
BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 7, No. 3, July 2019

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Abstract— In mobile robotics, navigation is considered as one

of the most primary tasks, which becomes more challenging

during local navigation when the environment is unknown.

Therefore, the robot has to explore utilizing the sensory

information. Reinforcement learning (RL), a biologically-

inspired learning paradigm, has caught the attention of many as

it has the capability to learn autonomously in an unknown

environment. However, the randomized behavior of exploration,

common in RL, increases computation time and cost, hence

making it less appealing for real-world scenarios. This paper

proposes an informed-biased softmax regression (iBSR) learning

process that introduce a heuristic-based cost function to ensure

faster convergence. Here, the action-selection is not considered as

a random process, rather, is based on the maximum probability

function calculated using softmax regression. Through

experimental simulation scenarios for navigation, the strength of

the proposed approach is tested and, for comparison and analysis

purposes, the iBSR learning process is evaluated against two

benchmark algorithms.

Index Terms— Reinforcement learning, mobile robots,

navigation, autonomous, unknown environment

I. INTRODUCTION

N RECENT years, the impact of robots in our daily lives and

in industry has increased by manifolds. According to the

World Robotics Report 2018, the demand for robots increased

by 31% in one year as compared to 2016. Whether it is an

industrial robot, mobile robot or any other, if it has to interact

with the environment, it should be able to navigate. The task

of navigation can be further broken down into localization and

path planning. In localization, the robot’s pose, i.e. its

orientation and translation needs to be determined with respect

to the surroundings. Path-planning is a process in which a

robot should be able to find out its collision-free, feasible path

in an on-line or off-line fashion, from the start to the goal

point.

The task of path-planning can be more challenging in the

presence of obstacles and in unknown environments. The

basic trait of the autonomous mobile robot is that it should be

MUHAMMAD UMER, KHAN, is with Department of Mechatronics
Engineering, Atilim University, Ankara, Turkey, (e-mail:
umer.khan@atilim.edu.tr).

https://orcid.org/0000-0002-9195-3477
Manuscript received February 26, 2019; accepted June 10, 2019.
DOI: 10.17694/bajece.532746

able to traverse through the obstacles in a safe manner and

attain the goal position. Navigation requires the robot to

continuously update its information about the surroundings

and plan its next action, accordingly. In general, such

information is acquired by means of various sources, such as

GPS [1], ultrasonic [2], and laser range finder [3]. This

information about the robot’s pose and obstacles’ location is,

then, utilized to control the movements of the robot through its

actuators.

Over the last decade, many researchers have been

continuously striving to solve the problem of path-planning in

an effective manner. The most notable algorithms in this

respect are A* [4], Dijkstra [5], PRM [6], and RRT [7]. More

recently, researchers have shown their keen interest towards

biologically-inspired algorithms, such as ANN [8], GA [9],

PSO [10], and RL [11]. Among these, RL algorithms have

received special attention due to their efficient problem

solving in various fields such as control engineering, game

theory, and even robotics.

The most renowned one of all RL algorithms is Q-learning

[12], proposed in 1989, based upon the learning from delayed

rewards and punishments. Since then, many researchers have

quite effectively utilized Q-learning for mobile robot

navigation and obstacle avoidance [13, 14]. The Q-learning

has also been tested for solving mobile robots’ path-planning

problem in 3D environments [15]. Many authors have also

proposed hybrid approaches by combining the un-supervised

RL with Fuzzy Logic [16, 17], or Artificial Neural Network

[18, 19].

The learning process, true online SARSA Q-biased softmax

regression (TOSL-QBIASSR) [20], evolved from classical Q-

learning, has attempted to tackle a wide variety of robotic

tasks with minimal tuning required. A complimentary low-

reward-loop evasion algorithm has been utilized to avoid local

minima sequences. An open-source software framework is

also developed with a large collection of various learning

processes.

Recent research has attempted to integrate deep learning

with RL as deep reinforcement learning (DRL) to deal with a

wide variety of control problems. Although, deep learning

enables an effective learning process for high-dimensional

tasks, it also requires high computational costs both in terms

of the number of used cores and computational time. This is a

drawback which prevents such algorithms to be considered for

real-time applications.

