Z$. Applying (3.1) and (3.2) yields

$$
\begin{equation*}
[\beta(x) \beta(y)(d \pm g)(z), \alpha(z)]=0 \quad \text { for all } x, y, z \in U \tag{3.3}
\end{equation*}
$$

Since $\beta(U)=U$, we get

$$
\begin{equation*}
[x y(d \pm g)(z), \alpha(z)]=0 \quad \text { for all } x, y, z \in U \tag{3.4}
\end{equation*}
$$

Hence, by Lemma 2.1, we obtain

$$
\begin{equation*}
U[(d \pm g)(z), \alpha(z)]=(0) \quad \text { for all } z \in U \tag{3.5}
\end{equation*}
$$

Moreover, if U is an ideal of R, the semiprimeness of U yields that

$$
\begin{equation*}
[(d \pm g)(z), \alpha(z)]=0 \quad \text { for all } z \in U \tag{3.6}
\end{equation*}
$$

Theorem 3.2. Let R be a semiprime ring, U a left ideal of R, α, β, d and g mappings of R and F a $C E M$-(generalized)- (α, β)-derivation of R associated with d, where $\alpha(U) \subseteq$ $U, \beta(U)=U, \alpha$ acts as homomorphism on U, and β acts as homomorphism or antihomomorphism on U. If $F(x y) \pm g(x) \alpha(y) \in Z$ for all $x, y \in U$, then $U[d(x), \alpha(x)]=(0)$ for all $x \in U$. Moreover, if U is an ideal of R, d is an α-commuting map on U.
Proof. Assume that

$$
\begin{equation*}
F(x y) \pm g(x) \alpha(y) \in Z \quad \text { for all } x, y \in U . \tag{3.7}
\end{equation*}
$$

Now we replace y with $y z$ in (3.7), where $z \in U$, then we get

$$
\begin{align*}
F(x y z) \pm g(x) \alpha(y z) & =F(x y) \alpha(z)+\beta(x y) d(z)+a \pm g(x) \alpha(y) \alpha(z) \\
& =(F(x y) \pm g(x) \alpha(y)) \alpha(z)+\beta(x y) d(z)+a \tag{3.8}
\end{align*}
$$

where $a \in Z$. Applying (3.7) and (3.8) yields

$$
\begin{equation*}
[\beta(x y) d(z), \alpha(z)]=0 \quad \text { for all } x, y, z \in U . \tag{3.9}
\end{equation*}
$$

Since $\beta(U)=U$, we get

$$
\begin{equation*}
[x y d(z), \alpha(z)]=0 \quad \text { for all } x, y, z \in U . \tag{3.10}
\end{equation*}
$$

Henceforth, by Lemma 2.1, we get the required result.
If we put $\alpha=\beta=g=I$ in Theorem 3.2, we get
Corollary 3.3 ([3], Theorem 2.9). Let R be a semiprime ring, U a nonzero left ideal of R, d a mapping of R and F an M-(generalized)-derivation of R associated with d. If $F(x y) \pm x y \in Z$ for all $x, y \in U$, then $U[d(x), x]=(0)$ for all $x \in U$.
Theorem 3.4. Let R be a semiprime ring, U a nonzero left ideal of R, α, d and g mappings of R, and F a CEM-(generalized)- (α, α)-derivation of R associated with d, where $\alpha(U)=U$ and α acts as anti-homomorphism on U. If $F(x y) \pm g(y) \alpha(x) \in Z$ for all $x, y \in U$, then $U[d(x), \alpha(x)]=(0)$ for all $x \in U$.
Proof. By the hypothesis, we have

$$
\begin{equation*}
F(x y) \pm g(y) \alpha(x) \in Z \quad \text { for all } x, y \in U . \tag{3.11}
\end{equation*}
$$

