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Abstract

By using the decision theorem and properties of the Schur-convex function, the Schur-geometric convex
function and the Schur-harmonic function, the Schur- convexity, Schur-geometric convexity and Schur-
harmonic convexity of a class of complete symmetric functions are studied. As applications, some symmetric
function inequalities are established.
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1. Introduction

Let us begin with some basic definitions and notation that will be needed in this paper. Throughout
this paper, we denote by N and R, the set of positive integers and real numbers, respectively. Denote

Rn := {x = (x1, x2, · · · , xn) : xi ∈ R, i = 1, 2, . . . , n} ,

Rn+ := {x = (x1, x2, . . . , xn) : xi > 0, i = 1, 2, . . . , n}

and
Rn− := {x = (x1, x2, . . . , xn) : xi < 0, i = 1, 2, . . . , n},

where n ∈ N. In particular, we simply use the notations R and R+ instead of R1 and R1
+, respectively.
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During the past more than two decades, many authors are dedicated to the hot topic of inequality
research area on the Schur-convexity, Schur-geometric and Schur-harmonic convexity of various symmetric
functions; see, e.g., [7]-[25] and references therein.

The family of complete symmetric functions is an important class of symmetric functions.
For x = (x1, x2, . . . , xn) ∈ Rn, the complete symmetric function cn(x, r) is defined by

cn(x, r) =
∑

i1+i2+···+in=r
xi11 x

i2
2 · · ·x

in
n , (1)

where c0(x, r) = 1, r ∈ {1, 2, . . . , n}, i1, i2, . . . , in are non-negative integers.
Guan [11] discussed the Schur-convexity of cn(x, r) and proved the following proposition.

Proposition 1. cn(x, r) is increasing and Schur-convex on Rn+.

Subsequently, Chu et al. [8] prove the following proposition.

Proposition 2. cn(x, r) is Schur-geometrically convex and Schur-harmonically convex on Rn+.

The dual form of the complete symmetric function cn(x, r) is defined by

c∗n(x, r) =
∏

i1+i2+···+in=r

n∑
j=1

ijxj , (2)

where c∗0(x, r) = 1, r ∈ {1, 2, . . . , n}, i1, i2, . . . , in are non-negative integers.

Zhang and Shi [24] established the following two propositions.

Proposition 3. For r = 1, 2, . . . , n, c∗n(x, r) is increasing and Schur-concave on Rn+.

Proposition 4. For r = 1, 2, . . . , n, c∗n(x, r) is Schur-geometrically convex and Schur-harmonically convex
on Rn+.

Notice that
c∗n(−x, r) = (−1)rc∗n(x, r).

It is not difficult to verify the following proposition.

Proposition 5. If r is even integer ( or odd integer, respectively), then c∗n(x, r) is decreasing and Schur-
concave ( or increasing and Schur-convex, respectively ) on Rn−.

In 2014, Sun et al. [12] studied the Schur-convexity, Schur-geometric and harmonic convexities of the
following composite function of cn(x, r)

cn

(
x

1− x
, r

)
=

∑
i1+i2+···+in=r

n∏
j=1

(
xj

1− xj

)ij
. (3)

Using Lemmas 1, 2 and 3 in second section, they proved the following Theorems A, B and C, respectively.

Theorem A. For x = (x1, x2, . . . , xn) ∈ (0, 1)n ∪ (1,+∞)n and r ∈ N,

(i) cn

(
x

1−x , r
)

is increasing and Schur-convex on (0, 1)n;
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(ii) if r is even integer (or odd integer, respectively), then cn

(
x

1−x , r
)

is Schur-convex (or Schur-concave,

respectively) on (1,+∞)n, and is decreasing (or increasing, respectively).

Theorem B. For x = (x1, x2, . . . , xn) ∈ (0, 1)n ∪ (1,+∞)n and r ∈ N,

(i) cn

(
x

1−x , r
)

is Schur-geometrically convex on (0, 1)n;

(ii) if r is even integer (or odd integer, respectively), then cn

(
x

1−x , r
)

is Schur-geometrically convex ( or

Schur-geometrically concave, respectively)
on (1,+∞)n.

Theorem C. For x = (x1, x2, . . . , xn) ∈ (0, 1)n ∪ (1,+∞)n and r ∈ N,

(i) cn

(
x

1−x , r
)

is Schur-harmonically convex on (0, 1)n;

(ii) if r is even integer (or odd integer, respectively), then cn

(
x

1−x , r
)

is Schur-harmonically convex (or

Schur-harmonically concave, respectively)
on (1,+∞)n.

In 2016, Shi et al. [25] used the properties of Schur-convex, Schur-geometrically convex and Schur-
harmonically convex functions respectively to give simple proofs of Theorems A, B and C.

In [25], Shi et al. also further considered the Schur-convexity of cn(x, r) on Rn−, which established the
following proposition.

Proposition 6. If r is even integer(or odd integer, respectively), then cn(x, r) is decreasing and Schur-
convex (or increasing and Schur-concave, respectively) on Rn−.

The dual form of the function cn

(
x

1−x , r
)

is defined by

c∗n

(
x

1− x
, r

)
=

∏
i1+i2+···+in=r

n∑
j=1

ij

(
xj

1− xj

)
. (4)

A function associated with this function is

c∗n

(
x

x− 1
, r

)
=

∏
i1+i2+···+in=r

n∑
j=1

ij

(
xj

xj − 1

)
. (5)

This paper we will study the Schur-convexity, Schur-geometric and Schur-harmonic convexiies of Sym-

metric functions c∗n

(
x

x−1 , r
)

and c∗n

(
x

1−x , r
)

.