From the literature review, the conclusion can be drawn that

there is a remarkable tendency among researchers to solve

navigation problems using RL since, in most cases the

Mobile Robot Navigation Using Reinforcement

Learning in Unknown Environments

M. U. KHAN 

I

235

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 7, No. 3, July 2019

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

environment is unknown and involves a great degree of

uncertainty. The bench marking Q-learning algorithm has

been tested for many scenarios and is found to be effective as

it can deal with unknown non-deterministic Markovian

systems. The more recent TOSL-QBIASSR learning tested for

multiple tasks is claimed to be effective. Therefore, for

comparison and analysis, Q-learning with softmax regression

(Q-SR) and TOSL-QBIASSR has been chosen as the test

bench.

In this paper, using simulation, it is shown that the proposed

approach outperforms the Q-SR and TOSL-QBIASSR. In

detail, the main focus of this research is to perform 2D

navigation in an unknown environment by combining the

recent TOSL-QBIASSR learning process with a more

informed action-selection technique. The contributions of this

paper are three-fold:

 The true online SARSA informed-Biased Softmax

Regression (TOSL-iBSR) is proposed which

introduce a heuristic-based cost function to TOSL-

QBIASSR to ensure faster convergence;

 An optimum action-selection is proposed based upon

the maximum probability function value of the state

instead of randomly picking the action; and

 A learning process based upon the Boltzmann

distribution does not use a constant thermodynamic

temperature; rather, an annealing schedule is

introduced to ascertain the global maximum by

moving towards narrower and narrower regions from

wider ones in the start.

The paper is structured as follows: In section II, a brief

summary of RL is presented together with a problem

statement. The proposed approach based upon the existing

QBIASSR algorithm is detailed in Section III. Section IV

addresses the environment setup and implementation issues.

Section V includes simulation results, analysis and discussion.

Finally, section VI summarizes the conclusion and future

work.

II. BACKGROUND

In this section, a brief summary of the related RL

algorithms is provided, followed by the problem statement.

Assumption:
The differential drive robot considered is from the broad class

of Wheeled Mobile Robots (WMRs). It is assumed that the

moving frame is associated to the robot using which location

of the robot  x, y in 2D plane and heading angle can be

updated and available at all times.

2.1 Markov Decision Process

The process of learning and improvement has always been

considered as a built-in feature among humans. Based upon

these characteristics, a well-known mathematician, Alan

Turing, invented the Turing machine in 1936 [21]. This

machine mechanically operated on discrete states, where the

state register stored the state of the machine. It was also

featured with decision-making so as to select suitable actions.

Markov generalized this idea for the situations, where the

outcomes are partly random and partly under the control of a

decision-maker [22]. The process, formally named after

Markov as Markov Decision Process (MDP), is extensively

applied in many disciplines, such as robotics and automatic

control to name a few. An MDP is defined as a 5-tuple

    a, , , , ,S A P Rs s a r s , where

 S is a finite set of states,

 A is a finite set of actions,

  a ,P s s a is the transition probability to define the

chances that the next state s will be picked as a

consequence of action a ,

  R r s is the expected reward received due to

action a while in state s , r is a signed value used for

the reward or punishment,

  are specific parameters for some RL algorithms’

settings. This will be the discount factor  0 1,  and

learning rate  0 1,  in our case.

The output of the process is dependent upon the selection of

the policy :  S A , that specifies the action   s , chosen

by the decision-maker while in state s . The goal of the

Markov record process is to determine the state and reward

sequence given that the policy   s ensures a maximum

cumulative reward. RL has proved itself to be an effective tool

for closed-loop problems that satisfy the Markov property as

to maximize numerical reward in an unknown environment

[11], [23], [24].

2.2 Reinforcement Learning

Almost in all RL algorithms, the main focus of RL algorithms

is upon maximizing policy valueV , which is a direct indicator

of the long-term desirability of states considering the rewards

available in those states.