Replacing y with $y z$ in (3.11), where $z \in U$, we get

$$
\begin{equation*}
F(x y z) \pm g(y z) \alpha(x)=F(x y) \alpha(z)+\alpha(x y) d(z)+a \pm g(y z) \alpha(x), \tag{3.12}
\end{equation*}
$$

where $a \in Z$. Applying (3.11) and (3.12), we get

$$
\begin{equation*}
[\alpha(x y) d(z), \alpha(z)]+[\pm g(y z) \alpha(x) \mp g(y) \alpha(x) \alpha(z), \alpha(z)]=0 \quad \text { for all } x, y, z \in U . \tag{3.13}
\end{equation*}
$$

Now substituting $z x$ for x in (3.13), we have for all $x, y, z \in U$

$$
\begin{equation*}
[\alpha(z x y) d(z), \alpha(z)]+[\pm g(y z) \alpha(x) \mp g(y) \alpha(x) \alpha(z), \alpha(z)] \alpha(z)=0 . \tag{3.14}
\end{equation*}
$$

Right multiplying (3.13) by $\alpha(z)$ and then subtracting it from (3.14), we get

$$
\begin{equation*}
[\alpha(z x y) d(z), \alpha(z)]-[\alpha(x y) d(z), \alpha(z)] \alpha(z)=0 \quad \text { for all } x, y, z \in U . \tag{3.15}
\end{equation*}
$$

Since $\alpha(U)=U$, we obtain

$$
\begin{equation*}
[y x[d(z), \alpha(z)], \alpha(z)]=0 \quad \text { for all } x, y, z \in U . \tag{3.16}
\end{equation*}
$$

Replacing y with $d(z) y$, in the above relation and then using (3.16), we get

$$
\begin{equation*}
[d(z), \alpha(z)] y x[d(z), \alpha(z)]=0 \quad \text { for all } x, y, z \in U \tag{3.17}
\end{equation*}
$$

that is

$$
\begin{equation*}
y x[d(z), \alpha(z)] R y x[d(z), \alpha(z)]=(0) \quad \text { for all } x, y, z \in U \tag{3.18}
\end{equation*}
$$

The semiprimeness of R yields that

$$
\begin{equation*}
y x[d(z), \alpha(z)]=0 \quad \text { for all } x, y, z \in U \tag{3.19}
\end{equation*}
$$

Since U is a left ideal, $[d(z), \alpha(z)] r x \in U$ for all $x, z \in U, r \in R$. In equation (3.19), replace y by x and replace x by $[d(z), \alpha(z)] r x$ to get

$$
\begin{equation*}
x[d(z), \alpha(z)] r x[d(z), \alpha(z)]=0 \quad \text { for all } x, z \in U, r \in R \tag{3.20}
\end{equation*}
$$

that is

$$
\begin{equation*}
x[d(z), \alpha(z)] R x[d(z), \alpha(z)]=(0) \quad \text { for all } x, z \in U \tag{3.21}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
U[d(z), \alpha(z)]=(0) \quad \text { for all } z \in U \tag{3.22}
\end{equation*}
$$

The following theorem is an extension and generalization to [3, Theorem 2.11].
Theorem 3.5. Let R be a semiprime ring, U a nonzero left ideal of R, α, d and g mappings of R, and F a CEM-(generalized) $-(\alpha, \alpha)$-derivation of R associated with d, where $\alpha(U)=U$ and α acts as homomorphism on U. If $F(x y) \pm g(y) \alpha(x) \in Z$ for all $x, y \in U$, then $U[d(x), \alpha(x)]=(0)$ for all $x \in U$. Moreover, if $\alpha=g$ and α is homomorphism on U, then $U \subseteq Z, U d(R) \subseteq Z$ and $U F(R) \subseteq Z$.
Proof. Suppose that

$$
\begin{equation*}
F(x y) \pm g(y) \alpha(x) \in Z \quad \text { for all } x, y \in U \tag{3.23}
\end{equation*}
$$

