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Abstract

By using the decision theorem and properties of the Schur-convex function, the Schur-geometric convex
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1. Introduction

Let us begin with some basic definitions and notation that will be needed in this paper. Throughout
this paper, we denote by N and R, the set of positive integers and real numbers, respectively. Denote

R" :={x = (71,22, -+ ,7p) 17 ER,i=1,2,...,n},

RY :={x = (z1,22,...,2p) 12 >0,i =1,2,...,n}

and
R :={x = (z1,22,...,2pn) : x; < 0,i=1,2,...,n},

where n € N. In particular, we simply use the notations R and R, instead of R! and RL, respectively.
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During the past more than two decades, many authors are dedicated to the hot topic of inequality
research area on the Schur-convexity, Schur-geometric and Schur-harmonic convexity of various symmetric
functions; see, e.g., [7]-[25] and references therein.

The family of complete symmetric functions is an important class of symmetric functions.

For @ = (x1,x2,...,2,) € R", the complete symmetric function ¢, (x,r) is defined by

en(@, ) = Z xlfxgz l‘:lnv (1)
t1tig+-+in=r

where co(x,r) =1, r € {1,2,...,n}, i1,12,...,i, are non-negative integers.
Guan [I1] discussed the Schur-convexity of ¢, (x,r) and proved the following proposition.

Proposition 1. ¢,(x,r) is increasing and Schur-convex on R}.
Subsequently, Chu et al. [8] prove the following proposition.
Proposition 2. c¢,(x,r) is Schur-geometrically convex and Schur-harmonically convex on R’}.
The dual form of the complete symmetric function ¢, (x,r) is defined by
n
cp(x,r) = H Z 0%, (2)
t1+ig+-Fin=r j=1
where c(z,r) =1, r € {1,2,...,n}, i1,i2,...,i, are non-negative integers.

Zhang and Shi [24] established the following two propositions.

Proposition 3. For r =1,2,...,n, ¢;,(x,) is increasing and Schur-concave on R’}.
Proposition 4. For r =1,2,...,n, ¢ (x,r) is Schur-geometrically convex and Schur-harmonically convex
on R".

+

Notice that
cp(—x,r) = (=1)"cp (2, 7).

It is not difficult to verify the following proposition.

Proposition 5. If r is even integer ( or odd integer, respectively), then ¢} (x,r) is decreasing and Schur-
concave ( or increasing and Schur-convex, respectively ) on R”.

In 2014, Sun et al. [12] studied the Schur-convexity, Schur-geometric and harmonic convexities of the
following composite function of ¢, (x,r)

S (o

i1tig+Fin=r j=1

Using Lemmas 1, 2 and 3 in second section, they proved the following Theorems A, B and C, respectively.

Theorem A. For x = (x1,x2,...,2,) € (0,1)" U (1,400)" and r € N,

(1) en (&, r) is increasing and Schur-convex on (0,1)";
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(73) if v is even integer (or odd integer, respectively), then c, (%, 7“) is Schur-convex (or Schur-concave,

respectively) on (1,+00)", and is decreasing (or increasing, respectively).
Theorem B. For x = (x1,x9,...,2,) € (0,1)" U (1,400)" and r € N,
(1) cn (%,r) is Schur-geometrically convezr on (0,1)";

(ii) if r is even integer (or odd integer, respectively), then c, (%, T‘) is Schur-geometrically convez ( or
Schur-geometrically concave, respectively)
n (1, +o00)™.

Theorem C. For x = (x1,x2,...,2,) € (0,1)" U (1,400)" and r € N,

(1) cn (ﬁ,r) is Schur-harmonically convex on (0,1)";

(ii) if r is even integer (or odd integer, respectively), then ¢, (ﬁ,r) is Schur-harmonically convex (or

Schur-harmonically concave, respectively)
n (1,4+00)".

In 2016, Shi et al. [25] used the properties of Schur-convex, Schur-geometrically convex and Schur-
harmonically convex functions respectively to give simple proofs of Theorems A, B and C.

