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Abstract: In this work we have studied the evolution of a warped product (WP) manifold under second order
renormalization group (RG-2) flow. We have shown some conditions for the existence of a solution of RG-2
flow on WP manifolds. Also, we have found a necessary condition for warped function under RG-2 flow. In
particular, we study some special WP metric of real line with a manifold. Eventually, by extending conditions
to pseudo-Riemannian manifold, we find a PDE for Robertson-Walker (RW) metrics, and show that there is
no RG-2 flow for RW metrics.
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1. Introduction

The Ricci flow was introduced and studied by Hamilton [8], and has been a topic of interest in

both mathematics and physics. The Ricci flow is an evolution equation for Riemannian metrics.

In the Ricci flow, one begins with a smooth Riemannian manifold M, equipped with a smooth

Riemannian metric g0 and evolves its metric by the equation

∂

∂ t g(t) =−2Ric(g(t)),

g(0) = g0,

where t ∈ I, I is an interval, and Ric(g(t)) denotes the Ricci curvature of g(t).

Many authors, have tried to extend Ricci flow from different point of views. The Ricci flow is the

first-order approximation of renormalization group flow for nonlinear sigma models in quantum

field theory. The second order approximation of the renormalization group flow for the nonlinear

sigma model of quantum field theory, which we label by RG-2 flow, is specified by

∂

∂ t
g =−2Ric− α

2
Rm2, (1)

where

Rm2
i j = gpkgqlgnmRiklmR jpqn, (2)
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denotes the quadratic curvature and α is a positive parameter. Note that for our purposes here, we

can assume α to be non-negative. For α = 0, the system (1) reduces to the Ricci flow.

RG-2 flow is diffeomorphism invariant but unlike the Ricci flow, it is not a weakly parabolic sys-

tem. Gimre, Guenther and Isenberg, modifying De-Turck method for RG-2, proved conditions for

the short time existence of the second order renormalization group flow in general dimension [4].

Some of the mathematical features of this flow have been studied in recent years, [5], [6], [7] and

[14].

The concept of warped product (WP) metrics was first introduced by Bishop and O’Neill [1]. In

Riemannian geometry, warped product manifolds have been used to construct new examples. The

warped product B×u F of two Riemannian manifolds B and F and real warped function u : B→R,

is the product manifold B×F furnished with the metric g = gB +u2gF .

The Ricci flow on warped product manifolds was studied over the last few years [3], [12], [13],

[16] and [17]. In this work, we have studied the property of second order renormalization group

flow on warped product manifolds. First, we investigate an existence condition of RG-2 on WP

manifolds, and extend the curvature criterion of short-time existence. Then, using WP metric cur-

vature and RG-2 flow, we find some relations for warped function.

Many exact solutions of the Einstein field equations and modified field equations are warped prod-

ucts, for instance, the Robertson-Walker (RW) models are warped products. Robertson and Walker

independently showed in the mid-1930s that this is the most general metric possible for describing

an expanding, homogeneous and isotropic universe. Hesamifard and Rezaii, studied RG-2 flow on

RW metric in spherical coordinates [10]. Using property of RG-2 flow on WP manifolds, we have

found a PDE, and we have studied some properties of its solution. We have shown as in [10], that

there is no solution of RG-2 flow on RW manifolds.

2. Preliminaries

For any closed Riemannian manifold (M,g0), and for all sectional curvatures KP(g0), at all point

p ∈M and planes P⊂ TpM, if

1+αKP > 0,

then there exists a unique solution g(t) of the initial value problem ∂tg =−Ric− α

2 Rm2, g(0) = g0,

on some time interval [0,T ) [4].

Let gF
k be a Riemannian metric on an n-dimensional manifold F with constant curvature k, then

RicF = k(n−1)gF
k and Rm2F = 2k2(n−1)gF

k . If gF(t) is a solution of the second order renormal-

ization group flow (1), with initial metric gF(0) = gF
k , then gF(t) preserves its conformal class,
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and we may write gF(t) = φ(t)gF
k , where φ(t) obtained by the following implicit function [5], [6]

φ(t) =−2k(n−1)t +1+
αk
2

Ln
∣∣∣∣2φ(t)+αk

2+αk

∣∣∣∣∣.
Note that Ric(φg) = Ric(g) and Rm2(φg) = 1

φ
Rm2(g)).

Let (B,gB) and (F,gF) be two (Pseudo-) Riemannian manifolds with dimensions m and n, respec-

tively. Let M = B×u F and g = gB + u2gF where u : B→ R is smooth positive function. For

any point (x,y) ∈ M, and vectors XB,Y B,ZB... ∈ TxB and XF ,Y F ,ZF ... ∈ TyF , we have for the

Riemannian curvature of warped product manifold (M,g) [15];

R(XB,Y B)ZF = R(XF ,Y F)ZB = 0,

R(XB,Y B)ZB = RB(XB,Y B)ZB,

R(XF ,Y B)ZB = 1
u HessB(u)(Y B,ZB)XF ,

R(XB,Y F)ZF = ugF(Y F ,ZF)∇B
XB(∇

Bu),

R(XF ,Y F)ZF = RF(XF ,Y F)ZF −|∇Bu|2gB(gF(XF ,ZF)Y F −gF(Y F ,ZF)XF).

(3)

where, R, RB and RF are Riemannian curvatures of (M,g), (B,gB) and (F,gF), respectively. Also,

we have for the Ricci tensor [15]

Ric(XB.Y F) = 0,

Ric(XB,Y B) = RicB(XB,Y B)− n
u HessB(u)(XB,Y B),

Ric(XF ,Y F) = RicF(XF ,Y F)− (u∆gBu+(n−1)|∇Bu|2gB)gF(XF ,Y F),

(4)

where, Ric, RicB and RicF define Ricci tensors of (M,g), (B,gB) and (gF ,F), respectively.