Widely accepted, Q-learning is probably the most practical

and effective algorithm that belongs to the Temporal

Difference (TD) learning, a model-independent and fully-

incremental algorithm. The state-value functionV 
gives

information about the desirability of that state for an agent

under a policy , and is defined as:

    k kmax Q ,  aV s s a (1)

The successful outcome of the Q-learning (Algorithm 1), as

well as of most RL algorithms is heavily affected by the

exploration and exploitation phenomena. The optimal choice

between these two needs to be made because none of them can

be pursued exclusively without failing at the task. The agent’s

behavior must be evaluated by repeatedly trying different

combinations of parameters and  in order to define the

balance between the two.

236

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 7, No. 3, July 2019

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Algorithm 1: Q-Learning

Input:
 States  1 x, ,nX

Actions  a1,…,nA

Reward function :  R X A

Learning rate  0 1,  , typically  is set to be 0.1

Discounting factor  0 1, 

Procedure:

 Initialize Q :  X A arbitrarily

repeat
 Pick state sX
 repeat
 select new action a (based upon the

exploration strategy)

perform action a

observe new state s and attain reward R
update

        Q s,a Q s,a V s Q s,a     R

   aV s max Q s,a

update state s s
 until s is not a terminal state
 until Q is not converged

Output:
 Best action selection a

An improved and practical modification to the Q-learning,

State-Action-Reward-State-Action (SARSA) [25], performs

the learning based upon the action performed by the current

policy instead of the greedy policy.

         Q , Q , Q , Q ,      Rs a s a s a s a (2)

Hence, a , the action to be performed in the next step must

also be evaluated before updating  Q ,s a . Another variant of

SARSA, the true online SARSA   algorithm (TOSL),

proved to be a more efficient learning process [26].

The recently proposed mechanism, TOSL-QBIASSR,

combines the advantages of both TOSL and softmax

regression. The basic idea is to improve efficiency for the

cases where agent experiences new states with strong

resemblance to already explored ones. In this approach,

softmax regression is performed over a scaled Q-value,

defined as  
biased

Q s :

      
biased

Q Q bias s s s (3)

where,  bias s is a vector generated based upon the

information gathered from other states of Q similar to s . At

each step the bias is updated using averaged information from

sets of states that share some structure with the current state s .

The working of TOSL-QBIASSR is detailed in Algorithm 2

[20]:

Algorithm 2: TOSL Q-biased softmax regression (TOSL-

QBIASSR)

Input:
 States  1 2 m, , ,S s s s

Actions  1 2 p, ,…,A a a a

Input variables  1 2 n, , ,X = x x x

       1 2 pQ Q , ,Q , , ,Q , 
 

s s a s a s a

 iQ ,  S S Xs x subset of states Sss with

     1 2j j j , , ,n i   x ss x s

Agent in state s must select action a given Q

Procedure:

 for all the i x x do

        i i ibias , avg Q , ,  S SSs x s x ss s x ,

pick state Xs
 end

   
0

1 n

i

i

bias bias ,
n 

 s s x

     
biased

Q Q bias s s s

 softmax_selection biasedQ ,Temperature a

Output:

 Best action selection a

2.3 Problem Statement

Consider an agent, in our case a mobile robot, operating in a

virtual environment in the presence of obstacles. Given the

initial state 0s and ending goal state g , the robot has to

determine its path using RL. The path is a sequence of

adjacent traversable cells,     ,next ,next , ,s s s g ; and

 next x stands for the successor of cell x and, for this paper, it

will be the neighboring (adjacent) cell.

III. LEARNING PHASE OF THE AGENT

In mobile robotics, navigation and wandering are considered

as the foremost scenarios for operating with the former

regarded as more complex. In robotics navigation, the task is

to enroute through the obstacles safely and approach the

target. In most RL algorithms, the mobile robot observes the

environment and updates its reward, which it intends to

maximize. Usually, the agent drives itself based upon the

acquisition of the highest award. Therefore, it is desired to

induce information about the goal to accelerate the

achievement of the highest reward, thus also ensuring that the

agent approaches the solution in a finite time.