Our main results will be established as follows:

Theorem 1. For r ∈ N, c∗n

(
x

x−1 , r
)

is Schur-convex, Schur-geometrically convex and Schur-harmonically

convex on (1,+∞)n.

Theorem 2. For x = (x1, x2, . . . , xn) ∈ Rn+ ∪ Rn− and r ∈ N,

(i) c∗n

(
x

1−x , r
)

is increasing on Rn+ and Schur-convex on [12 , 1)n;

(ii) if r is even integer (or odd integer, respectively), then c∗n

(
x

1−x , r
)

is Schur-convex ( or Schur-concave,

respectively) on (1,+∞)n;

(iii) if r is even integer (or odd integer, respectively), then c∗n

(
x

1−x , r
)

is decreasing and Schur-concave (or

increasing and Schur-convex, respectively) on Rn−.
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Theorem 3. For x = (x1, x2, . . . , xn) ∈ Rn+ and r ∈ N,

(i) c∗n

(
x

1−x , r
)

is Schur-geometrically convex on (0, 1)n;

(ii) if r is even integer ( or odd integer, respectively ), then c∗n

(
x

1−x , r
)

is Schur-geometrically convex ( or

Schur-geometrically concave, respectively) on (1,+∞)n.

Theorem 4. For x = (x1, x2, . . . , xn) ∈ Rn+ ∪ Rn− and r ∈ N,

(i) c∗n

(
x

1−x , r
)

is Schur-harmonically convex on (0, 1)n;

(ii) if r is even integer ( or odd integer, respectively), then c∗n

(
x

1−x , r
)

is Schur-harmonically convex (or

Schur-harmonically concave, respectively ) on (1,+∞)n.

2. Preliminaries

For convenience, we first recall some known definitions and results.

Definition 1. [1, 2] For x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn,

(i) x ≥ y means xi ≥ yi for all i = 1, 2, . . . , n.

(ii) Let Ω ⊂ Rn, ϕ: Ω→ R is said to be increasing if x ≥ y implies ϕ(x) ≥ ϕ(y). ϕ is said to be decreasing
if and only if −ϕ is increasing.

Definition 2. [1, 2] For x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn,

(i) x is said to be majorized by y (in symbols x ≺ y) if
∑k

i=1 x[i] ≤
∑k

i=1 y[i] for k = 1, 2, . . . , n− 1 and∑n
i=1 xi =

∑n
i=1 yi, where x[1] ≥ x[2] ≥ · · · ≥ x[n] and y[1] ≥ y[2] ≥ · · · ≥ y[n] are rearrangements of x

and y in a descending order.

(ii) Let Ω ⊂ Rn, ϕ: Ω → R is said to be a Schur-convex function on Ω if x ≺ y on Ω implies ϕ (x) ≤
ϕ (y) . ϕ is said to be a Schur-concave function on Ω if and only if −ϕ is Schur-convex function on Ω.

Definition 3. [1, 2] Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn.

(i) A set Ω ⊂ Rn is said to be a convex set if x,y ∈ Ω, 0 ≤ α ≤ 1, implies αx + (1 − α)y =
(αx1 + (1− α)y1, αx2 + (1− α)y2, . . . , αxn + (1− α)yn) ∈ Ω.

(ii) Let Ω ⊂ Rn be convex set. A function ϕ: Ω→ R is said to be a convex function on Ω if

ϕ (αx + (1− α)y) ≤ αϕ(x) + (1− α)ϕ(y)

for all x,y ∈ Ω, and all α ∈ [0, 1]. ϕ is said to be a concave function on Ω if and only if −ϕ is convex
function on Ω.

Definition 4. [1, 2]

(i) A set Ω ⊂ Rn is called a symmetric set, if x ∈ Ω implies xP ∈ Ω for every n× n permutation matrix
P .

(ii) A function ϕ : Ω → R is called symmetric if for every permutation matrix P , ϕ(xP ) = ϕ(x) for all
x ∈ Ω.
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Lemma 1. (Schur-convex function decision theorem)[1, 2] Let Ω ⊂ Rn be symmetric and have a nonempty
interior convex set. Ω◦ is the interior of Ω. ϕ : Ω → R is continuous on Ω and differentiable in Ω◦. Then
ϕ is the Schur − convex (or Schur − concave, respectively) function if and only if ϕ is symmetric on Ω
and

(x1 − x2)
(
∂ϕ

∂x1
− ∂ϕ

∂x2

)
≥ 0(or ≤ 0, respectively) (6)

holds for any x ∈ Ω◦.

The first systematical study of the functions preserving the ordering of majorization was made by Issai
Schur in 1923. In Schur’s honor, such functions are said to be “Schur-convex”. It can be used extensively
in analytic inequalities, combinatorial optimization, quantum physics, information theory, and other related
fields. See [1].

Definition 5. [3] Let x = (x1, x2, . . . , xn) ∈ Rn+ and y = (y1, y2, . . . , yn) ∈ Rn+.

(i) A set Ω ⊂ Rn+ is called a geometrically convex set if (xα1 y
β
1 , x

α
2 y

β
2 , . . . , x

α
ny

β
n) ∈ Ω for all x,y ∈ Ω and

α,β ∈ [0, 1] such that α+ β = 1.

(ii) Let Ω ⊂ Rn+. The function ϕ: Ω → R+ is said to be Schur-geometrically convex function on Ω if
(log x1, log x2, . . . , log xn) ≺ (log y1, log y2, . . . ,
log yn) on Ω implies ϕ (x) ≤ ϕ (y). The function ϕ is said to be a Schur-geometrically concave function
on Ω if and only if −ϕ is Schur-geometrically convex function on Ω.

We can obtain the following result immediately from Definitions 5.