In [25], Shi et al. also further considered the Schur-convexity of ¢, (2, ) on R™, which established the
following proposition.

Proposition 6. If r is even integer(or odd integer, respectively), then c¢,(x,r) is decreasing and Schur-
convex (or increasing and Schur-concave, respectively) on R™.

The dual form of the function ¢, (ﬁ, r) is defined by

a(tfr) - T Yu(r) @

i1+igttin=r j=1

A function associated with this function is

GG - T u(EE) ®

i1+i2+Fin=r j=1

This paper we will study the Schur-convexity, Schur-geometric and Schur-harmonic convexiies of Sym-

metric functions ¢},

- 1,7”) and ¢, (&,r).

Our main results will be established as follows:

Theorem 1. Forr eN, ¢, (m 1,r) s Schur-conver, Schur-geometrically convex and Schur-harmonically

convex on (1,+00)™.

Theorem 2. Forx = (x1,22,...,2,) € RTUR” andr € N,

71)n}.

N[

(1) ¢ (1 m,r) is increasing on R} and Schur-conver on |

(73) if r is even integer (or odd integer, respectively), then c}, <&, r) is Schur-convex ( or Schur-concave,
respectively) on (1,400)";

(1i) if r is even integer (or odd integer, respectively), then c, (ﬁ, 7“) is decreasing and Schur-concave (or

increasing and Schur-convex, respectively) on R™.
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Theorem 3. For x = (x1,x2,...,2,) € R} andr € N,
(1) ¢ (&, 7") is Schur-geometrically convex on (0,1)";
(ii) if r is even integer ( or odd integer, respectively ), then c, (%, T‘) is Schur-geometrically convez ( or

Schur-geometrically concave, respectively) on (1,400)™.

Theorem 4. For x = (x1,%2,...,2,) € RT UR” andr €N,

(1) ¢ (%, r> is Schur-harmonically convex on (0,1)";

(13) if r is even integer ( or odd integer, respectively), then c, (%

,r) is Schur-harmonically convex (or

Schur-harmonically concave, respectively ) on (1,400)™.

2. Preliminaries

For convenience, we first recall some known definitions and results.

Definition 1. [I, 2] For x = (21, x9,...,2,) and y = (y1,y2,...,Yyn) € R™,

(i) ® >y means x; > y; foralli =1,2,... n.
(77) Let Q@ C R™, ¢: Q — R is said to be increasing if > y implies ¢(x) > ¢(y). ¢ is said to be decreasing
if and only if —¢ is increasing.

Definition 2. [I, 2] For « = (1, x9,...,2,) and y = (y1,y2,...,Yyn) € R",

(1) « is said to be majorized by y (in symbols x < y) if Zle Ty < Zle yp) for k=1,2,...,n — 1 and
D1 i = Y i Yi, Where ) > g > --- > xp,) and ypy) > ypg) > -+ > Y are rearrangements of
and y in a descending order.

(13) Let Q@ C R™, ¢: © — R is said to be a Schur-convex function on Q if ¢ < y on £ implies p (x) <
v (y) . ¢ is said to be a Schur-concave function on 2 if and only if —¢ is Schur-convex function on €.

Definition 3. [1l 2] Let ® = (z1,z2,...,2,) and y = (y1,¥2,...,yn) € R™

(1) A set Q@ C R"™ is said to be a convex set if x,y € 9,0 < o < 1, implies ax + (1 — a)y =
(ax1 + (1 — a)yr,azxs + (1 — a)ya, ..., azx, + (1 — a)yy,) € Q.
(73) Let © C R™ be convex set. A function ¢: 2 — R is said to be a convex function on 2 if

plax+(1-a)y) <ap(z)+ (1 - a)p(y)

for all z,y € Q, and all a € [0,1]. ¢ is said to be a concave function on 2 if and only if —¢ is convex
function on 2.

Definition 4. [I], 2]

(1) A set Q C R" is called a symmetric set, if €  implies P € Q for every n X n permutation matrix
P.