In TOSL-iBSR (Algorithm 3), an acceptance probability

function  P , ,e e T , depending upon energies  Ee s and

 E e s of the two states and a global time varying

temperatureT , is introduced in order to define the probability

237

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 7, No. 3, July 2019

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Algorithm 3: TOSL informed-biased softmax regression

(TOSL-iBSR)

Input:
 States  1 2 m, , ,S s s s

Actions  1 2 p, ,…,A a a a

Input variables  1 2 n, , ,X = x x x

       1 2 pQ Q , ,Q , , ,Q , 
 

s s a s a s a

Temperature maxT T

 iQ ,  S S Xs x subset of

states Sss with      1 2j j j , , ,n i   x ss x s

Agent in state s must select action a given Q

Procedure:

 for all i x x

        i i ibias , avg Q , ,  S SSs x s x ss s x ,

pick state Xs
 end

generate biased state    
0

1 n

i

i

bias bias ,
n 

 s s x

generate virtual vector      
biased

Q Q bias s s s

temperature update  gT T

input feature for softmax

regression      i biased
Q s s


J

z
T

acceptance probability

function     i

softmaxP , ,  e e T z

select action  argmax P , ,  aa e e T

Output:
 Best action selection a

of making the transition from the current state s to a candidate

new state s . The probability function P is bound to be non-

negative in order to avoid local minimum.

In the proposed algorithm, when computing the input feature

for softmax regression, the energy-based cost function is

introduced by means of the cost function  J s , which is

calculated at each possible next state during the learning

process. Many approaches can be used to define a

suitable  J s as either: heuristic-based function such as the

distance covered from the start, the remaining distance, or a

combination of both. In this work, cost is introduced as the

Euclidean norm of the remaining distance:

    J s s g (4)

The evolution of the state s of the system is also affected by

temperature T . The evolution process is sensitive to coarser

energy variations for a large T ; whereas, for a small T , it is

sensitive to finer such variations. Considering this fact, the

algorithm initializes with quite high temperature, maxT , and

gradually approaches towards zero, 0T , following some

annealing schedule  g T .

    1g   T T T (5)

where,  is considered as a small number. Combining this with

the built-in feature of RL as to search for the states with

highest reward, the agent drifts towards low-energy regions

that become narrower and narrower and, finally, moves

downhill.

To assess the goodness of true online SARSA with informed-

biased softmax regression (TOSL-iBSR), a comparison with

two well-known approaches is made, namely, Q-learning with

softmax regression (Q-SR), and true online SARSA with Q-

biased softmax regression (TOSL-QBIASSR). In the context

of this paper, 2D navigation scenario in Virtual Robot

Experimentation Platform (V-REP) is considered. The setup

and results are described in Section 4 and 5. This comparative

study proves that TOSL-iBSR outperforms other learning

processes, both in terms of the mean-average reward and the

convergence rate.

IV. IMPLEMENTATION PRE-REQUISITES

In the first step, the virtual environments are developed in V-

REP. The routines for the learning process and the robot

movement’s control were written in Python. The versatility of

the scheme that makes it different from others is the use of a

mobile robot with physical characteristics in a virtual

environment. The whole learning process is executed in real-

time where Remote API is used to control the robot’s

movement from within Python.

4.1 Physical characteristics of the mobile robot

The Pioneer 3dx mobile robot, shown in Fig. 1, is a

differential drive robot developed by Adept. The 3D model of

this robot is readily available in the V-REP library. The robot

is equipped with 16 ultrasonic sensors, with related

information as to the obstacles available in Python. It features

2 powered rear wheels and 1 castor wheel.

Fig. 1. Pioneer 3dx

238

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 7, No. 3, July 2019

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

4.2 Modeling of the work environment

The real-world environments are commonly filled with

obstacles of different sizes. Figs. 2 and 3 represents the virtual

scenes developed in V-REP. The elements that exist in the

environments are:

Virtual Scenario 1

Workspace: The environment is a 4 4m grid resembling a

maze, which is fully confined from the outer end.