Proposition 7. Let Ω ⊂ Rn+ be a set, and let log Ω = {(log x1, log x2, . . . , log xn) : (x1, x2, . . . , xn) ∈ Ω}.
Then ϕ : Ω → R+ is a Schur-geometrically convex (or Schur-geometrically concave, respectively) function
on Ω if and only if ϕ(ex1 , ex2 , . . . , exn) is a Schur-convex (or Schur-concave, respectively) function on log Ω.

Lemma 2. (Schur-geometrically convex function decision theorem)[3] Let Ω ⊂ Rn+ be a symmetric and
geometrically convex set with a nonempty interior Ω◦. Let ϕ : Ω→ R+ be continuous on Ω and differentiable
in Ω◦. If ϕ is symmetric on Ω and

(log x1 − log x2)

(
x1
∂ϕ

∂x1
− x2

∂ϕ

∂x2

)
≥ 0 (or ≤ 0, respectively) (7)

holds for any x = (x1, x2, . . . , xn) ∈ Ω◦, then ϕ is a Schur-geometrically convex ( or Schur-geometrically
concave, respectively) function.

The Schur-geometric convexity was proposed by Zhang [3] in 2004, and was investigated by Chu et al.
[4], Guan [5], Sun et al. [6], and so on. We also note that some authors use the term “Schur multiplicative
convexity”.

In 2009, Chu ([7], [8], [9]) introduced the notion of Schur-harmonically convex function, and some
interesting inequalities were obtained.

Definition 6. [7] Let Ω ⊂ Rn+ or Ω ⊂ Rn−.

(i) A set Ω is said to be harmonically convex if
xy

λx + (1− λ)y
∈ Ω for every x,y ∈ Ω and λ ∈ [0, 1],

where xy =
∑n

i=1 xiyi and
1

x
=
( 1

x1
,

1

x2
, . . . ,

1

xn

)
.
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(ii) A function ϕ : Ω→ R+ is said to be Schur-harmonically convex on Ω if
1

x
≺ 1

y
implies ϕ(x) ≤ ϕ(y).

A function ϕ is said to be a Schur-harmonically concave function on Ω if and only if −ϕ is a Schur-
harmonically convex function.

By Definitions 6, the following is obvious.

Proposition 8. Let Ω ⊂ Rn+ be a set, and let
1

Ω
= {
( 1

x1
,

1

x2
, . . . ,

1

xn

)
:

(x1, x2, . . . , xn) ∈ Ω}. Then ϕ : Ω → R+ is a Schur-harmonically convex (or Schur-harmonically concave,

respectively) function on Ω if and only if ϕ(
1

x1
,

1

x2
, . . . ,

1

xn
) is a Schur-convex (or Schur-concave, respectively)

function on
1

Ω
.

Lemma 3. ( Schur-harmonically convex function decision theorem)[7] Let Ω ⊂ Rn+ or Ω ⊂ Rn− be a sym-
metric and harmonically convex set with inner points and let ϕ : Ω → R be a continuously symmetric
function which is differentiable on Ω◦. Then ϕ is Schur-harmonically convex (or Schur-harmonically con-
cave, respectively) on Ω if and only if

(x1 − x2)
(
x21
∂ϕ(x)

∂x1
− x22

∂ϕ(x)

∂x2

)
≥ 0 (or ≤ 0, respectively), x ∈ Ω◦. (8)

Remark 1. We extend the definition and determination theorem of Schur-harmonically convex function
established by Chu as follows:

(i) The set Ω ⊂ Rn+ is extended to Ω ⊂ Rn+ or Ω ⊂ Rn−;

(ii) The function ϕ : Ω→ R must not be a positive function.

Lemma 4. ([1], [2]) Let the set A,B ⊂ R, ϕ : Bn → R, f : A → B and ψ(x1, x2, . . . , xn) = ϕ(f(x1), f(x2), . . . , f(xn)) :
An → R.

(i) If f is convex and ϕ is increasing and Schur-convex, then ψ is Schur-convex;

(ii) If f is convex and ϕ is decreasing and Schur-concave, then ψ is Schur-concave.

Lemma 5. [3, 26] Let the set Ω ⊂ Rn+. The function ϕ : Ω→ R+ is differentiable.

(i) If ϕ is increasing and Schur-convex or Schur-geometrically convex, then ϕ is Schur-harmonically con-
vex.

(ii) If ϕ is decreasing and Schur-geometrically concave, then ϕ is Schur-harmonically concave.

Lemma 6. [1] Let x = (x1, x2, . . . , xn) ∈ Rn+, n ≥ 2, 0 < r ≤ s. Then(
xr1∑n
j=1 x

r
j

,
xr2∑n
j=1 x

r
j

, . . . ,
xrn∑n
j=1 x

r
j

)
≺

(
xs1∑n
j=1 x

s
j

,
xs2∑n
j=1 x

s
j

, . . . ,
xsn∑n
j=1 x

s
j

)
. (9)

Lemma 7. [1] Let x = (x1, x2, . . . , xn) ∈ Rn+, n ≥ 2,
∑n

i=1 xi = s > 0, c ≥ s. Then(
c− x1
nc− s

,
c− x2
nc− s

, . . . ,
c− xn
nc− s

)
≺
(x1
s
,
x2
s
, . . . ,

xn
s

)
. (10)
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3. Proofs of main results

Proof of Theorem 1:

for r = 1 and r = 2, it is easy to prove that c∗n

(
x

x−1 , r
)

is Schur-convex on (1,+∞)n.