(73) A function ¢ : Q — R is called symmetric if for every permutation matrix P, p(xP) = ¢(x) for all
x €.
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Lemma 1. (Schur-convez function decision theorem)[dl,[2] Let Q C R™ be symmetric and have a nonempty
interior convex set. (1° is the interior of Q. ¢ : Q0 — R is continuous on ) and differentiable in 2°. Then
@ is the Schur — convex (or Schur — concave, respectively) function if and only if ¢ is symmetric on
and

dp Oy

(1 — x2) <6$1 — 8932) > 0(or <0, respectively) (6)

holds for any x € Q°.

The first systematical study of the functions preserving the ordering of majorization was made by Issai
Schur in 1923. In Schur’s honor, such functions are said to be “Schur-convex”. It can be used extensively
in analytic inequalities, combinatorial optimization, quantum physics, information theory, and other related
fields. See [1].

Definition 5. [3] Let © = (21, 22,...,2,) € R} and y = (y1,y2,...,yn) € R,

(i) A set @ C R is called a geometrically convex set if (mf‘yf, xg‘yg, e ,x%yg) € Q for all z,y € Q2 and

a, € [0,1] such that o+ 8 = 1.

(i1) Let © C R’. The function ¢: € — R, is said to be Schur-geometrically convex function on €2 if
(log x1,log s, ..., logz,) < (logyi,logys,. ..,
log y,,) on £ implies ¢ () < ¢ (y). The function ¢ is said to be a Schur-geometrically concave function
on (2 if and only if —¢ is Schur-geometrically convex function on 2.

We can obtain the following result immediately from Definitions 5.

Proposition 7. Let @ C R} be a set, and let logQ = {(logz1,logxa, ..., logxy) : (z1,22,...,2,) € Q}.
Then ¢ : Q — R, is a Schur-geometrically convex (or Schur-geometrically concave, respectively) function
on Q if and only if p(e*!,e*2,...,e") is a Schur-convex (or Schur-concave, respectively) function on log .

Lemma 2. (Schur-geometrically convex function decision theorem)[3] Let Q C R be a symmetric and
geometrically conver set with a nonempty interior Q°. Let ¢ : Q — R be continuous on ) and differentiable
in Q°. If ¢ is symmetric on Q and

0 0
(log 1 — log x2) <:c18;i - x28x(p2> >0 (or <0,respectively) (7)
holds for any x = (x1,x2,...,2,) € Q°, then ¢ is a Schur-geometrically convex ( or Schur-geometrically

concave, respectively) function.

The Schur-geometric convexity was proposed by Zhang [3] in 2004, and was investigated by Chu et al.
[], Guan [5], Sun et al. [6], and so on. We also note that some authors use the term “Schur multiplicative
convexity”.

In 2009, Chu ([7], [8], [9]) introduced the notion of Schur-harmonically convex function, and some
interesting inequalities were obtained.

Definition 6. [7] Let & C R" or Q C R”.

(1) A set € is said to be harmonically convex if m € Q for every x,y € Q and A\ € [0,1],
1 1 1 1
where zy = Y1 | 2;y; and = (x—l, 2 x—n)
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1 1
(73) A function ¢ : © — Ry is said to be Schur-harmonically convex on €2 if o s implies p(x) < p(y).

A function ¢ is said to be a Schur-harmonically concave function on 2 if and only if —¢ is a Schur-
harmonically convex function.

By Definitions 6, the following is obvious.

1 1 1 1
Proposition 8. Let 2 C R} be a set, and let — = {(—7 — .., —) :
Q T1 To Tn
(x1,22,...,2) € Q}. Then ¢ : @ — Ry is a Schur-harmonically convex (or Schur-harmonically concave,
1 1 1
respectively) function on 2 if and only if ¢(—, —, ..., —) is a Schur-convex (or Schur-concave, respectively)
1 I9 Tn

functi !
unction on —.
Q

Lemma 3. ( Schur-harmonically convex function decision theorem)[7] Let Q C R’ or Q C R” be a sym-
metric and harmonically conver set with inner points and let ¢ : Q@ — R be a continuously symmetric
function which is differentiable on Q°. Then ¢ is Schur-harmonically convex (or Schur-harmonically con-
cave, respectively) on S if and only if

do(x) o ()
- 2 2
(l’]_ LITQ) (ajl al'l L 8372

> >0 (or <0,respectively), =€ Q°. (8)

Remark 1. We extend the definition and determination theorem of Schur-harmonically convex function
established by Chu as follows:

(i) The set Q C R is extended to 2 C R or Q C R”;
(#4) The function ¢ : Q — R must not be a positive function.