Generaly, at a point (x,y) ∈ M and vectors X ,Y ∈ T(x,y)M, where X = XB +XF , Y = Y B +Y F ,

XB,Y B ∈ TxB and XF ,Y F ∈ TyF , we have

Ric(X ,Y ) = RicB(XB,Y B)+RicF(XF ,Y F)− n
u HessB(u)(XB,Y B)

−u∆gBugF(XF ,Y F)− (n−1)|∇Bu|2gBgF(XF ,Y F).

Directly, we can calculate, the Riemannian curvature R(X ,Y,Z,W ) = g(R(X ,Y )Z,W ), and have:

R(XB,Y B,ZF ,W B) = R(XF ,Y F ,ZB,W F) = R(XB,Y B,ZF ,W F) = 0,

R(XB,Y B,ZB,W B) = RB(XB,Y B,ZB,W B),

R(XB,Y F ,ZB,W F) = −uHessB(u)(XB,ZB)gF(Y F ,W F),

R(XF ,Y F ,ZF ,W F) = u2RF(XF ,Y F ,ZF ,W F)

−u2|∇Bu|2gB

(
gF(XF ,ZF)gF(Y F ,W F)−gF(Y F ,ZF)gF(XF ,W F)

)
.

(5)

Let (N,h) be an m-dimensional (m≥ 2) Riemannian manifold, and I be an open interval of the real

line equipped with the negative of the standard metric. A Lorentzian manifold (M = I× f N,g =

−ds2+ f 2(s)h of dimension m+1 is a generalized Robertson-Walker space time where f : I→R+

is a smooth function [2].
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When, (N,h) is a three-dimensional manifold with constant curvature, we call (M,g) a Robertson

Walker space time. In terms of spherical coordinates, Robertson-Walker metric can be written in

the form

g =−ds2 + f 2(s)
[

dr2

1− kr2 + r2(dθ
2 + sin2

θdφ
2)

]
.

3. Short-Time Existence

On a Riemannian manifold, if the sectional curvatures satisfies certain conditions, then the flow is

(weakly) parabolic. We extend this curvature criterion for short-time existence for the RG-2 flow

to WP manifolds. At first, we calculate the sectional curvature of WP manifolds.

Lemma 1. Let (M = B×u F,g = gB +u2gF) be a WP manifold, then at point (x,y) ∈M and any

linear independent vectors XB,Y B ∈ TxB and XF ,Y F ∈ TyF , we have

|XB∧Y B|2g = |XB∧Y B|2gB ,

|XF ∧Y F |2g = u4|XF ∧Y F |2gF ,

|XB∧Y F |2g = u2gB(XB,XB)gF(Y F ,Y F),

|(XB +XF)∧Y B|2g = |XB∧Y B|2g + |XF ∧Y F |2g,
|(XB +XF)∧Y F |2g = |XB∧Y F |2g + |XF ∧Y F |2g,

|(XB +XF)∧ (Y B +Y F)|2g = |XB∧Y B|+ |XF ∧Y F |2g + |XB∧Y F |2g + |Y B∧XF |2g
−2u2gB(XB,Y B)gF(XF ,Y F).

(6)

where |X ∧Y |2g = g(X ,X)g(Y,Y )−g2(X ,Y ) is the area of a parallelogram in T(x,y)M spanned by X

and Y .

Proof. The proof is directly obtained from the definition as follows:

We have for linear independent vectors XB,Y B ∈ TxB
|XB∧Y B|2g = g(XB,XB)g(Y B,Y B)−g2(XB,Y B)

= gB(XB,XB)gB(Y B,Y B)− (gB)2(XB,Y B) = |XB∧Y B|2gB .

For linear independent vectors XF ,Y F ∈ TxF , we have
|XF ∧Y F |2g = g(XF ,XF)g(Y F ,Y F)−g2(XF ,Y F)

= u2gF(XF ,XF)u2gF(Y F ,Y F)−
(

u2gF(XF ,Y F)
)2

= u4|XF ∧Y F |2gF .

Also, for vectors XB ∈ TxB and Y F ∈ TF , we have

|XB∧Y F |2g = g(XB,XB)g(Y F ,Y F)−g2(XB,Y F) = u2gB(XB,XB)gF(Y F ,Y F).

Now, for linear independent vectors X = XB +XF ∈ T(x,y)M and Y B ∈ TxB, we have

|X ∧Y B|2g = g(XB +XF ,XB +XF)g(Y B,Y B)−g2(XB +XF ,Y B)

=
(

g(XB,XB)+g(XF ,XF)
)

g(Y B,Y B)−g2(XB,Y B)

=
(

g(XB,XB)g(Y B,Y B)−g2(XB,Y B)
)
+g(XF ,XF)g(Y B,Y B)

= |XB∧Y B|2g + |XF ∧Y F |2g.
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Moreover, for linear independent vectors X = XB +XF ∈ T(x,y)M and Y F ∈ TyF , we have

|X ∧Y F |2g = g(XB +XF ,XB +XF)g(Y F ,Y F)−g2(XB +XF ,Y F)

=
(

g(XB,XB)+g(XF ,XF)
)

g(Y F ,Y F)−g2(XF ,Y F)

=
(

g(XF ,XF)g(Y F ,Y F)−g2(XF ,Y F)
)
+g(XB,XB)g(Y F ,Y F)

= |XF ∧Y F |2g + |XB∧Y F |2g.
Eventually, for linear independent vectors X = XB +Y F ,Y = Y B +Y F ∈ T(x,y)M, we have

|X ∧Y |2g = g(XB +XF ,XB +XF)g(Y B +Y F ,Y B +Y F)−g2(XB +XF ,Y B +Y F)