Now consider the case of r ≥ 3. By the symmetry of c∗n

(
x

x−1 , r
)

, without loss of generality, we can set
x1 > x2.

c∗n

(
x

x− 1
, r

)
=

∏
i1+i2+···+in=r

i1 6=0,i2=0

n∑
j=1

ijxj
xj − 1

×
∏

i1+i2+···+in=r
i1=0,i2 6=0

n∑
j=1

ijxj
xj − 1

×
∏

i1+i2+···+in=r
i1 6=0,i2 6=0

n∑
j=1

ijxj
xj − 1

×
∏

i1+i2+···+in=r
i1=0,i2=0

n∑
j=1

ijxj
xj − 1

.

Then

∂c∗n

(
x

x−1 , r
)

∂x1
= c∗n

(
x

x− 1
, r

)

×

 ∑
i1+i2+···+in=r

i1 6=0,i2=0

−i1

(x1 − 1)2
n∑
j=1

ijxj
xj−1

+
∑

i1+i2+···+in=r
i1 6=0,i2 6=0

−i1

(x1 − 1)2
n∑
j=1

ijxj
xj−1


= c∗n

(
x

x− 1
, r

)( ∑
k+k3+...+kn=r

k 6=0

−k

(x1 − 1)2( kx1
x1−1 +

n∑
j=3

kjxj
xj−1)

+
∑

k+m+i3+···+in=r
k 6=0,m 6=0

−k

(x1 − 1)2( kx1
x1−1 + mx2

x2−1 +
n∑
j=3

kjxj
xj−1)

)
. (11)

By the same arguments,

∂c∗n

(
x

x−1 , r
)

∂x2
= c∗n

(
x

x− 1
, r

)( ∑
k+k3+···+kn=r

k 6=0

−k

(x2 − 1)2( kx2
x2−1 +

n∑
j=3

kjxj
xj−1)

+
∑

k+m+i3+···+in=r
k 6=0,m 6=0

−k

(x2 − 1)2( kx2
x2−1 + mx1

x1−1 +
n∑
j=3

kjxj
xj−1)

)
, (12)

then
∂c∗n

(
x

x−1 , r
)

∂x1
−
∂c∗n

(
x

x−1 , r
)

∂x2
= c∗n

(
x

x− 1
, r

)
(A1 +A2),
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where

A1 =
∑

k+k3+···+kn=r
k 6=0

 −k

(x1 − 1)2( kx1
x1−1 +

n∑
j=3

kjxj
xj−1)

− −k

(x2 − 1)2( kx2
x2−1 +

n∑
j=3

kjxj
xj−1)



= k
∑

k+k3+···+kn=r
k 6=0

k(x1 + x2 − 1)(x1 − x2) + (x1 − x2)(2− x1 − x2)
n∑
j=3

kjxj
xj−1

(x1 − 1)2( kx1
x1−1 +

n∑
j=3

kjxj
xj−1)(x2 − 1)2( kx2

x2−1 +
n∑
j=3

kjxj
xj−1)

and

A2 =
∑

k+m+i3+···+in=r
k 6=0,m 6=0

( −k

(x1 − 1)2( kx1
x1−1 + mx2

x2−1 +
n∑
j=3

kjxj
xj−1)

− −k

(x2 − 1)2( kx2
x2−1 + mx1

x1−1 +
n∑
j=3

kjxj
xj−1)

)

= k
∑

k+m+i3+···+in=r
k 6=0,m 6=0

λ1

(x1 − 1)2( kx1
x1−1 + mx2

x2−1 +
n∑
j=3

kjxj
xj−1)(x2 − 1)2( kx2

x2−1 + mx1
x1−1 +

n∑
j=3

kjxj
xj−1)

,

where

λ1 = k(x1 + x2 − 1)(x1 − x2) +

(
(1− x2)2mx1

1− x1
− (1− x1)2mx2

1− x2

)
+ (x1 − x2)(x1 + x2 − 2)

n∑
j=3

kjxj
xj − 1

.

Let f(t) = (1−t)3
mt . Then f ′(t) = −m(1+2t)(1−t)2

m2t2
≤ 0, this means that f(t) is descending on R+. So

that (1−x1)3
mx1

≤ (1−x2)3
mx2

, namely (1−x2)2mx1
1−x1 − (1−x1)2mx2

1−x2 ≥ 0. It is easy to see that A1 ≥ 0 and A2 ≥ 0 for
x ∈ (1,+∞)n, so

∂c∗n

(
x

x−1 , r
)

∂x1
−
∂c∗n

(
x

x−1 , r
)

∂x2
≥ 0,

by Lemma 1, it follows that c∗n

(
x

1−x , r
)

is Schur-convex on (1,+∞)n.

From (11) and (12), it follows that

x1
∂c∗n

(
x

x−1 , r
)

∂x1
− x2

∂c∗n

(
x

x−1 , r
)

∂x2
= c∗n

(
x

x− 1
, r

)
(B1 +B2),

where

B1 =
∑

k+k3+···+kn=r
k 6=0

 −kx1

(x1 − 1)2( kx1
x1−1 +

n∑
j=3

kjxj
xj−1)

− −kx2

(x2 − 1)2( kx2
x2−1 +

n∑
j=3

kjxj
xj−1)



= k
∑

k+k3+···+kn=r
k 6=0

kx1x2(x1 − x2) + (x1 − x2)(x1x2 − 1)
n∑
j=3

kjxj
xj−1

(x1 − 1)2( kx1
x1−1 +

n∑
j=3

kjxj
xj−1)(x2 − 1)2( kx2

x2−1 +
n∑
j=3

kjxj
xj−1)
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and

B2 =
∑

k+m+i3+···+in=r
k 6=0,m 6=0

( −kx1

(x1 − 1)2( kx1
x1−1 + mx2

x2−1 +
n∑
j=3

kjxj
xj−1)

− −kx2

(x2 − 1)2( kx2
x2−1 + mx1

x1−1 +
n∑
j=3

kjxj
xj−1)

)

= k
∑

k+m+i3+···+in=r
k 6=0,m 6=0

λ2

(x1 − 1)2( kx1
x1−1 + mx2

x2−1 +
n∑
j=3

kjxj
xj−1)(x2 − 1)2( kx2

x2−1 + mx1
x1−1 +

n∑
j=3

kjxj
xj−1)

,

where

λ2 = kx1x2(x1 − x2) +

(
(x1 − 1)2mx22

x2 − 1
− (x2 − 1)2mx21

x1 − 1

)
+ (x1 − x2)(x1x2 − 1)

n∑
j=3

kjxj
xj − 1

.