Lemma 4. ([1], [2]) Let the set AL BCR, p:B" =R, f: A— Band(x1,ze,...,2,) = o(f(x1), f(z2),..., f(xn))
A" — R.

(1) If f is convex and ¢ is increasing and Schur-convezx, then 1 is Schur-convez;
(ii) If f is convex and ¢ is decreasing and Schur-concave, then 1 is Schur-concave.

Lemma 5. [3, [26] Let the set Q C R The function ¢ : Q@ — Ry is differentiable.

(1) If v is increasing and Schur-convezr or Schur-geometrically convezx, then ¢ is Schur-harmonically con-
ver.
(ii) If ¢ is decreasing and Schur-geometrically concave, then ¢ is Schur-harmonically concave.

Lemma 6. [1] Let © = (x1,%2,...,2,) €ERY,n>2,0<r <s. Then

n ) n PR n n ) n PR n N
Zj:l Ty Zj:l Ty Zj:l Ty Zj:l 3 Zj:l 3 Zj:l 5
Lemma 7. [1] Let x = (z1,%2,...,2,) ERE,n>2,3"" 105 =5>0,c> 5. Then

(comiom eon) (nm ) w0

nc—s' nc—s ' nc—s s s s
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3. Proofs of main results
Proof of Theorem 1:

1,7“) is Schur-convex on (1, +00)™.

for r =1 and r = 2, it is easy to prove that ¢}, (m%

Now consider the case of » > 3. By the symmetry of ¢ (ﬁ, r), without loss of generality, we can set
1 > I9.

a(zE) - I X2 Ty

i1Fig+-+in=r j=1 i]+ig+-tin=r j=1
117#0,i9=0 i1=0,i97#0
S| QD SE- NI | G g
Tj— 1 z;—1
iptigt-tin=r j=1 i1Figt - Fin=r j=1
i1 #0,i9#0 i1=0,i9=0

Then

den (m 1”) - (fcr>

8%1 — x—1

Z -1 Z —11

154 ZET

i1tig+tin=r (4 — 1 2 had] i1 tig+etin=r (@1 — 1 2 73
i17#0,ig=0 ( ! ) ];1 zj—1 i1 7#0,i97#0 ( 1 ) J;l

_C;<wf1,r>( 3 —

n
k+k3—2.¥3—kn:r (1-1 _ ) ( kml z::

1
—k
> — ) (11)
i o — X mx
it nr (21 = 12507 + 5% + ; “)

By the same arguments,

e _
C<a$21r>:c;<msil,r>( > i

n
k+k3+k'¥0+k”:’" (xe —1)2 (w2 i ;

Y -k ) (12)

n
k+mA4ig+-+in=r (IEQ _ 1)2( kxa + mxi 4 Z kjij)

