

dergipark.org.tr/adyusci

9 (1) (2019) 66-76

Some Monotonicity Properties on k-Gamma Function

İnci EGE and Emrah YILDIRIM*

Adnan Menderes University, Faculty of Arts and Sciences, Department of Mathematics, Aydın, Türkiye iege@adu.edu.tr, ORCID Address: http://orcid.org/0000-0002-3702-7456 emrahyildirim@adu.edu.tr, ORCID Address: http://orcid.org/0000-0002-4563-5275

Abstract

The aim of this work is to obtain some monotonicity properties for the functions involving the logarithms of the *k*-gamma function for k > 0.

Keywords: k-Gamma function, Monotonicity, k-Polygamma function.

k-Gama Fonksiyonu Üzerine Bazı Monotonluk Özellikleri

Özet

Bu çalışmanın amacı, k > 0 olmak üzere k-gama fonksiyonunun logaritmasını içeren bazı fonksiyonların monotonluk özelliklerini elde etmektir.

Anahtar Kelimeler: k-Gama fonksiyonu, Monotonluk, k-Poligama fonksiyonu.

Accepted: 28 May 2019

^{*} Corresponding Author Received: 05 July 2018

1. Introduction and Preliminaries

The gamma function, which is one of the most important special functions and has many applications in many areas such as physics, engineering etc., is defined by

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

for positive real values of x [1]. The psi or digamma function ψ is defined by logarithm derivative of the gamma function as $\psi(x) = \frac{d}{dx} \ln \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)}$ for x > 0. Its series representation is given by

$$\psi(x) = -\gamma + \sum_{n=0}^{\infty} \frac{x-1}{(n+1)(x+n)}$$

for x > 0 [8]. The asymptotic representations of the first and second derivative of the function are given by

$$\psi'(z) \sim \frac{1}{z} + \frac{1}{2z^2} + \frac{1}{6z^3} - \frac{1}{30z^5} + \cdots, \quad (z \to \infty, |argz| < \pi)$$
 (1)

and

$$\psi''(z) \sim -\frac{1}{z^2} - \frac{1}{z^3} - \frac{1}{z^4} - \frac{1}{6z^6} - \dots, \quad (z \to \infty, |argz| < \pi)$$
(2)

respectively [1].

In [11], author shows that for $x \to \infty$

$$\ln \Gamma(x) = \left(x - \frac{1}{2}\right) \ln x - x + \frac{1}{2} \ln(2\pi) + O\left(\frac{1}{x}\right), \tag{3}$$

$$\psi(x) = \ln x - \frac{1}{2x} + O\left(\frac{1}{x^2}\right).$$
 (4)

These functions are interested by many researchers. Many authors have established some monotonicity results of the gamma function and obtained related inequalities such as in [2-4,7,10] and references therein. For example, in [4], authors used the monotonicity property of the function

$$f(x) = \frac{\ln \Gamma(x+1)}{x \ln x}, \qquad x > 1$$

in order to establish the double-sided inequalities

$$x^{(1-\gamma)x-1} < \Gamma(x) < x^{x-1}, \quad x > 1$$

where γ denotes the Euler-Mascheroni constant and in [6], they proved that the function f is concave on the interval $[1, \infty)$.

Pochhammer symbol is widely used in combinatorics. Diaz and Pariguan in [5] defined Pochhammer *k*-symbol and *k*-generalized gamma function as the following:

Definition 1.2 Let $x \in \mathbb{C}$, $k \in \mathbb{R}$, and $n \in \mathbb{Z}^+$, the Pochhammer k-symbol is given by

$$(x)_{n,k} = x(x+k)(x+2k) \dots (x+(n-1)k)$$

and k-analogue of gamma function is defined by

$$\Gamma_k(x) = \lim_{n \to \infty} \frac{n! \, k^n (nk)^{\frac{x}{k} - 1}}{(x)_{n,k}}$$

for $x \in \mathbb{C} \setminus k\mathbb{Z}^-$ and k > 0. Its integral representation is given by

$$\Gamma_k(x) = \int_0^\infty t^{x-1} e^{-\frac{t^k}{k}} dt$$

for $x \in \mathbb{C}$, Re(x) > 0.