Let g(t) = (t−1)3
mt2

. Then g′(t) = mt(t+2)(t−1)2
m2t4

≥ 0, this means that g(t) is increasing on R+. So that
(x1−1)3
mx21

≥ (x2−1)3
mx22

, namely
(x1−1)2mx22

x2−1 − (x2−1)2mx21
x1−1 ≥ 0. It is easy to see that B1 ≥ 0 and B2 ≥ 0 for

x ∈ (1,+∞)n, so

x1
∂c∗n

(
x

x−1 , r
)

∂x1
− x2

∂c∗n

(
x

x−1 , r
)

∂x2
≥ 0,

by Lemma 2, it follows that c∗n

(
x

x−1 , r
)

is Schur-geometrically convex on (1,+∞)n.

From (11) and (12), it follows that

x21

∂c∗n

(
x

x−1 , r
)

∂x1
− x22

∂c∗n

(
x

x−1 , r
)

∂x2
= c∗n

(
x

x− 1
, r

)
(C1 + C2),

where

C1 =
∑

k+k3+···+kn=r
k 6=0

 −kx21
(x1 − 1)2( kx1

x1−1 +
n∑
j=3

kjxj
xj−1)

− −kx22
(x2 − 1)2( kx2

x2−1 +
n∑
j=3

kjxj
xj−1)



= k
∑

k+k3+···+kn=r
k 6=0

kx1x2(x1 − x2) + (x1 − x2)(2x1x2 − x1 − x2)
n∑
j=3

kjxj
xj−1

(x1 − 1)2(kx1x1 +
n∑
j=3

kjxj
xj−1)(x2 − 1)2( kx2

x2−1 +
n∑
j=3

kjxj
xj−1)

and

C2 =
∑

k+m+i3+···+in=r
k 6=0,m 6=0

( −kx21
(x1 − 1)2( kx1

x1−1 + mx2
x2−1 +

n∑
j=3

kjxj
xj−1)

− −kx22
(x2 − 1)2( kx2

x2−1 + mx1
x1−1 +

n∑
j=3

kjxj
xj−1)

)

= k
∑

k+m+i3+···+in=r
k 6=0,m 6=0

λ3

(x1 − 1)2( kx1
x1−1 + mx2

x2−1 +
n∑
j=3

kjxj
xj−1)(x2 − 1)2( kx2

x2−1 + mx1
x1−1 +

n∑
j=3

kjxj
xj−1)

,

where

λ3 = kx1x2(x1 − x2) +

(
(x1 − 1)2mx32

x2 − 1
− (x2 − 1)2mx31

x1 − 1

)
+ (x1 − x2)(2x1x2 − x1 − x2)

n∑
j=3

kjxj
xj − 1

.
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Let h(t) = (t−1)3
mt3

. Then h′(t) = 3mt2(t−1)2
m2t6

≥ 0, this means that h(t) is increasing on R. So that
(x1−1)3
mx31

≥ (x2−1)3
mx32

, namely
(x1−1)2mx32

x2−1 − (x2−1)2mx31
x1−1 ≥ 0. It is easy to see that C1 ≥ 0 and C2 ≥ 0 for

x ∈ (1,+∞)n, so

x21

∂c∗n

(
x

x−1 , r
)

∂x1
− x22

∂c∗n

(
x

x−1 , r
)

∂x2
≥ 0,

by Lemma 3, it follows that c∗n

(
x

x−1 , r
)

is Schur-harmonically convex on (1,+∞)n.

The proof of Theorem 1 is completed. �

Proof of Theorem 2:

(i) Let p(t) = t
1−t . Then

p′(t) =
1

(1− t)2
, p′′(t) =

2

(1− t)3
. (13)

From Proposition 4, we know that c∗n(x, r) is increasing on Rn+, but p(t) is increasing on R, therefore,

the function c∗n

(
x

1−x , r
)

is increasing on Rn+.

For the case of r = 1 and r = 2, it is easy to prove that c∗n

(
x

1−x , r
)

is Schur-convex on [12 , 1)n.

Now consider the case of r ≥ 3. By the symmetry of c∗n

(
x

1−x , r
)

, without loss of generality, we can set
x1 > x2.

c∗n

(
x

1− x
, r

)
=

∏
i1+i2+···+in=r

i1 6=0,i2=0

n∑
j=1

ijxj
1− xj

×
∏

i1+i2+···+in=r
i1=0,i2 6=0

n∑
j=1

ijxj
1− xj

×
∏

i1+i2+···+in=r
i1 6=0,i2 6=0

n∑
j=1

ijxj
1− xj

×
∏

i1+i2+···+in=r
i1=0,i2=0

n∑
j=1

ijxj
1− xj

.