=
(

g(XB,XB)+g(XF ,XF)
)(

g(Y B,Y B)+g(Y F ,Y F)
)

−
(

g(XB,Y B)+g(XF ,Y F)
)2

=
(

g(XB,XB)g(Y B,Y B)−g2(XB,Y B)
)

+
(

g(XF ,XF)g(Y F ,Y F)−g2(XF ,Y F)
)(

g(XB,XB)g(Y F ,Y F)
)
+
(

g(XF ,XF)g(Y B,Y B)
)

−2g(XB,Y B)g(XF ,Y F)

= |XB∧Y B|2g + |XF ∧Y F |2g + |XB∧Y F |2g + |XF ∧Y B|2g
−2u2gB(XB,Y B)gF(XF ,Y F).

Proposition 1. Let M = B×u F be a warped product manifold, then at any point (x,y) ∈M, the

sectional curvature of warped product metric g = gB + u2gF is calculated as follows. In fact, for

linear independent vectors XB,Y B ∈ TxB and XF ,Y F ∈ TyF , we have

K(XB,Y B) = KB(XB,Y B),

K(XB,Y F) = −HessB(u)(XB,XB)

ugB(XB,XB)
,

K(XF ,Y F) =
1
u2

(
KF(XF ,Y F)−|∇Bu|2gB

)
,

(7)

where K, KB and KF are sectional curvatures of (M,g), (B,gB) and (F,gF), respectively. Also, we

have

K(X ,Y B) =
K(XB,Y B)|XB∧Y B|2g +K(XF ,Y B)|XF ∧Y B|2g

|XB∧Y B|2g + |XF ∧Y B|2g

K(X ,Y F) =
K(XB,Y F)|XB∧Y F |2g +K(XF ,Y F)|XF ∧Y F |2g

|XB∧Y F |2g + |XF ∧Y F |2g
K(X ,Y ) =

1
|X ∧Y |2g

(
K(XB,Y B)|XB∧Y B|2g +K(XF ,Y F)|XF ∧Y F |2g

+K(XB,Y F)|XB∧Y F |2g +K(XF ,Y B)|XF ∧Y B|2g−2R(XB,Y F ,Y B,XF)
)
,

(8)

where X = XB +XF ,Y = Y B +Y F ∈ T(x,y)M.

Proof. By (5), (6) and definition of sectional curvature, for a plane in TxB, generated by vectors

XB and Y B, we have

K(XB,Y B) =
R(XB,Y B,XB,Y B)

|XB∧Y B|2g
=

RB(XB,Y B,XB,Y B)

|XB∧Y B|2gB

= KB(XB,Y B).
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Also, for a plane in TyF , generated by vectors XF and Y F , we have

K(XF ,Y F) =
R(XF ,Y F ,XF ,Y F)

|XF ∧Y F |2g
=

u2RF(XF ,Y F ,XF ,Y F)−u2|∇Bu|2gB |XF ∧Y F |2gF

u4|XF ∧Y F |2gF

=
1
u2 KF(XF ,Y F)−

|∇Bu|2gB

u2 .

For a plane in T(x,y)M, generated by vectors XB and Y F , we have

K(XB,Y F) =
R(XB,Y F ,XB,Y F)

|XB∧Y F |2g
=
−uHessB(u)(XB,XB)gF(Y F ,Y F)

u2gB(XB,XB)gF(Y F ,Y F)

= −HessB(u)(XB,XB)

ugB(XB,XB)
.

Now, from (5) we have

R(XB +XF ,Y B,XB +XF ,Y B) = R(XB,Y B,XB,Y B)+R(XF ,Y B,XF ,Y B), (9)

R(XB +XF ,Y F ,XB +XF ,Y F) = R(XB,Y F ,XB,Y F)+R(XF ,Y F ,XF ,Y F), (10)

R(XB +XF ,Y B +Y F ,XB +XF ,Y B +Y F) = R(XB,Y B,XB,Y B)+R(XF ,Y F ,XF ,Y F)

+R(XF ,Y B,XF ,Y B)+R(XB,Y F ,XB,Y F)

−2R(XB,Y F ,Y B,XF).

(11)

From (6) and (9) we have

K(XB +XF ,Y B) =
R(XB +XF ,Y B,XB +XF ,Y B)

|XB +XF ∧Y B|2g
=

R(XB,Y B,XB,Y B)+R(XF ,Y B,XF ,Y B)

|XB∧Y B|2g + |XF ∧Y B|2g

=
K(XB,Y B)|XB∧Y B|2g +K(XF ,Y B)|XF ∧Y B|2g

|XB∧Y B|2g + |XF ∧Y B|2g
.

Also, from (6) and (10) we have

K(XB +XF ,Y F) =
R(XB +XF ,Y F ,XB +XF ,Y F)

|XB +XF ∧Y F |2g
=

R(XB,Y F ,XB,Y F)+R(XF ,Y F ,XF ,Y F)

|XB∧Y F |2g + |XF ∧Y F |2g

=
K(XB,Y F)|XB∧Y F |2g +K(XF ,Y F)|XF ∧Y F |2g

|XB∧Y F |2g + |XF ∧Y F |2g
.

At last, let X = XB +XF and Y = Y B +Y F , so from (5) and (11) we have

K(X ,Y ) =
R(X ,Y,X ,Y )
|X ∧Y |2g

=
1

|X ∧Y |2g

(
R(XB,Y B,XB,Y B)+R(XF ,Y F ,XF ,Y F)

+R(XF ,Y B,XF ,Y B)+R(XB,Y F ,XB,Y F)−2R(XB,Y F ,Y B,XF)
)

=
1

|X ∧Y |2g

(
K(XB,Y B)|XB∧Y B|2g +K(XF ,Y F)|XF ∧Y F |2g +K(XB,Y F)|XB∧Y F |2g

+K(XF ,Y B)|XF ∧Y B|2g +2uHessB(u)(XB,Y B)gF(Y F ,XF)
)
.