They also proved Bohr-Moller theorem and Stirling formula for k-gamma function and obtained several results that are generalizations of the classical gamma function:

Proposition 1.3 *The k-gamma function* $\Gamma_k(x)$ *satisfies the following properties:*

$$\Gamma_k(x+k) = x\Gamma_k(x),\tag{5}$$

$$\Gamma_k(k) = 1, \tag{6}$$

 $\Gamma_k(x)$ is logarithmically convex for $x \in \mathbb{R}$, (7)

$$\frac{1}{\Gamma_k(x)} = xk^{-\frac{x}{k}}e^{\frac{x}{k}\gamma}\prod_{n=1}^{\infty}\left(\left(1+\frac{x}{nk}\right)e^{-\frac{x}{nk}}\right) where \ \gamma = \lim_{n \to \infty}\left(1+\cdots+\frac{1}{n}-\log n\right), \quad (8)$$

$$\Gamma_k(x) = k^{\frac{x}{k}-1} \Gamma\left(\frac{x}{k}\right).$$
(9)

This new generalization of the classical gamma function has attracted many researchers. For example, Krasniqi in [9] used the equation (8) in order to obtain the following series representations of k-digamma function and k-polygamma function respectively by

$$\Psi_k(x) = \frac{\ln k - \gamma}{k} - \frac{1}{x} + \sum_{n=1}^{\infty} \frac{x}{nk(x + nk)}$$
(10)

and

$$\Psi_k^{(r)}(x) = (-1)^{r+1} r! \sum_{n=0}^{\infty} \frac{1}{(x+nk)^{r+1}}$$
(11)

for r = 1,2,... where $\psi_k(x) = \frac{d}{dx} \ln \Gamma_k(x) = \frac{\Gamma'_k(x)}{\Gamma_k(x)}$.

2. Main Results

The objective of this paper is to develop some new monotonicity results involving the logarithms of k-gamma function for some real values of x, which are generalizations of inequalities in [4].

Lemma 2.1 The inequality

$$\frac{2k}{u^3} > \frac{1}{u^2} - \frac{1}{(u+k)^2}$$

holds true for k > 0 and u > 0.

Proof. Since u, k > 0, we have

$$2u^2 + 4uk + 2k^2 > 2u^2 + uk.$$

Then

$$2(u+k)^2 > (2u+k)u.$$

Hence we get

$$\frac{2k}{u^3} > \frac{(2u+k)k}{u^2(u+k)^2}$$

and the result follows.

Theorem 2.2 For x > -k and k > 0, the function

$$f(x) = \psi'_k(x+k) + x\psi''_k(x+k)$$
(12)

is positive.

Proof. By taking logarithms of the equation (9), we get

$$ln\Gamma_{k}(x) = \left(\frac{x}{k} - 1\right)ln\,k + ln\Gamma\left(\frac{x}{k}\right) \tag{13}$$

and differentiating the equation (13) with respect to x leads us that

$$\psi_k(x) = \frac{\ln k}{k} + \frac{1}{k} \psi\left(\frac{x}{k}\right), \psi'_k(x) = \frac{1}{k^2} \psi'\left(\frac{x}{k}\right) \text{ and } \psi''_k(x) = \frac{1}{k^3} \psi''\left(\frac{x}{k}\right).$$

Then from the equations (1) and (2), we have

$$\lim_{x\to\infty}f(x)=0.$$

For positivity of the function f, we need to show that the function f is decreasing. So by using the equation (11), we obtain

$$f(x) = \sum_{n=1}^{\infty} \frac{nk - x}{(x + nk)^3}.$$

Then we get

$$f(x) - f(x+k) = \frac{k-x}{(x+k)^3} + \sum_{n=2}^{\infty} \frac{nk-x}{(x+nk)^3} - \sum_{n=1}^{\infty} \frac{nk-x-k}{(x+k+nk)^3}$$
$$= \frac{k-x}{(x+k)^3} + \sum_{n=1}^{\infty} \frac{2k}{(x+(n+1)k)^3} = -\frac{1}{(x+k)^2} + \sum_{n=1}^{\infty} \frac{2k}{(x+nk)^3}.$$

Lemma 2.1 leads us that

$$\begin{aligned} f(x) - f(x+k) &= -\frac{1}{(x+k)^2} + \sum_{n=1}^{\infty} \frac{2k}{(x+nk)^3} \\ &> -\frac{1}{(x+k)^2} + \sum_{n=1}^{\infty} \left[\frac{1}{(x+nk)^2} - \frac{1}{(x+nk+k)^2} \right] > 0 \end{aligned}$$

as desired.

Corollary 2.3 The function

$$g(x) = x^2 \psi'_k(x+k) - x \psi_k(x+k) + \ln \Gamma_k(x+k)$$
(14)

is a decreasing function on (-k, 0) and an increasing function on $[0, \infty)$ for x > -k.

Proof. In order to obtain the result, we just need to show that the first derivative of the function g is positive on (-k, 0) and negative on $(0, \infty)$ respectively.

$$g'(x) = 2x\psi'_k(x+k) + x^2\psi''_k(x+k) - \psi_k(x+k) - x\psi'_k(x+k) + \psi_k(x+k)$$
$$= x\psi'_k(x+k) + x^2\psi''_k(x+k) = xf(x)$$

where f(x) is defined as in theorem 2.2. Since f(x) > 0 for x > -k in Theorem 2.2, we obtain desired results.