Then

∂c∗n

(
x

1−x , r
)

∂x1
= c∗n

(
x

1− x
, r

)

×

 ∑
i1+i2+···+in=r

i1 6=0,i2=0

i1

(1− x1)2
n∑
j=1

ijxj
1−xj

+
∑

i1+i2+···+in=r
i1 6=0,i2 6=0

i1

(1− x1)2
n∑
j=1

ijxj
1−xj


= c∗n

(
x

1− x
, r

)( ∑
k+k3+···+kn=r

k 6=0

k

(1− x1)2( kx1
1−x1 +

n∑
j=3

kjxj
1−xj )

+
∑

k+m+i3+···+in=r
k 6=0,m 6=0

k

(1− x1)2( kx1
1−x1 + mx2

1−x2 +
n∑
j=3

kjxj
1−xj )

)
. (14)
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By the same arguments,

∂c∗n

(
x

1−x , r
)

∂x2
= c∗n

(
x

1− x
, r

)( ∑
k+k3+···+kn=r

k 6=0

k

(1− x2)2( kx2
1−x2 +

n∑
j=3

kjxj
1−xj )

+
∑

k+m+i3+···+in=r
k 6=0,m 6=0

k

(1− x2)2( kx2
1−x2 + mx1

1−x1 +
n∑
j=3

kjxj
1−xj )

)
, (15)

∂c∗n

(
x

1−x , r
)

∂x1
−
∂c∗n

(
x

1−x , r
)

∂x2
= c∗n

(
x

1− x
, r

)
(D1 +D2),

where

D1 =
∑

k+k3+···+kn=r
k 6=0

 k

(1− x1)2( k
1−x1 +

n∑
j=3

kjxj
1−xj )

− k

(1− x2)2( kx2
1−x2 +

n∑
j=3

kjxj
1−xj )



= k
∑

k+k3+···+kn=r
k 6=0

k(x1 + x2 − 1)(x1 − x2) + (x1 − x2)(2− x1 − x2)
n∑
j=3

kjxj
1−xj

(1− x1)2( kx1
1−x1 +

n∑
j=3

kjxj
1−xj )(1− x2)2( kx2

1−x2 +
n∑
j=3

kjxj
1−xj )

(16)

and

D2 =
∑

k+m+i3+···+in=r
k 6=0,m 6=0

( k

(1− x1)2( kx1
1−x1 + mx2

1−x2 +
n∑
j=3

kjxj
1−xj )

− k

(1− x2)2( kx2
1−x2 + mx1

1−x1 +
n∑
j=3

kjxj
1−xj )

)

= k
∑

k+m+i3+···+in=r
k 6=0,m 6=0

δ1

(1− x1)2( kx1
1−x1 + mx2

1−x2 +
n∑
j=3

kjxj
1−xj )(1− x2)2( kx2

1−x2 + mx1
1−x1 +

n∑
j=3

kjxj
1−xj )

where

δ1 = k(x1 + x2 − 1)(x1 − x2) +

(
(1− x2)2mx1

1− x1
− (1− x1)2mx2

1− x2

)
+ (x1 − x2)(2− x1 − x2)

n∑
j=3

kjxj
1− xj

.

Let q(t) = (1−t)3
mt . Then q′(t) = −m(1+2t)(1−t)2

m2t2
≤ 0, this means that q(t) is descending on R+. So that

(1−x1)3
mx1

≤ (1−x2)3
mx2

, namely (1−x2)2mx1
1−x1 − (1−x1)2mx2

1−x2 ≥ 0. It is easy to see that D1 ≥ 0 and D2 ≥ 0 for

x ∈ [12 , 1)n, so

∂c∗n

(
x

1−x , r
)

∂x1
−
∂c∗n

(
x

1−x , r
)

∂x2
≥ 0,

by Lemma 1, it follows that c∗n

(
x

1−x , r
)

is Schur-convex on [12 , 1)n.

(ii)
Notice that

c∗n

(
x

x− 1
, r

)
= (−1)rc∗n

(
x

1− x
, r

)
, (17)
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combining with the Schur-convexity of c∗n

(
x

x−1 , r
)

on (1,+∞)n (see Theorem 1), we can prove (ii) in

Theorem 2.
(iii) For t < 0, from (13), we have p(t) < 0, p′(t) > 0 and p′′(t) > 0, this means that p(t) is an increasing

convex function with a negative value for t < 0.
By Proposition 6, we know that if r is an even integer, then c∗n(x, r) is decreasing and Schur-concave

on Rn−, from Lemma 5 (ii), it follows that c∗n

(
x

1−x , r
)

is decreasing and Schur-concave on Rn−.

From Proposition 6, we know that if r is an odd integer, then c∗n(x, r) is increasing and Schur-convex

on Rn−, by Lemma 5 (i), it follows that c∗n

(
x

1−x , r
)

is increasing and Schur-convex on Rn−.

The proof of Theorem 2 is completed. �

Proof of Theorem 3:

For r = 1 and r = 2, it is easy to prove that c∗n

(
x

1−x , r
)

is Schur-geometrically convex on (0, 1)n.

Now consider the case of r ≥ 3. By the symmetry of c∗n

(
x

1−x , r
)

, without loss of generality, we can set
x1 > x2.

From (14) and (15), it follows that

x1
∂c∗n

(
x

1−x , r
)

∂x1
− x2

∂c∗n

(
x

1−x , r
)

∂x2
= c∗n

(
x

1− x
, r

)
(E1 + E2),

where

E1 =
∑

k+k3+···+kn=r
k 6=0

( kx1

(1− x1)2( kx1
1−x1 +

n∑
j=3

kjxj
1−xj )

− kx2

(1− x2)2( kx2
1−x2 +

n∑
j=3

kjxj
1−xj )

)

= k
∑

k+k3+···+kn=r
k 6=0

kx1x2(x1 − x2) + (x1 − x2)(1− x1x2)
n∑
j=3

kjxj
1−xj

(1− x1)2( kx1
1−x1 +

n∑
j=3

kjxj
1−xj )(1− x2)2( kx2

1−x2 +
n∑
j=3

kjxj
1−xj )

and

E2 =
∑

k+m+i3+···+in=r
k 6=0,m 6=0

( kx1

(1− x1)2( kx1
1−x1 + mx2

1−x2 +
n∑
j=3

kjxj
1−xj )