By extending short-time existence of RG-2 flow we have the following theorem.
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Theorem 1. Let (M = B×u0 F,g0 = gB
0 +u2

0gF
0 ) be a closed Riemannian manifold, which satisfies

the following conditions:

i) For all points x ∈ B, and planes P1 ⊂ TxB, the sectional curvature KB
P1

of (B,gB
0 ) satisfies:

1+αKB
P1
> 0.

ii) For all points y ∈ F , and planes P2 ⊂ TyF , the sectional curvature KF
P2

of (F,gF
0 ) satisfies:

αKF
P2
≥ sup

x∈B

(
α|∇Bu0|2gB

0
−u2

0

)
.

iii) The tensor u0gB
0 −αHessB(u0) is positive definite.

iv) For all point x ∈ B, and linear independent vectors XB,Y B ∈ TxB, we have

αHessB(u0)(XB,Y B) = u0gB
0 (X

B,Y B).

Then there exist a unique solution g(t) of second order renormalization group flow (1), with initial

metric g(0) = g0 = gB
0 +u2

0gF
0 , on some interval [0,T ).

Proof. If 1+αKB
P1
(gB

0 ) > 0 for any x ∈ B and planes P1 ⊂ TxB ⊂ T(x,y)M, by (7) we have 1+

αKP1(g0)> 0.

Also, if αKF
P2
> α|∇Bu0|2gB

0
−u2

0, for any x ∈ B, y ∈ F and planes P2 ⊂ TxF ⊂ T(x,y)M, we have

1+
α

u2
0

(
KF

P2
(gF

0 )−|∇Bu0|2gB
0

)
> 0,

so, by (7), we have 1+αKP2(g0)> 0.

Let gB
0 − α

u0
HessB(u0) be positive definite, this means (gB

0 − α

u0
HessB(u0))(XB,XB) > 0, for all

point x ∈ B and all vectors XB ∈ TxB. So, for any point y ∈ F and Y F ∈ TyF , we have

1−α
HessB(u0)(XB,XB)gF

0 (Y
F ,Y F)

u0gB
0 (XB,XB)gF

0 (Y F ,Y F)
> 0.

Then, from (7), at the point (x,y) ∈M = B×F , and planes P3 ⊂ T(x,y)M spanned by XB ∈ TxB and

Y F ∈ TyF , we have 1+αKP3(g0)> 0.

Now, from (i) we have

αKB(XB,Y B)|XB∧Y B|>−|XB∧Y B|, (12)

and from (ii), we have

|XF ∧Y F |2g
u2 α

(
KF(XF ,Y F)−|∇Bu|2g0

)
>−|XF ∧Y F |2g, (13)

also, from (iii), we have

−αuHessB(u)(XB,XB)gF(Y F ,Y F)>−|XB∧Y F |2g, (14)

−αuHessB(u)(Y B,Y B)gF(XF ,XF)>−|Y B∧XF |2g. (15)
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Let X = XB +XF an Y = Y B +Y F . By adding two sides of inequalities (12) and (15) we have

α

(
K(XB,Y B)|XB∧Y B|2g +K(XF ,Y B)|XF ∧Y B|2g

)
<−|XB∧Y B|2g−|XF ∧Y B|2g. (16)

So, from (8) and (16) we have 1+αKP4 > 0, where P4 ⊂ T(x,y)M spanned by vectors X and Y B.

Now, By adding two sides of inequalities (12) and (14) we have

α

(
K(XB,Y F)|XB∧Y F |2g +K(XF ,Y F)|XF ∧Y F |2g

)
<−|XB∧Y F |2g−|XF ∧Y F |2g. (17)

So, from (8) and (17), we have 1+αKp5 > 0, where P5 ⊂ T(x,y)M spanned by vectors X and Y F .

Finally, by adding two sides of inequalities (12), (13), (14) and (15) we have

αK(X ,Y )|X ∧Y |2g > −|XB∧Y B|− |XF ∧Y F |2g−|XB∧Y F |2g
−|Y B∧XF |2g +2αuHessB(u)(XB,Y B)gF(XF ,Y F).

(18)

We have from (6) and (18)

αK(X ,Y )|X ∧Y |2g > −|X ∧Y |2g−2u2gB(XB,Y B)gF(XF ,Y F)

+2αuHessB(u)(XB,Y B)gF(XF ,Y F).
(19)

Then, from (19) and (iv), we have 1+αKP6 > 0, where P6 ⊂ T(x,y)M, is spanned by vectors X

and Y .

Therefore, at any point (x,y) ∈M = B×F and all plane P⊂ T(x,y)(B×F), we have

1+αKP(g0)> 0,

then from [4], there exist a unique solution g(t) of (1) on M = B×u0 F with g0 = gB
0 +u2

0gF
0 .

Remark 3.1. The first condition of the short-time existence for the RG-2 flow on (B×u F,gB
0 +

u2gF
0 ), satisfies the condition of existence of RG-2 flow for (B,gB

0 ), too.

Remark 3.2. From (iii) and (iv), we know α∆Bu0 ≤ mu0, where m is the dimension of B.