Theorem 2.4

(i) Let $h(x) = x\psi_k(x+k) - \ln \Gamma_k(x+k)$. Then, the function h(x) increases for $x \ge 0$ and decreases for -k < x < 0. Also, we have

$$\lim_{x\to\infty}\frac{h(x)}{x}=\frac{1}{k}.$$

(ii) Let $h(x) = x\psi_k(x+k) - \ln \Gamma_k(x+k)$. Then, the function h(x) increases for $x \ge 0$ and decreases for -k < x < 0. Also, we have

$$\lim_{x\to\infty}\frac{h(x)}{x}=\frac{1}{k}.$$

(iii) The function $H(x) = \ln x - \frac{1}{h(x)} \ln \Gamma_k(x+k)$ approximately increases for x, k > 0 and $x \gtrsim \frac{7-4k}{3}$.

Proof. Differentiating the function h(x) with respect to x and using the equation (11) lead us that

$$h'(x) = \psi_k(x+k) + x\psi'_k(x+k) - \psi_k(x+k)$$
$$= x\psi'_k(x+k) = x\sum_{n=1}^{\infty} \frac{1}{(x+nk)^2}.$$

Hence, we obtain monotonicity of the function h. By replacing $\frac{x}{k}$ instead of x in the equation (13), adding the term $\ln x$ in both sides of the equation and using the equations (3), (4) and (9), we get

$$\ln \Gamma_k(x+k) = -\frac{\ln k}{2} + \left(\frac{x}{k} - \frac{1}{2}\right) \ln x - \frac{x}{k} + \frac{1}{2} \ln 2\pi + O\left(\frac{1}{x}\right).$$
(15)

By differentiating the equation (15), we obtain

$$\psi_k(x+k) = \frac{1}{k} \ln x + \left(\frac{x}{k} - \frac{1}{2}\right) \frac{1}{x} - \frac{1}{k} + O\left(\frac{1}{x^2}\right).$$
(16)

Hence the limit follows from the equations (15) and (16). Now let us prove ii. By differentiating the function H and using the Theorem 2.4 (i), we get

$$H'(x) = \frac{1}{x} + \frac{h'(x)}{h^2(x)} \ln \Gamma_k(x+k) - \frac{\psi_k(x+k)}{h(x)}$$
$$= \frac{1}{x} - \frac{1}{h^2(x)} [h(x)\psi_k(x+k) - h'(x)\ln \Gamma_k(x+k)]$$
$$= \frac{1}{xh^2(x)} [h(x)(x\psi_k(x+k) - \ln \Gamma_k(x+k) - x\psi_k(x+k)) - xh'(x)\ln \Gamma_k(x)]$$
$$- xh'(x)\ln \Gamma_k(x)]$$
$$= \frac{\ln \Gamma_k(x+k)}{xh^2(x)} [xh'(x) - h(x)] = \frac{g(x)\ln \Gamma_k(x+k)}{xh^2(x)}$$

where the function g(x) is defined as in Corollary 2.3.

By using the equation (9), we get

$$\ln \Gamma_k(x+k) = \frac{x}{k} \ln k + \ln \Gamma \left(\frac{x}{k} + 1\right)$$

for x > 0 and k > 0. The points which make the right hand side of the above equation positive are shown in the following Figure 1:

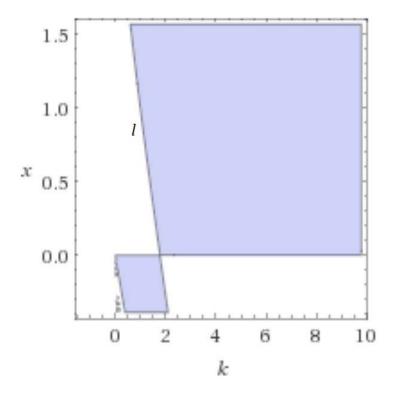


Figure 1.

x = 0 is a solution of the last equation for all k > 0 and lower line segment is x = -k. The tangent of the line *l* which passes from the points (k, x) = (0,649, 1.5) and (k, x) = (1.379, 0.5) approximately equals to $\frac{4}{3}$. So, we calculate equation of the line with the point (1,1), which is also on the line, we get $x = \frac{7-4k}{3}$. The upper blue area of Figure 1 shows that for x > 0 and $x > \frac{7-4k}{3}$, $\ln \Gamma_k(x+k) > 0$ and also the lower blue area of Figure 1 shows that for x < 0, -k < x and $x < \frac{7-4k}{3}$, $\ln \Gamma_k(x+k) > 0$. So the proof follows. Now we can give the following:

Corollary 2.5 The function $F(x) = \frac{\ln \Gamma_k(x+k)}{x \ln x}$ is an increasing function for $x \gtrsim \frac{7-4k}{3}$ and k > 0. Furthermore $\lim_{x \to \infty} F(x) = \frac{1}{k}$.