k#0,m#0 ro—1 r1—1

then

() 0ae) (e N

a$1 8%2 x—1
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where
—k —k
A= Z Tk L
it | (o= DR + 5 B0 (e - 12 4 3 B
#0 1 — 2 ]:3 J
n
k.
E(xy + 22 — 1) (1 — x2) + (21 —22)(2 — 21 —22) Y x]]f]l
=3
=t Z 2( ka1 N 2( kas N ks
k+k3+k'¥;kn:r (:pl — 1) (x1 I + Z z, _1)($2 — 1) (xg—l +]§3 :cj—l)
and
—k —k
A2 - Z ( kx m 2k a kx mz
) o 2 1
k+m:;%-;;l;gln7r (1'1 - 1) (xl 11 + x9 21 + 2:33 :rjj-fjl) (xQ - 1) (:pg 1 + + Z Tj— )
A
=k Z ) kxq mwg Dk I] kxo mzl w kjx; ’
whmbigh i (21— 1)2(J8 + 222 Z Do —1PEE + a5+ a5
where
(1 —22)’mzy (1 — 21)%mas " ki,
A=k 1)z — - - —o) S B
= ket = o - )+ (22 e R ) e
Let f(ts) = (1;;)33; Then f'(t) :2_% < 0, this means that f(¢) is descending on Ry. So
that (1;21) < (i) , namely (l_fi) LLLL R (l_fi) M2 > 0. It is easy to see that A7 > 0 and Ay > 0 for
1 mI2 1 €T
€ (1,400)™, so
acy, (m 1,r> acy, (ﬁ,r)
_ >0,
ox1 0x9 -

by Lemma 1, it follows that ¢, <ﬁ, 7") is Schur-convex on (1, +00)™.

From and , it follows that

act (w 1,7“) - ac (ﬁ,r) e (m r) (B1 + Bs),

i) = C
0z1 Oxa "\x -1’

T

where

1= — P
vk m—nwﬂ+z%> (w2 — D20 4 3 By
Jj=3

n
k
/6561.%'2(1‘1 - :EQ) + (a:l - $2)($1x2 — 1) z x]]ijl

=k Z

rotod o o PR+ 5 )~ P

||M:
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and
—kx; —kzo
BQZ Z ( 9/ k LU A - 9/ k N kix,
) . T mx s mx
wmbigtrinsr (01— D25 + 555 +]§3 o) (w2 = D%+ +J§3 )
A2
=k Z ) 2/ kxy mao < kjz; 2/ ko mq . kjx; ’
k+m;;%ﬁ;¥~gzn:'f (1 —1) (11,1 to-1t Zg zjfl)(‘r? -1) (ngl + oo+ Zs mjfl)
J= J=
where
(r1 —1)?ma3 (23— 1)*ma? L kjx;
A=k — — — -1
9 r1w2(T1 — 22) + ( pra— pr— + (1 — x2) (2129 )]2 71

Let g(t) = ¢=1*  Thep Jgt) = mi(t+2)(-1)* > 0, this means that g(t) is increasing on R;. So that

mt?2 m2tt

3 3 N2, .2 N2, 2
(x;xé) > (xfnxé) , namely (21 x;)_lm% - (mxll)_{nxl > 0. It is easy to see that By > 0 and By > 0 for
1 2
x € (1,400)", so
o (Zrr)  oa ()
x —x ,
! ox1 2 0xo -

by Lemma 2, it follows that c;, (ﬁ, r) is Schur-geometrically convex on (1, +00)".

From and , it follows that

0 (o) o (@) (;25r) @ +c,

i 01 B Oxo xr—1
where
Clz Z ke n ko B . n ko
et \ T PER T R R (e PG RS
n
k. .
kxiza(xr — x2) + (21 — 22) (22122 — 1 — X2) 23 m;fﬂl
J:
=* otk ;k - 1)2( k1 N kg 1)2( fez2 L]
g0 (z1=1) (“Tl +J§3 ijl)(@ -1 (:1:271 +g§3 ﬁ)
and
C S —ka? ka2
2= — — _
i - k kix; k koxs
T oo e e = ];3 1) (w2 D252+ 05 +]§3 1)
S s
= _ _ ’
i i — k kjx; k kids
i T VRS RS g e TGS S 2 )
where
x1 — 1)2ma3 zo — 1)2ma3 " kix;
A3 = kx1g(zy — w2) + @ —1) 2 — ( ) ! +(w1—x2)(2x1$2—x1—$2)z =
z9 — 1 1 —1 j—ij_l
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this means that h(t) is increasing on R. So that

3mt2(t—1)2 >
It is easy to see that C7 > 0 and Cy > 0 for

m?2t6 0,
3
L > 0.