Remark 3.3. Let S2 be endowed with metric gS2 = dθ 2 + sin2
φdφ 2 and (F,gF

0 ) be a closed

Riemannian manifold with positive sectional curvature bigger than 1. If in local coordinates

u0(θ ,φ) = cosθ sinφ , where −π

2 < θ < π

2 and 0 < φ < π , then there exist a unique solution

of RG-2 flow, with initial metric g(0) = gS2 +u2
0gF

0 , on some interval [0,T ).

4. Evolution Of Warped Product Metrics

Now, we try to find a family of WP metrics g(t) = gB(t)+ u2(x, t)gF(t) on some interval [0,T ),

with u : B× [0,T )→ R+, that satisfy the RG-2 flow on product manifold M = B×F . First, we

calculate quadratic curvature Rm2 of any WP manifold.

In local coordinates, we use i, j,k, ... for the indices of coordinates of B, and β ,γ,λ , ... for indices

of coordinates of F . Also, A,B,C, ... show the indices of coordinates of B and F , generally.
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Proposition 2. Let M = B×u F be a warped product manifold, then at any point (x,y) ∈M, for

XB,Y B ∈ TxB and XF ,Y F ∈ TyF , the quadratic curvatures of warped product metric g = gB +u2gF

are as follows

Rm2(XB,Y F) = 0,

Rm2(XB,Y B) = Rm2B(XB,Y B)+
2n
u2 gB(HessB(u)(XB, .),HessB(u)(Y B, .)),

Rm2(XF ,Y F) = 1
u2 Rm2F(XF ,Y F)− 4

u2 |∇Bu|2gBRicF(XF ,Y F)

+2 n−1
u2 |∇Bu|4gBgF(XF ,Y F)+2|HessB(u)|2gBgF(XF ,Y F).

(20)

where RicF denotes the Ricci tensor of (F,gF), and Rm2B and Rm2F are quadratic curvatures of

(B,gB) and (F,gF), respectively.

Proof. By curvature tensor properties in local coordinates;

RABCD =−RBACD,

RABCD = RCDAB = RBADC,

RABCC = RAACD = 0.

(21)

Also, by using (5), we have in local coordinates;

Rβ i jk = Rβγi j = Rβγθ i = 0,

Ri jkl = RB
i jkl,

Riβ jγ =−uHessB(u)i jgF
βγ
,

Rβγθλ = u2RF
βγθλ
−u2|∇Bu|2gB(gF

βθ
gF

γλ
−gF

γθ
gF

βλ
).

(22)

Then, from (2), (21) and (22) we have

Rm2
iβ = gCDgEFgGHRiCEGRβDFH

= g jkgl pgqmRi jlqRβkpm +g jkgl pgµλ Ri jlµRβkpγ +g jkgµγglmRi jµlRβkγm

+g jkgµγgληRi jµλ Rβkγη +gµγg jkglmRiµ jlRβγkm +gµγg jkgληRiµ jλ Rβγkη

+gµγgληg jkRiµλ jRβγηk +gµγgληgθζ Riµλθ Rβγηζ = 0.

All terms in above equation are zero. Similarly,

Rm2
i j = gCDgEFgGHRiCEGR jDFH

= gklgmngpqRikmpR jlnq +gµβ gklgγλ RiµkγR jβ lλ +gµβ gγλ gklRiµγkR jβλ l

= gB;klgB;mngB;pqRB
ikmpRB

jlnq +2( 1
u2 gF ;µβ )gB;kl( 1

u2 gF ;γλ )

×(−uHessB(u)ikgF ;µγ)(−uHessB(u) jlgF
βλ

)

= Rm2B
i j +

2n
u2 gB;klHessB(u)ikHessB(u) jl.
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Also,

Rm2
βγ

= gCDgEFgGHRβCEGRγDFH

= gµλ gηζ gδθ Rβ µηδ Rγλζ θ +gi jgklgµλ Rβ ikµRγλζ θ +gi jgµλ gklRβ iµkRγ jλ l

= ( 1
u2 gF ;µλ )( 1

u2 gF ;ηζ )( 1
u2 gF ;δθ )

(
u2RF

β µηδ
−u2|∇Bu|2gB(gF

βη
gF

µδ
−gF

µηgF
βδ
)
)

×
(

u2RF
γλζ θ
−u2|∇Bu|2gB(gF

γζ
gF

λθ
−gF

λζ
gF

γθ
)
)

+2gF ;i jgF ;kl( 1
u2 gF ;µλ )(−uHessB(u)ikgF

β µ
)(−uHessB(u) jlgF

γλ
)

= 1
u2

(
gF ;µλ gF ;ηζ gF ;δθ RF

β µηδ
RF

γλζ θ
+2|∇Bu|4gB(n−1)gF

βγ
−4gF ;µδ RF

β µγδ
|∇Bu|2gB

)
+2gB;i jgB;klHessB(u)ikHessB(u) jlgF

βγ

= 1
u2 Rm2F

βγ
+2 n−1

u2 |∇Bu|4gBgF
βγ
− 4

u2 RicF
βγ
|∇Bu|2gB +2|HessB(u)|2gBgF

βγ
,

where |HessB(u)|2gB = gB;i jgB;klHessB(u)ikHessB(u) jl .

We know from remark 3.1, the conditions for short-time existence of RG-2 flow on B×u F with

initial WP metric g0 = gB
0 +u2gF

0 , we show that at least there is a solution of RG-2 flow on B with

initial metric gB
0 . So, for finding RG-2 flow g(t) on M = B×F , we assume there is RG-2 flow

gB(t) and gF(t) on manifolds B and F , with initial metric gB
0 and gF

0 , respectively.