Proof. We have

$$(x \ln x)^2 F'(x) = x \psi_k(x+k) - \ln \Gamma_k(x+k) \ln x - \ln \Gamma_k(x+k)$$
$$= h(x)H(x)$$

where *h* and *H* are the functions in Theorem 2.4 (i) and (ii) respectively. Hence wet get the monotonicity result for F(x).

By using the equation (15), we have

$$\lim_{x \to \infty} F(x) = \lim_{x \to \infty} \frac{-\frac{\ln k}{2} + \left(\frac{x}{k} - \frac{1}{2}\right) \ln x - \frac{x}{k} + \frac{1}{2} \ln 2\pi}{x \ln x}$$
$$= \lim_{x \to \infty} \frac{\left(\frac{x}{k} - \frac{1}{2}\right) \ln x}{x \ln x} + \lim_{x \to \infty} \frac{-\frac{\ln k}{2} - \frac{x}{k} + \frac{1}{2} \ln 2\pi}{x \ln x} = \frac{1}{k}$$

as desired.

Before we give other result we need following property.

Lemma 2.6 The inequality

$$\frac{2k}{u^3} < \frac{1}{2(u-k)^2} - \frac{1}{2(u+k)^2}$$

holds for u > k and k > 0.

Proof. Since k < u, we have

$$u^4 - 2u^2k^2 + k^4 < u^4.$$

Then we can write

$$\frac{2k}{u^3} < \frac{2uk}{(u-k)^2(u+k)^2} = \frac{(u+k)^2 - (u-k)^2}{2(u-k)^2(u+k)^2} = \frac{1}{2(u-k)^2} - \frac{1}{2(u+k)^2}$$

as desired.

Theorem 2.8 Let $g(x) = x^2 \psi'_k(x+k) + x^3 \psi''_k(x+k)$ for x > 0. Then

$$0 < g(x) < \frac{1}{2}.$$

Proof. Since $g(x) = x^2 f(x)$, where f(x) as in Theorem 2.2, the lower bound follows by Theorem 2.2. For the upper bound, let us define the function G by

$$G(x) = \frac{1}{2x^2} - f(x)$$

for x > 0. Since the function *G* tends to zero as $x \to \infty$, we need to show that G(x) > G(x + k). By Lemma 2.6, we get

$$G(x) - G(x+k) = \frac{1}{2x^2} - \frac{1}{2(x+k)^2} - [f(x) - f(x+k)]$$

= $\frac{1}{2x^2} - \frac{1}{2(x+k)^2} + \frac{1}{(x+k)^2} - \sum_{n=1}^{\infty} \frac{2k}{(x+nk)^3}$
> $\frac{1}{2x^2} + \frac{1}{2(x+k)^2} - \sum_{n=1}^{\infty} \left[\frac{1}{2(x+nk-k)^2} - \frac{1}{2(x+nk+k)^2}\right]$
= $\frac{1}{2x^2} + \frac{1}{2(x+k)^2} - \left[\frac{1}{2x^2} + \frac{1}{2(x+k)^2}\right] = 0$

and the proof is completed.

Acknowledgement

This work is supported by the Adnan Menderes University Scientific Research Projects Coordination Unit (BAP) with Project No: FEF-17011.

References

[1] Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1965.

[2] Alzer, H., Some Gamma Function Inequalities, Math. Comp., 60, 337-346, 1993.

[3] Alzer, H., *Inequalities for the Gamma and Psi Functions*, Abh. Math. Sem. Hamburg, 68, 363-372, 1998.

[4] Anderson, G. and Qiu, S. L., *A Monotoneity Property of the Gamma Function*, Proc. Amer. Math. Soc., 125(11), 3355-3362, 1997.

[5] Diaz, R. and Pariguan, E., On Hypergeometric Functions and Pochhammer ksymbol, Divulg. Mat., 15(2), 179-192, 2007.

[6] Elbert, A. and Laforgia, A., *On Some Properties of the Gamma Function*, Proc. Amer. Math. Soc., 128(9), 2667-2673, 2000.

[7] Gautschi, W., Some Elementary Inequalities Relating to the Gamma and Incomplete Gamma Function, J. Math. Phys., 38(1), 77-81, 1959.

[8] Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, Academic Press, 2014.

[9] Krasniqi, V., Inequalities and Monotonicity for the Ration of k-gamma Function, Scientia Magna, 6(1), 40-45, 2010.

[10] Neumann, E., *Some Inequalities for the Gamma Function*, Appl. Math. Comput., 218(8), 4349-4352, 2011.

[11] Sandor, J., Sur la Fonction Gamma, Publ. Centre Rech. Math. Pures (Neuchâtel), 21, 4-7, 1989.