Let h(t) = 12 Then w(t) =
(:01-%)3 (zz—é)g’ namely (z1-1)%*maj (xz—l)?w
mz - mag zr2—1 11—
€ il, +00)™, so
Bc <m 1,7") 80 (m 1,7") -
.7;1 a$1 .’L‘2 a$2 -7
O

) is Schur-harmonically convex on (1, 400)"

by Lemma 3, it follows that ¢}, (ﬁ, r
The proof of Theorem 1 is completed

Proof of Theorem 2:
(i) Let p(t) = t&;. Then
1 2
YOS PO s "
From Proposition 4, we know that ¢} (x,r) is increasing on R", but p(¢) is increasing on R, therefore
m

the function ¢}, (1 m,r) is increasing on R”
For the case of r =1 and r = 2, it is easy to prove that c}, (17 ,r) is Schur-convex on |

Now consider the case of » > 3. By the symmetry of ¢}, (ﬁ, 7“) without loss of generality, we can set

i

H anl—xj

xr1 > I9.
r
*
c SERRI DS
" (1 —x’ ) , 1-— l‘J . ,
iptigttin=r j=1 iptigttin=r j=1
i17£0,i5=0 i1=0,i57#0
S| (D SRS | D pRie
1—ua; 1—ux;
iptigt-tin=r j=1 iptigt+-tin=r j=1
11 #0,i9#0 i1=0,i9=0
Then

i
! +

i tigttin=r (1 — x7)

1

2 5Ty
Z 11—z
J=1

* i i ;l —r (1 _ )2 i LT,
! 1'12;&0,2‘2:8 1 = 1-z i17£0,i97#0
:Cn<1_wvr>(k+k;k_r(1_ )(kml—l—zn:kxj)
3 it n= T = Py
k
+ > )- (14)
kxl + )

e R
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By the same arguments,

ey (2>
c (E;xQ T)_cz(lfm,r)( Z k

n
k+k3+k;gkn=1” (1 — 1‘2) ( ka —+ Z kj iy )

1-z;

+ > : ), (15)

prmi o tin=r (1 — p9)2({422 4 1L 4 Z )

k#£0,m#£0
acy, (1 m,r) oc, (1 m,r) x
=c | — D D
81‘1 81‘2 Cn (1—m7r)( 1+ 2)7
where
k k
Dy = Z noog o n
k+k3+k;gkn:r (1-— x1)2(1_kac1 —i—]; li;]) (1 —x9)? ( ; )
k(x4 22 — 1) (21 — 22) + (21 — 22) (2 — 21 — 22) 3 fﬂ;ﬂ]
—r Y ; e (16)
wrgttinmr (1 — )2 (5 + ; ) = w2)2 (12 ; )
and
k k
D2 = Z ( 9 ke e n kx - 9 bz n )
o= (=m0 2 S ) (- a4 P24 3 )
0
vy 1
kbm-igtotin=r (1_1_ ) ( kxy 4 ma2 Z k’xJ )(1—1’ ) ( k:):g 4 ma oy Z ka)
k#0,m#0 1 1—z; 1—x2 2 1— 1—z1
where
B (1 —29)?mz; (1 — 21)%mas "k JT;
51—k(x1+:v2—1)(3:1—x2)+< T - T +(x1—x2)(2—:c1—3:2)21_%

]_

Let ¢(t) = (1;1?3. Then ¢'(t) = —%W < 0, this means that ¢(¢) is descending on Ry. So that
(1;1:;11)3 < (1_”)3, namely (1_%);"”1 — (1_fi);:lx2 > 0. It is easy to see that Dy > 0 and Dy > 0 for
x e[l 1) so

by Lemma 1, it follows that ¢, <ﬁ, 7“) is Schur-convex on [5,1)™.

(i)
¢ (Lr) = (1) (1 f$r> , (17)

Notice that




H.-N. Shi, W.-S. Du, Adv. Theory Nonlinear Anal. Appl. 3 (2019), 74-89. 85

combining with the Schur-convexity of ¢}, (%,r) on (1,+00)" (see Theorem 1), we can prove (ii) in
Theorem 2.