Proposition 3. Let (B,gB(t)) and (F,gF(t)) be the RG-2 flows, i.e. ∂tgB =−2RicB− α

2 Rm2B and

∂tgF =−2RicF − α

2 Rm2F . Let u : B× [0,T )→ R+ be a function satisfying

uHessB(u)(XB,Y B) =
α

2
gB(HessB(u)(XB, .),HessB(u)(Y B, .)), (23)

∂tugF(XF ,Y F) =
n−1

u3 |∇
Bu|2gB

(
u2− α

2
|∇Bu|2gB

)
gF(XF ,Y F)

+
(

α

u3 |∇
Bu|4gB +u− 1

u

)
RicF(XF ,Y F)

+
α

4
u4−1

u3 Rm2F(XF ,Y F).

(24)

for any vectors XB,Y B ∈ T B and XF ,Y F ∈ T F . Then, there is solution of RG-2 flow on M =B×u F

with the metric g(t) = gB(t)+u(t)2gF(t).

Proof. From (23), we have

HessB(u)i j =
α

2
1
u

gB;klHessB(u)ikHessB(u) jl (25)

Also, we have

∂tgi j = ∂tgB
i j =−2RicB

i j−
α

2
Rm2B

i j . (26)

Therefore by (4), (20), (25) and (26), we have ∂tgi j =−2Rici j−
α

2
Rm2

i j.

Since the ∆gBu = gB;i jHessB(u)i j, by taking trace of the two sides of equality (25), we have

∆gBu =
α

2
1
u
|HessB(u)|2gB . (27)
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From (24) and (27), we have

2u∂tugF = 2(u2−2)RicF
βγ

+
α

2
(u2− 1

u2 )Rm2F
βγ

+2
(

u∆gBu+(n−1)|∇Bu|2gB

)
gF

βγ
−α

n−1
u2 |∇

Bu|4gBgF
βγ

+
2α

u2 |∇
Bu|4gBRicF

βγ
−α|HessB(u)|2gBgF

βγ
.

(28)

Also,
∂tgβγ = ∂t(u2gF

βγ
) = 2u∂tugF

βγ
+u2∂gF

βγ

= 2u∂tugF
βγ
−2u2RicF

βγ
−u2 α

2
Rm2F

βγ
.

(29)

From (4), (20), (28) and (29), we have ∂tgβγ = −Ricβγ −
α

2
Rm2

βγ
. Also, from (4) and (20),

∂tgiβ =−Riciβ −
α

2
Rm2

iβ is obvious

Corollary 1. With the same assumption as in proposition (3), a necessary conditions for solution

of the second order renormalization group flow is

u∆gBu =
α

2
|HessB(u)|2gB , (30)

∂tu =
1
n

(
α

u3 |∇
Bu|4gB +

u2−1
u

)
scalF +

α

4n
u4−1

u3 |RF |2gB

+
n−1

u3 |∇
Bu|2gB

(
u2− α

2
|∇Bu|2gB

)
.

(31)

where scalF and RF denote the scaler curvature and Riemannian curvature of (F,gF(t)).

Proof. The equation (30) will proved by taking trace of (23). We have

trgF Rm2F = gF ;βγRm2F
βγ

= gF ;βγgF ;ζ λ gF ;ηµgF ;εδ RF
βζ ηε

RF
γλ µδ

= |RF |2gF . (32)

By taking trace of the two sides of equality (24), the equality (31) can be concluded.

Remark 4.1. Note, that the eqality (23), for Ricci flow reduces to HessB(u)(XB,Y B) = 0 [12].

Remark 4.2. Any part of (31) depends on parameter t and point x ∈ B, and is independent of

y ∈ F , except the first two, they depend on point y ∈ F , as well. So,(u2−1
u

+
α

u3 |∇
Bu|4gB

)
scalF +

α

4
u4−1

u3 |RF |2gF

is independent of y.

For the Ricci flow, the necessary condition reduces to [12]

∂tu = ∆gBu+
n−1

u
|∇Bu|2gB +

u2−1
nu

scalF .

As it is seen, all part are independent of q ∈ F , except the last one. So, scalF is independent of

q, this shows Ricci flow (F,gF(t)) has constant scaler curvature. Comparing with Ricci flow, this
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fact for second order renormalization group flow is totally different.

We have for the 2-dimensional Riemannian manifold (F,gF), RicF = 1
2 scalFgF and Rm2F =

1
2(scalF)2gF [14]. So, we can simplify corollary (1) to the following corollary.

Corollary 2. Let (B,gB
0 ) be a Riemannian manifold and (F,gF

0 ) be a 2-dimensional Riemannian

manifold, and gB(t) and gF(t) be solution of RG-2 flow on B and F with initial value gB
0 and gF

0 ,

respectively. Obviously, the WP metric g(t) = gB(t)+u2(t)gF(t) on M = B×F is RG-2 flow if

∂tu =
1
2

(
α

u3 |∇
Bu|4gB +

u2−1
u

)
scalF +

α

8
u4−1

u3 (scalF)2

+
1
u3 |∇

Bu|2gB

(
u2− α

2
|∇Bu|2gB

)
.

Now, important question is whether there is a solution of PDE system (23) and (24)? We know, that

it can not be solved, by standard methods for solving a PDE. Therefore, we assume that manifold

F has constant sectional curvature, and we will get a simpler differential equation, which does not

depend on the points of manifold F .

Proposition 4. Let (B,gB
0 ) be a Riemannian manifold and gB(t) be a solution of RG-2 on B with

initial value gB(0) = gB
0 . Moreover, let (F,gF

k ) be a Riemannian manifold with constant curvature

k. Then the WP metric g(t) = gB(t)+u2gF
k on M = B×F is an RG-2 flow, if the warped function

u satisfies

u∆gBu =
α

2
|HessB(u)|2gB , (33)

∂tu =
n−1

u

(
|∇Bu|2gB− k

)
− α

2
n−1

u3

(
|∇Bu|2gB− k

)2
(34)

Proof. Analogous to the proposition 3 and corollary 1, from (33) and ∂tgB
i j = −2RicB

i j− α

2 Rm2B
i j ,

we conclude ∂tgi j =−2Rici j− α

2 Rm2
i j.

We have for constant curvature manifold gF
k ,

R̂ic = k(n−1)gF
k ,

Rm2F = 2k2(n−1)gF
k .