− kx2

(1− x2)2( kx2
1−x2 + mx1

1−x1 +
n∑
j=3

kjxj
1−xj )

)

= k
∑

k+m+i3+···+in=r
k 6=0,m 6=0

δ2

(1− x1)2( kx1
1−x1 + mx2

1−x2 +
n∑
j=3

kjxj
1−xj )(1− x2)2( kx2

1−x2 + mx1
1−x1 +

n∑
j=3

kjxj
1−xj )

where

δ2 = kx1x2(x1 − x2) +

(
(1− x2)2mx21

1− x1
− (1− x1)2mx22

1− x2

)
+ (x1 − x2)(1− x1x2)

n∑
j=3

kjxj
1− xj

.

Let s(t) = (1−t)3
t2

. Then s′(t) = − t(2+t)(1−t)2
t4

≤ 0, this means that s(t) is decreasing on R+, so (1−x1)3
x21

≤
(1−x2)3
x22

, namely,
(1−x2)2mx21

1−x1 − (1−x1)2mx22
1−x2 ≥ 0. It is easy to see that E1 ≥ 0 and E2 ≥ 0 for x ∈ (0, 1)n ∪

(1,+∞)n, so

x1
∂c∗n

(
x

1−x , r
)

∂x1
− x2

∂c∗n

(
x

1−x , r
)

∂x2
≥ 0,
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By Lemma 3, it follows that c∗n

(
x

1−x , r
)

is Schur-geometrically convex on (0, 1)n.

(ii) From (17) and combining with the Schur-geometrically convexity of c∗n

(
x

x−1 , r
)

on (1,+∞)n(see

Theorem 1), we can prove (ii) in Theorem 3.
The proof of Theorem 3 is completed. �

Proof of Theorem 4:

For r = 1 and r = 2, it is easy to prove that c∗n

(
x

1−x , r
)

is Schur-harmonically convex on (0, 1)n.

Now consider the case of r ≥ 3. By the symmetry of c∗n

(
x

1−x , r
)

, without loss of generality, we can set
x1 > x2.

From (14) and (15), we have

x21

∂c∗n

(
x

1−x , r
)

∂x1
− x22

∂c∗n

(
x

1−x , r
)

∂x2
= c∗n

(
x

1− x
, r

)
(F1 + F2),

where

F1 =
∑

k+k3+···+kn=r
k 6=0

( kx21

(1− x1)2( kx1
1−x1 +

n∑
j=3

kjxj
1−xj )

− kx22

(1− x2)2( kx2
1−x2 +

n∑
j=3

kjxj
1−xj )

)

= k
∑

k+k3+···+kn=r
k 6=0

kx1x2(x1 − x2) + (x1 − x2)(x1 + x2 − 2x1x2)
n∑
j=3

kjxj
1−xj

(1− x1)2( kx1
1−x1 +

n∑
j=3

kjxj
1−xj )(1− x2)2( kx2

1−x2 +
n∑
j=3

kjxj
1−xj )

and

F2 =
∑

k+m+i3+···+in=r
k 6=0,m 6=0

( kx21

(1− x1)2( kx1
1−x1 + mx2

1−x2 +
n∑
j=3

kjxj
1−xj )

− kx22

(1− x2)2( kx2
1−x2 + mx1

1−x1 +
n∑
j=3

kjxj
1−xj )

)

= k
∑

k+m+i3+···+in=r
k 6=0,m 6=0

δ3

(1− x1)2( kx1
1−x1 + mx2

1−x2 +
n∑
j=3

kjxj
1−xj )(1− x2)2( kx2

1−x2 + mx1
1−x1 +

n∑
j=3

kjxj
1−xj )

where

δ3 = kx1x2(x1 − x2) +

(
(1− x2)2mx31

1− x1
− (1− x1)2mx32

1− x2

)
+ (x1 − x2)(x1 + x2 − 2x1x2)

n∑
j=3

kjxj
1− xj

.

Let v(t) = (1−t)3
mt3

. Then v′(t) = −3mt2(1−t)2
m2t6

≤ 0 this means that v(t) is decreasing on R, so (1−x1)3
mx31

≤
(1−x2)3
mx32

, namely,
(1−x2)2mx31

1−x1 − (1−x1)2mx32
1−x2 ≥ 0. It is easy to see that F1 ≥ 0 and F2 ≥ 0 for x ∈ (0, 1)n, and

then

x21

∂c∗n

(
x

1−x , r
)

∂x1
− x22

∂c∗n

(
x

1−x , r
)

∂x2
≥ 0,

By Lemma 3, it follows that c∗n

(
x

1−x , r
)

is Schur-harmonically convex on (0, 1)n.

From Theorem 2, we know that c∗n

(
x

1−x , r
)

is Schur-geometrically convex on (0, 1)n, so that according

to Lemma 5, it follows that c∗n

(
x

1−x , r
)

is Schur-harmonically convex on (0, 1)n.
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(ii) From (17) and combining with the Schur-harmonically convexity of c∗n

(
x

x−1 , r
)

on (1,+∞)n (see

Theorem 1), we can prove (ii) in Theorem 4.
The proof of Theorem 4 is completed. �

Here, a question arises naturally.

Question 1. For x ∈
(
0, 12
)n

, what is the Schur-convexity of c∗n

(
x

1−x , r
)

?

4. Applications

It is not difficult to prove the following result by applying Theorem 2 and the majorizing relation

(An(x), An(x), . . . , An(x)) ≺ (x1, x2, . . . , xn) .