(i4i) Fort < 0, from (13)), we have p(t) < 0, p/(t) > 0 and p”(t) > 0, this means that p(¢) is an increasing
convex function with a negative value for ¢ < 0.

By Proposition 6, we know that if r is an even integer, then ¢} (x,r) is decreasing and Schur-concave

on R™, from Lemma 5 (i), it follows that ¢ (&, 'r) is decreasing and Schur-concave on R .

From Proposition 6, we know that if r is an odd integer, then ¢} (x,r) is increasing and Schur-convex
on R™, by Lemma 5 (7), it follows that ¢}, (1 m,r) is increasing and Schur-convex on R”.

The proof of Theorem 2 is completed. ([

Proof of Theorem 3:

For r =1 and r = 2, it is easy to prove that ¢, (%, 7") is Schur-geometrically convex on (0, 1)".
Now consider the case of r > 3. By the symmetry of ¢ (1 w,r) without loss of generality, we can set
Tl > T9.

From and , it follows that

oc, <1 m,r) oc, (ﬁ,r) x
_ =cf | ——=— Fi+FE
o 0z w2 0z c"(l—m’r> (By + )
where
kxq kxo
E1: Z ( o/ ke N - o/ k LT )
k+k3-&;€-¥.3-kn:r (1 =) (1_321 +];) ﬁ) (1 —x9) (1_52 + ; 1izjj)
/{71'11’2(1'1 — ZL‘Q) + (1'1 — SEQ)(l — .%‘1:172) Z I
=k Z n = n
o b (L P+ 5 B0 P + 3 12)
and

E2 _ Z ( ka;l _ k.’L’Q

n
k+m+ig4-tin=r (1 _ xl)Q( kx1 + in’LSC + Z 1 ) (1 _ $2)2(1k57x2 + 17"”1‘1 + E k‘jl‘j‘)

k#0,m#0 1-21

-k Z 02

n
k4+m-tig4--Fin=r (1 _ 1»1)2( kil’l + 177’L$ + E k; 1’] )(1 _ 1,2)2( kxo + my + Z fjxj‘)

k#£0,m#£0 1—2 1—z2

where

1 — 29)%ma? 1 —x1)%ma?
52 = k‘l‘ll'Q(l‘l — 1‘2) + <( 1 f)xl L ( 1 —1)162 2) + (1131 — 332)(1 — :L'll'g)

”KM;’
w

—

| &3?‘
8 5
<

Let s(t) = (1;;)3. Then §'(t) = —w < 0, this means that s(t) is decreasing on Ry, so (1;‘21)3

1
(lfwg)Qmmf (1—z1)

(1;122)3, namely, — Pmag > 0. It is easy to see that Fy > 0 and Eo > 0 for € (0,1)" U
2

1—x1 1—x2
(1,400)™, so

802(1 w,r) 30,*1(1 w,r) -

xr1 — T2 =
ox1 O0xa ’
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By Lemma 3, it follows that ¢ (1 w,r) is Schur-geometrically convex on (0,1)".

(73) From and combining with the Schur-geometrically convexity of ¢}, (%, r) on (1,400)"(see
Theorem 1), we can prove (7i) in Theorem 3.
The proof of Theorem 3 is completed.

Proof of Theorem 4:
For r =1 and r = 2, it is easy to prove that ¢, (%, 7“) is Schur-harmonically convex on (0,1)™.

Now consider the case of r > 3. By the symmetry of ¢ (ﬁ, r), without loss of generality, we can set
1 > T9.