In the above relation, replacing y with $y z$, where $z \in U$, we get

$$
\begin{equation*}
F(x y z) \pm g(y z) \alpha(x)=F(x y) \alpha(z)+\alpha(x y) d(z)+a \pm g(y z) \alpha(x) \tag{3.24}
\end{equation*}
$$

where $a \in Z$. Applying (3.23) and (3.24), we get

$$
\begin{equation*}
[\alpha(x y) d(z), \alpha(z)]+[\pm g(y z) \alpha(x) \mp g(y) \alpha(x) \alpha(z), \alpha(z)]=0 \quad \text { for all } x, y, z \in U \tag{3.25}
\end{equation*}
$$

Now substituting $x z$ for x in (3.25), we have for all $x, y, z \in U$

$$
\begin{equation*}
[\alpha(x z y) d(z), \alpha(z)]+[\pm g(y z) \alpha(x) \mp g(y) \alpha(x) \alpha(z), \alpha(z)] \alpha(z)=0 \tag{3.26}
\end{equation*}
$$

Right multiplying (3.25) by $\alpha(z)$ and then subtracting it from (3.26), we get

$$
\begin{equation*}
[\alpha(x z y) d(z), \alpha(z)]-[\alpha(x y) d(z), \alpha(z)] \alpha(z)=0 \quad \text { for all } x, y, z \in U \tag{3.27}
\end{equation*}
$$

Since $\alpha(U)=U$, we have

$$
\begin{equation*}
[x[y d(z), \alpha(z)], \alpha(z)]=0 \quad \text { for all } x, y, z \in U \tag{3.28}
\end{equation*}
$$

Replacing x with $y d(z) x$, in the above relation and then using (3.28), we get

$$
\begin{equation*}
[y d(z), \alpha(z)] x[y d(z), \alpha(z)]=0 \quad \text { for all } x, y, z \in U \tag{3.29}
\end{equation*}
$$

that is

$$
\begin{equation*}
x[y d(z), \alpha(z)] R x[y d(z), \alpha(z)]=(0) \quad \text { for all } x, y, z \in U \tag{3.30}
\end{equation*}
$$

The semiprimeness of R yields that

$$
\begin{equation*}
x[y d(z), \alpha(z)]=0 \quad \text { for all } x, y, z \in U \tag{3.31}
\end{equation*}
$$

Therefore, by Lemma 2.1, we have

$$
\begin{equation*}
U[d(z), \alpha(z)]=(0) \quad \text { for all } z \in U \tag{3.32}
\end{equation*}
$$

Now, assume that $\alpha=g$ and α is additive on U, then (3.25) becomes

$$
\begin{equation*}
[\alpha(x y) d(z), \alpha(z)]+[\pm \alpha(y z) \alpha(x) \mp \alpha(y) \alpha(x) \alpha(z), \alpha(z)]=0 \quad \text { for all } x, y, z \in U \tag{3.33}
\end{equation*}
$$

Replacing y with $y z$ in (3.33), we have for all $x, y, z \in U$

$$
\begin{equation*}
[\alpha(x y z) d(z), \alpha(z)]+\left[\pm \alpha\left(y z^{2}\right) \alpha(x) \mp \alpha(y z) \alpha(x) \alpha(z), \alpha(z)\right]=0 . \tag{3.34}
\end{equation*}
$$

Right multiplying (3.33) by $\alpha(z)$ and then subtracting it from (3.34), we get

$$
\begin{gather*}
{[\alpha(x y)[\alpha(z), d(z)], \alpha(z)]+\left[\pm \alpha\left(y z^{2}\right) \alpha(x) \mp \alpha(y z) \alpha(x) \alpha(z), \alpha(z)\right]} \\
-[\pm \alpha(y z) \alpha(x) \mp \alpha(y) \alpha(x) \alpha(z), \alpha(z)] \alpha(z)=0 \text { for all } x, y, z \in U . \tag{3.35}
\end{gather*}
$$