(35)

As a result of (4), (20) and (35);

Ricβγ =
(

k(n−1)−u∆gBu− (n−1)|∇Bu|2gB

)
gF

βγ

Rm2
βγ

=
(

2k2 n−1
u2 −4k n−1

u2 |∇Bu|2gB +2 n−1
u2 |∇Bu|4gB +2|HessB(u)|2gB

)
gF

βγ

= 2 n−1
u2

(
|∇Bu|2gB− k

)2
gF

βγ
+2|HessB(u)|2gBgF

βγ

(36)

Also, we have

∂tgβγ = ∂t(u2gF
βγ
) = 2u∂tugF

βγ
(37)

From (33) and (34) we have

u∂tu = (n−1)
(
|∇Bu|2gB− k

)
− α

2
n−1

u2

(
|∇Bu|2gB− k

)2
+u∆gBu− α

2
|HessB(u)|2gB (38)
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From (36), (37) and (38), we have ∂tgβγ =−2Ricβγ − α

2 Rm2
βγ

.

Corollary 3. The function u in proposition 4, satisfies the following inequality

u(x, t)≤U(x)exp(
n−1
2α

t), (39)

where U is a positive real function on B, i.e. U : B→ R+.

Proof. From (34), we have

α2
(
|∇Bu|2gB− k

)2
−2αu2

(
|∇Bu|2gB− k

)
=−2αu3

n−1
∂tu

⇒
(

α|∇Bu|2gB− kα−u2
)2

= u4− 2αu3

n−1
∂tu =

u3

n−1

(
(n−1)u−2α∂tu

)
.

So (n−1)u−2α∂tu≥ 0, that means function u is a sub-solution of the following

∂tu
u
≤ n−1

2α
.

Now, as an example of the gained equation, we study the case (B,gB) = (R,ds2).

Corollary 4. Let (F,gF
k ) be a n-dimensional manifold, with constant curvature k. If the function

u(s, t) satisfies the following PDEs:

uuss =
α

2
(uss)

2 (40)

ut =
n−1

u

(
(us)

2− k
)
− α

2
n−1

u3

(
(us)

2− k
)2

, (41)

or, equivalently,

u3(u− 2α

n−1
ut) =

(
α(us)

2− kα−u2
)2

, (42)

the warped product metric g(t) = ds2 +u2(s, t)gF
k on M = I×u F is a solution of RG-2 flow.

Remark 4.3. From (40), u is the solution of ODE uss = 0 or α

2 uss = u. So,the warped function u

is one of the following:

i) u(s, t) = A(t)s+B(t),

ii) u(s, t) = A(t)exp(as)+B(t)exp(−as),

where A and B are real functions, and αa2 = 2.

Corollary 5. Let the warped product metric g(t) = ds2 +u2(s, t)gF
k is a fixed point of RG-2 flow.

Then, the warped function u has one of the following forms:

i) u(s) = bs+ c, for k = b2,

ii) u(s) = b
a sinh(as+ c), for k = b2,

iii) u(s) = b
a cosh(as+ c), for k =−b2,

iv) u(s) = exp(as+ c), for k = 0,

where αa2 = 2, b ∈ R and c is a constant parametr.
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Proof. If ut = 0, then from (41)

(us)
2 = k. (43)

Or

(us)
2 =

2
α

u2 + k. (44)

Let k = b2, then from (43), u(s) = bs+ c, this proves (i).

Also, from (44), us =
√

a2u2 +b2, where αa2 = 2. The solution of the above equation is as follows

Ln(
√

a2u2 +b2 +au)−Lnb = as+ c.

So

u(s) =
b
a

sinh(as+ c),

wich is (ii).

Let k = −b2, then from (44), us =
√

a2u2−b2, where αa2 = 2. Also, The solution of above

equation is as follow

Ln(
√

a2u2−b2 +au)−Lnb = as+ c.

So

u(s) =
b
a

cosh(as+ c).

wich proves (iii).

Now. let k = 0, then from (44), us = au, where αa2 = 2. So,

u(s) = exp(as+ c).

i.e. (v)

Corollary 6. There is no RG-2 flow on WP manifolds M = R×u F with WP metric g(t) = ds2 +

u2(s, t)gF
k , except fixed point of RG-2 flow, or (non-warped) product metric g(t) = ds2 +u2(t)gF

k .

Proof. From part (i) of remark 4.3, let u(s, t) = A(t)s+B(t). we have, us = A and ut = A
′
s+B

′
.

So

u3(u− 2α

n−1
ut) = (As+B)3

(
As+B− 2α

n−1
(A
′
s+B

′
)
)

=
(

A4− 2α

n−1
A3A

′
)

s4 +
(

4A3B− 2α

n−1
A2(AB

′
+3BA

′
)
)

s3(
6A2B2− 6α

n−1
AB(BA

′
+AB

′
)
)

s2

+
(

4AB3− 2α

n−1
B2(3AB

′
+BA

′
)
)

s+B3
(

B− 2α

n−1
B
′
)
.

(45)
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Similarly (
α(us)

2− kα−u2
)2

=
(

αA2− kα− (As+B)2
)2

= A4s4 +4A3Bs3 +
(

4A2B2 +2A2α(kB2−A2)
)

s2

+4AB
(

B2 + kα−αA2
)

s+
(

B2 + kα−αA2
)2

.