From and , we have

80 <1 m,r) 286; (&’T) x
_ = cF F! F:
7 01 = Oz n <1:I:’T> (Fi+ )
where
= Z ( n - ki noog )
wonsd Joer (1= o2+ ) (- a2+ 3 )
7=3 Jj=
k:clxg(:cl — :L‘Q) + (a:1 — xg)(xl + 19 — 21’1952) Z fj?
=k Jj=3 !
ol (L= + 3 B0 - (2 + 3 1)
and

ka2 ka2
Iy = Z ( - n B ? )

n
s (L= 250+ P24 30 28) (- wm2(E2 + 22+ 3 1)
j=3

k#0,m#0 1—x2

—k Z _ 03

n
k+mAig+-tin=r (1 _xl) ( kxi + mx2 + z wjj)(l —562)2( k‘jﬁz + mxi + Z k‘jﬂ:j‘)

k#£0,m#0 1-x; 1—z9 = x 1—x2 1—x; = 1—x;
where
1 —29)2ma3 1—21)%mad R
53=kx1x2(m1—x2)+<( . Jomay . ) ma, + (1 — x2) (21 + 22 — 27172) 1J I
_+\3 < 2(1_4)2 _ 3
Let v(t) = (1mtt3) . Then v/(t) = _% < 0 this means that v(t) is decreasing on R, so (1m§§)
1
o) 2mad 3
(1,7_;;%)3, namely, u fi)mmxl ~ 4= fl)xm% > 0. It is easy to see that F; > 0 and F» > 0 for € (0,1)",
2
then
00 (Zr) 00 (1%07)
Ty — T3 Z 07

or Oz
By Lemma 3, it follows that c;, (%, r) is Schur-harmonically convex on (0,1)".
From Theorem 2, we know that ¢}, (%, r) is Schur-geometrically convex on (0,1)", so that according

to Lemma 5, it follows that c;, (&, 7’) is Schur-harmonically convex on (0,1)".
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(73) From and combining with the Schur-harmonically convexity of ¢}, (%,r) on (1,+00)" (see
Theorem 1), we can prove (iz) in Theorem 4.
The proof of Theorem 4 is completed. U

Here, a question arises naturally.

Question 1. For x € (O, %)n, what is the Schur-convexity of ¢}, (ﬁ, 7“)?

4. Applications

It is not difficult to prove the following result by applying Theorem 2 and the majorizing relation

(An(x), Ap(x), ..., Ap(x)) < (T1,22,...,2Zp).

Theorem 5. Ifx = (z1,22,...,2,) € [%, 1)™ and r € N, or r is even integer and x € (1,4+00)™ or r is

odd integer and x € R™, then
n+r—1
x rAn(z) \()
()= (i) 1)

where Ap(z) = 230 2 and (") = %

If ris odd and x € (1,400)", orr is even integer and & € R™, then the inequality (18) is reversed.

By Theorem 3 and the majorizing relation
(log Gn(x),log Gn(x), ..., log Gn(x)) < (logz1,logzs, ..., logzy)

we can establish the following theorem.

Theorem 6. Ifx = (z1,22,...,2,) € (0,1)" and r € N or r is even integer x € (1,+00)", then

n+r—1
. x rGp(x) "
> -~ 7
() (Fam) .
uhere Gy (@) = /T o and (M) = oleorshl

If r is odd integer and x € (1,400)", then the inequality (19) is reversed.

By using Theorem 4 and the majorizing relation

we obtain the following theorem.
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Theorem 7. Ifx = (z1,22,...,2,) € (0,1)" and r € N, or r is even integer and x € (1,+00)", then
n+r—1
x rHy,(x) )
a(i5r) 2 (Ham) 20)
n+r— n+r—1)!
where Hy(x) = Z" ST and(+T 1)2%.

If r is odd and x € (1, 400", then the inequality (20) is reversed.
By applying Theorem 2 and Lemma 6, it is not difficult to show the following theorem.

Theorem 8. Ifx = (z1,29,...,2,) ERT,n>2and k€N, 0<r <s, then

11 22_ < I Zgljﬁ (21)

i1+io++in=k j=1 i1+io++in=k j=1

By Theorem 2 and Lemma 7, we establish the following theorem.

Theorem 9. Let x = (x1,22,...,2,) ER},n>2,3" 2, =5>0,c>s. Then

S e | D S 2)

i1+io+-- +’Ln—k.] 1 741+712++Zn:k ]:1

Discovering and judging Schur convexity of various symmetric functions is an important subject in the
study of the majorization theory. In recent years, many domestic scholars have made a lot of achievements
in this field (see monographs [27, 28]).
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