By using (3.32), we have

$$
\begin{array}{r}
{\left[\pm \alpha\left(y z^{2}\right) \alpha(x) \mp \alpha(y z) \alpha(x) \alpha(z), \alpha(z)\right]-[\pm \alpha(y z) \alpha(x) \mp} \\
\alpha(y) \alpha(x) \alpha(z), \alpha(z)] \alpha(z)=0 \quad \text { for all } x, y, z \in U . \tag{3.36}
\end{array}
$$

Since α is epimorphism on U, then we have

$$
\begin{equation*}
\left[\pm y z^{2} x \mp y z x z, z\right]-[\pm y z x \mp y x z, z] z=0 \quad \text { for all } x, y, z \in U . \tag{3.37}
\end{equation*}
$$

That is

$$
\begin{equation*}
[y z[x, z], z]-[y[x, z], z] z=0 \quad \text { for all } x, y, z \in U, \tag{3.38}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
[y[x, z] z, z]-[y z[x, z], z]=0 \quad \text { for all } x, y, z \in U, \tag{3.39}
\end{equation*}
$$

that is

$$
\begin{equation*}
\left[y[x, z]_{2}, z\right]=0 \quad \text { for all } x, y, z \in U . \tag{3.40}
\end{equation*}
$$

Thus Lemma 2.2 get us $U[U, U]=(0)$. Replacing y with $[y, z]$ in (3.23), we have

$$
\begin{equation*}
F(x[y, z]) \pm \alpha([y, z]) \alpha(x) \in Z \quad \text { for all } x, y, z \in U, \tag{3.41}
\end{equation*}
$$

that is

$$
\begin{equation*}
F(0) \pm[\alpha(y), \alpha(z)] \alpha(x) \in Z \quad \text { for all } x, y, z \in U . \tag{3.42}
\end{equation*}
$$

Now we replace x by $[x, z]$ in (3.23) to get

$$
\begin{equation*}
F([x, z] y) \pm \alpha(y) \alpha([x, z]) \in Z \quad \text { for all } x, y, z \in U . \tag{3.43}
\end{equation*}
$$

Thus $F([x, z] y) \in Z$ for all $x, y, z \in U$. Then $F(0) \in Z$ and from (3.42) we have $[U, U] U \subseteq$ Z. Therefore we get $[x, y]_{2} \in Z$ for all $x, y \in U$. In particular, $[x, y]_{3}=0$ for all $x, y \in U$. Then by Lemma 2.3, we get $U \subseteq Z$. Thus (3.23) gives $F(x y) \in Z$ for all $x, y \in U$, and so we have

$$
\begin{equation*}
F(x) \alpha(y)+\alpha(x) d(y) \in Z \quad \text { for all } x, y \in U . \tag{3.44}
\end{equation*}
$$

Replacing x with $x z$ in the last expression, we get

$$
\begin{equation*}
F(x z) \alpha(y)+\alpha(x z) d(y) \in Z \quad \text { for all } x, y, z \in U, \tag{3.45}
\end{equation*}
$$

which implies that $x z d(y) \in Z$ for all $x, y, z \in U$, and then, for $r \in R$, we have $x z[d(y), r]=$ 0 for all $x, y, z \in U$, that is $x R z[d(y), r]=(0)$ for all $x, y, z \in U, r \in R$. In particular, $x[d(y), r] R x[d(y), r]=(0)$ for all $x, y \in U, r \in R$. Since R is semiprime, we get $U d(U) \subseteq Z$. Then (3.44) gives us $F(U) U \subseteq Z$, and so $F(x r) y \in Z$ for all $x, y \in U, r \in R$. Then we get $b, c \in Z$ such that

$$
\begin{equation*}
F(x) \alpha(r) y+\alpha(x) d(r) y+b y \in Z \tag{3.46}
\end{equation*}
$$

and

$$
\begin{equation*}
F(r) \alpha(x) y+\alpha(r) d(x) y+c y \in Z \tag{3.47}
\end{equation*}
$$

for all $x, y \in U, r \in R$. Thus, we have $x y d(r) \in Z$ and $x y F(r) \in Z$ for all $x, y \in U, r \in R$. Hence, since R is semiprime, we obtain $U d(R) \subseteq Z$ and $U F(R) \subseteq Z$.
Corollary 3.6. Let R be a semiprime ring, U a nonzero left ideal of R, α a mapping of R, and T a CEM-left α-centralizer of R, where α is an epimorphism of U. If $T(x y) \pm \alpha(y x) \in$ Z for all $x, y \in U$, then $U \subseteq Z$ and $U T(R) \subseteq Z$.