Theorem 5. If x = (x1, x2, . . . , xn) ∈ [12 , 1)n and r ∈ N, or r is even integer and x ∈ (1,+∞)n or r is
odd integer and x ∈ Rn−, then

c∗n

(
x

1− x
, r

)
≥
(

rAn(x)

1−An(x)

)(n+r−1
r )

, (18)

where An(x) = 1
n

∑n
i=1 xi and

(
n+r−1

r

)
= (n+r−1)!

r!((n+r−1)−r)! .

If r is odd and x ∈ (1,+∞)n, or r is even integer and x ∈ Rn−, then the inequality (18) is reversed.

By Theorem 3 and the majorizing relation

(logGn(x), logGn(x), . . . , logGn(x)) ≺ (log x1, log x2, . . . , log xn) ,

we can establish the following theorem.

Theorem 6. If x = (x1, x2, . . . , xn) ∈ (0, 1)n and r ∈ N or r is even integer x ∈ (1,+∞)n, then

c∗n

(
x

1− x
, r

)
≥
(

rGn(x)

1−Gn(x)

)(n+r−1
r )

, (19)

where Gn(x) = n
√∏n

i=1 xi and
(
n+r−1

r

)
= (n+r−1)!

r!((n+r−1)−r)! .

If r is odd integer and x ∈ (1,+∞)n, then the inequality (19) is reversed.

By using Theorem 4 and the majorizing relation(
1

Hn(x)
,

1

Hn(x)
, . . . ,

1

Hn(x)

)
≺
(

1

x1
,

1

x2
, . . . ,

1

xn

)
,

we obtain the following theorem.
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Theorem 7. If x = (x1, x2, . . . , xn) ∈ (0, 1)n and r ∈ N, or r is even integer and x ∈ (1,+∞)n, then

c∗n

(
x

1− x
, r

)
≥
(

rHn(x)

1−Hn(x)

)(n+r−1
r )

, (20)

where Hn(x) = n∑n
i=1 x

−1
i

and
(
n+r−1

r

)
= (n+r−1)!

r!((n+r−1)−r)! .

If r is odd and x ∈ (1,+∞n, then the inequality (20) is reversed.

By applying Theorem 2 and Lemma 6, it is not difficult to show the following theorem.

Theorem 8. If x = (x1, x2, . . . , xn) ∈ Rn+, n ≥ 2 and k ∈ N, 0 < r ≤ s, then

∏
i1+i2+···+in=k

n∑
j=1

ijx
r
j∑n

j=1 x
r
j − xrj

≤
∏

i1+i2+···+in=k

n∑
j=1

ijx
s
j∑n

j=1 x
s
j − xsj

. (21)

By Theorem 2 and Lemma 7, we establish the following theorem.

Theorem 9. Let x = (x1, x2, . . . , xn) ∈ Rn+, n ≥ 2,
∑n

i=1 xi = s > 0, c ≥ s. Then

∏
i1+i2+···+in=k

n∑
j=1

ij(c− xj)
(n− 1)c− (s− xi)

≤
∏

i1+i2+···+in=k

n∑
j=1

ijxj
s− xj

. (22)

Discovering and judging Schur convexity of various symmetric functions is an important subject in the
study of the majorization theory. In recent years, many domestic scholars have made a lot of achievements
in this field (see monographs [27, 28]).

References

[1] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of Majorization and Its Application (Second Edition),
Springer, New York, 2011.

[2] B. Y. Wang, Foundations of Majorization Inequalities, Beijing Normal University Press, Beijing, 1990. (in Chinese)
[3] X. M. Zhang, Geometrically Convex Functions, An’hui University Press, Hefei, 2004. (in Chinese)
[4] Y. M. Chu, X. M. Zhang, and G. D. Wang, The Schur geometrical convexity of the extended mean values, Journal of

Convex Analysis, 2008, 15(4), 707-718.
[5] K. Z. Guan, A class of symmetric functions for multiplicatively convex function, Mathematical Inequalities & Applications,

2007, 10(4), 745-753.
[6] T.-C. Sun, Y.-P. Lv, and Y.-M. Chu, Schur multiplicative and harmonic convexities of generalized Heronian mean in n

variables and their applications, International Journal of Pure and Applied Mathematics, 2009, 55(1), 25-33.
[7] Y. M. Chu, and T. C. Sun, The Schur harmonic convexity for a class of symmetric functions, Acta Mathematica Scientia,

2010, 30B(5), 1501-1506.
[8] Y.-M. Chu, G.-D.Wang, and X.-H. Zhang, The Schur multiplicative and harmonic convexities of the complete symmetric

function, Mathematische Nachrichten, 2011, 284(5-6), 653-663.
[9] Y.-M. Chu, and Y.-P. Lv, The Schur harmonic convexity of the Hamy symmetric function and its applications, Journal of

Inequalities and Applications, 2009, Article ID 838529, 10 pages.
[10] W. F. Xia, and Y. M. Chu, Schur-convexity for a class of symmetric functions and its applications, Journal of Inequalities

and Applications, 2009, Article ID 493759, 15 pages.
[11] K.-Z. Guan, Schur-convexity of the complete symmetric function, Mathematical Inequalities & Applications, 2006, 9(4),

567-576.
[12] M. B. Sun, N. B. Chen, and S. H. Li, Some properties of a class of symmetric functions and its applications, Mathematische

Nachrichten, 2014, doi: 10.1002/mana.201300073.
[13] W.-F. Xia, and Y.-M. Chu, Schur convexity and Schur multiplicative convexity for a class of symmeric functions with

applications, Ukrainian Mathematical Journal, 2009, 61(10), 1541-1555.



H.-N. Shi, W.-S. Du, Adv. Theory Nonlinear Anal. Appl. 3 (2019), 74–89. 89
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