(46)

From (45), (46) and by comparing the coefficients of s4,s3, ... at two sides of (42), we have

AA
′
= 0,

A(AB
′
+3BA

′
) = 0,

2A2α(kB2−A2) = 2A2B2− 6α

n−1
AB(BA

′
+AB

′
),

2(n−1)AB(k−A2)+B2(3AB
′
+BA

′
) = 0,

α(k−A2)2 +2kB2−2A2B2 +
2

n−1
B3B

′
= 0.

(47)

From, first condition of (47), we have A = 0 or A
′
= 0. Let A = 0, so

αk2 +2kB2 +
2

n−1
B3B

′
= 0. (48)

For k = 0, B is constant.

For k =−b2, we have B = b
a , where αa2 = 2. Or, B is the following implicit function

B2 =
α

2
kLn(αk+2B2)+2k(1−n)t + c, (49)

where c is a constant dependent on u0.

For k = b2, B is not constant, and B is the implicit function (49).

Now, Let A
′
= 0 and A 6= 0, from the second condition of (47), we have B

′
= 0. So, from (47)

(αk−1)B2 = A2,

B(k−A2) = 0,

α(k−A2)2 +2kB2−2A2B2 = 0.

(50)

Since the A 6= 0 and from the first condition of (50), we have B 6= 0 and αk 6= 1, so from second

condition we have k = A2. It is the same as part (i) of corollary 5.

From part (ii) of remark 4.3, let u(s, t) =A(t)exp(as)+B(t)exp(−as). we have, us = aAexp(as)−
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aBexp(−as) and ut = A
′
exp(as)+B

′
exp(−as), where αa2 = 2. So

u3(u− 2α

n−1
ut) =

(
Aexp(as)+Bexp(−as)

)
×
(

Aexp(as)+Bexp(−as)− 2α

n−1
(A
′
exp(as)+B

′
exp(−as)

)
= A3

(
A− 2α

n−1
A
′
)

exp(4as)+B3
(

B− 2α

n−1
B
′
)

exp(−4as)(
4A3B− 2α

n−1
A2(AB

′
+3BA

′
)
)

exp(2as)

+
(

4AB3− 2α

n−1
B2(BA

′
+3AB

′
)
)

exp(−2as)(
3A2B(B− 2α

n−1
B
′
)+3AB2(A− 2α

n−1
A
′
)
)
.

(51)

Moreover,

(α(us)
2− kα−u2)2 =

(
α(aAexp(as)−aBexp(−as))2− kα− (Aexp(as)

+Bexp(−as))2
)2

= A4 exp(4as)+B4 exp(−4as)+(38A2B2 +K2α2 +12kαAB)

−2A2(6AB+ kα)exp(2as)−2B2(6AB+ kα)exp(−2as).

(52)

From (51), (52) and by comparing two sides of (42), we have

AA
′
= 0,

BB
′
= 0,

16A3B+2kαA2− 2α

n−1
A2(AB

′
+3BA

′
) = 0,

16AB3 +2kαB2− 2α

n−1
B2(BA

′
+3AB

′
) = 0,

32A2B2 +
6α

n−1
AB(AB

′
+BA

′
)+ k2α2 +12kαAB = 0.

(53)

From the first condition of (53), A= 0 or A
′
= 0, and from second condition of that, B= 0 or B

′
= 0.

By some conclusion we have either A = B = k = 0, or A,B 6= 0. If A,B 6= 0 and A
′
= B

′
= 0, from

third condition of (53), we have 8AB =−kα . It is the same as parts (ii) and (iii) of corollary 5.

Corollary 7. Let (N,h) be a n-dimensional non-flat manifolds with constant curvature k. Let u(t)

is the following implicit function:

u2(t) =
α

2
kLn
(

αk+2u2(t)
αk+2

)
+2k(1−n)t +1, (54)

the metric family g(t) = ds2 +u2(t)h is RG-2 flow, with u(0) = 1.

In special case, if α = 2, n = 3 and k = 1, the function u(t) is as the following:
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it shows that the solution is ancient, and pinch at time t0 = 1
4(1−Ln2). Also, if α = 1, n = 3 and

k =−1, the function u(t) is as the following:

5. Evolution Of RobertsonWalker Metrics

One of the important pseudo-Riemannian metrics in general relativity is Robertson-Walker metric.

We shall consider a RobertsonWalker spacetime as a warped product metric.

The Properties (4) and (5) are established for pseudo-Riemannian manifolds, too. So, the propo-

sitions 2 and 3 apply to warped product manifolds of pseudo-Riemannian manifolds.

Proposition 5. Let (N,h) be a 3-dimensional manifold, with constant curvature k, the Robertson-

Walker metric g(t) =−ds2 + f 2(s, t)h is a solution of (1), if f satisfies the following PDEs:

f fss =−
α

2
( fss)

2 (55)

ft =−
2
f

(
( fs)

2 + k
)
− α

f 3

(
( fs)

2 + k
)2

. (56)

Proof. Let (B,gB) := (I,−ds2) and (F,gF) := (N,h). We have ∇B f = − fss and HessB( f ) = fss

Then,

|∇ f |2gB = gB( fs∂s, fs∂s) =−( fs)
2,

and

|HessB( f )|gB = ( fss)
2.
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From proposition (4), desired outcome is obtained.

From (55), is either f (s, t) = A(t)s+B(s), or f (s, t) = A(t)sin(as)+B(t)cos(as). Therefore, the

following corollary from [10] is a consequence of corollary (6).

Corollary 8. There is no RG-2 flow on Robertson-Walker manifolds with WP metric g(t) =

ds2 + f 2(s, t)h.
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