Note that if F is a CEM-(generalized)-($\alpha, \beta)$-derivation of a ring R associated with a map d on R, where α and β are mappings of R such that α acts as homorphism on R, then $F \pm \alpha$ is a CEM-(generalized)-(α, β)-derivation of R associated with d.

Theorem 3.7. Let R be a semiprime ring, U a nonzero left ideal of R, α and d mappings of R, and F a CEM-(generalized)- (α, α)-derivation of R associated with d, where $\alpha(U)=U$ and α acts as homomorphism on R. If one of the following conditions:
(1) $F(x y) \pm[\alpha(x), \alpha(y)] \in Z$
(2) $F(x y) \pm(\alpha(x) \circ \alpha(y)) \in Z$
is satisfied for all $x, y \in U$, then $U[d(x), \alpha(x)]=(0)$ for all $x \in U$. Moreover, if α is homomorphism on U, then $U \subseteq Z, U d(R) \subseteq Z$ and $U F(R) \subseteq Z$.
Proof. Replacing F with $F \mp \alpha$, then by Theorem 3.5 we get the desired result.
Corollary 3.8 ([1], Theorem 2.18 and Theorem 2.19). Let R be a semiprime ring, U a nonzero left ideal of R, d a mapping on R, and F an M-(generalized)-derivation of R associated with d. If one of the following conditions:
(1) $F(x y) \pm[x, y] \in Z$
(2) $F(x y) \pm(x \circ y) \in Z$
is satisfied for all $x, y \in U$, then $U \subseteq Z$ and $F(x y) \in Z$ for all $x, y \in U$.
The following corollary is an immediate consequence of Theorems 3.5 and 3.7.
Corollary 3.9. Let R be a semiprime ring, α epimorphism of R, d map on R and F a CEM-(generalized)-(α, α)-derivation of R associated with d. If one of the following conditions:
(1) $F(x y) \pm \alpha(y x) \in Z$
(2) $F(x y) \pm \alpha([x, y]) \in Z$
(3) $F(x y) \pm \alpha((x \circ y)) \in Z$
is satisfied for all $x, y \in R$, then R is commutative.
Acknowledgment. The authors are grateful to the referee for his/her valuable suggestions and comments.

References

[1] A. Ali, B. Dhara, S. Khan and F. Ali, Multiplicative (generalized)-derivations and left ideals in semiprime rings, Hacettepe J. Math. Stat. 44 (6), 1293-1306, 2015.
[2] H.E. Bell and M.N. Daif, On centrally-extended maps on rings, Beiträge Algebra Geom. Article No. 244, 1-8, 2015.
[3] B. Dhara and S. Ali, On multiplicative (generalized)-derivations in prime and semiprime rings, Aequat. Math. 86 (1-2), 65-79, 2013.
[4] C. Lanski, An Engel condition with derivation for left ideals, Proc. Amer. Math. Soc. 125 (2), 339-345, 1997.
[5] M.S. Tammam El-Sayiad, N.M. Muthana and Z.S. Alkhamisi, On rings with some kinds of centrally-extended maps, Beiträge Algebra Geom. Article No. 274, 1-10, 2015.

[^0]: *Corresponding Author.
 Email addresses: Nmuthana@kau.edu.sa (N. Muthana), mazasa1@yahoo.com (Z. Alkhamisi)
 Received: 14.01.2017; Accepted: 23.01.2019