Obstacles: Three obstacles with size attribute of

 0 1 1 0 0 4. , . , . m , and another bigger one as  0 1 2 0 0 4. , . , . m .

Virtual Scenario 2

Workspace: The environment is a 6 6m grid fully confined

from the outer end.

Obstacles: Five obstacles are placed in a disordered manner

with size attributes of  0 1 0 5 0 4. , . , . m , and  0 1 1 0 0 4. , . , . m .

Target: The target is a bounding box.

Robot and sensors: The Pioneer robot viewable in the scene

is equipped with 16 ultrasonic sensors covering all sides. The

ultrasonic beam angle is defined as 30 and conically shaped

with the range measurement defined as 1 0. m .

Fig. 2. Navigation scenario, 4 4m with obstacles

4.3 Reward Function

The reward value is determined based upon the observation

information of each state. Mostly, the reward value is updated

based upon the distance from the obstacles and/or the target

location. To define a simple yet effective reward function, the

desired end-position of the task is defined as g ; each time the

robot goes within the safe distance d , defined between

obstacle O and the robot, a collision cn is detected. The reward

rules are defined as follows:

0 2 and 1

 and 1

c

c

R ,s g

r . R ,s O n

R ,s O n




   
   

 (6)

Fig. 3. Navigation scenario, 6 6m with obstacles

4.4 Interfacing Python with V-REP

Fig. 4 illustrates the application architecture adapted for the

implementation of the entire process. The architecture is

system-independent; though, depending upon the operating

system, the workspace configuration files need to be selected

from within the V-REP installation folder. These

configuration files consist of Remote API and Dynamic Link

Libraries. The link to the V-REP server can be made through

socket communication by specifying the IP address as well as

a connection port. On the V-REP, Pioneer will perform the

action chosen by Python. The sensory information is, then,

forwarded to Python and is used for calculating the reward

points and the next sequence state.

The task is considered completed once the robot reaches

target g . The first time it comes in close contact with an

obstacle, a small penalty is imposed.

V. SIMULATED EXPERIEMNTS AND DISCUSSIONS

For the experimental evaluation of 2D navigation, the V-REP

scene is kept the same as in [20] for true comparison. The

Pioneer 3dx is a differential drive robot with 2 DC motors and

encoders. The kinematics for the differential drive robot under

no-slippage is

0

0

0 1

x cos
v

y sin








   
    

     
       

 (7)

where, v is the robot translational velocity and  is the robot

rotational velocity defined with respect to the body frame. The

linear and angular velocities of the robot are associated to the

individual wheel’s angular velocities as:

239

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 7, No. 3, July 2019

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Fig. 4. Application architecture

 

 
2

r l

r l

v

W

 

 








 (8)

where, r and l are the angular velocities of the right and the

left wheels, and W is the distance between the two’s centers.

The control input is directly given to the wheels in terms

of r and l .

For the defined task and scenarios, the agent has the freedom

to choose between any of its immediate neighboring states

 E,NE,N,NW,W,SW,S,SE, . The last state, i.e. the null

state, refers to the case where the next state is the same as the

current one; therefore, in total there will be 9 possible

actions. Through preliminary tests, the tuning parameters

 and  are selected as 0.1and 0.9 . Three algorithms: Q-SR,

TOSL-QBIASSR and TOSL-iBSR are evaluated in terms of

the performance.

A. Scene 1: Maze grid 4 4m

The results of the learning process for the three algorithms are

averaged for 6 episodes and plotted against 3600 times steps.

From Fig. 5, it can be observed that the TOSL-iBSR

outperforms both TOSL-QBIASSR and Q-SR. For episodic

tasks, the mean-average reward is a true indicator as it gives

us a clearer picture. At the start of the task, the mean-average

reward is evaluated as negative. It can be witnessed that just

after 500 steps with the learning process in place, the mean-

average reward began to pull up. The QBIASSR shows steady

behavior towards the end of the task as it creeps towards the

iBSR curve; therefore, it will obviously require additional

steps in order to reach it.

The learning curves for the three algorithms are also shown in

Figs. 6-8. The average reward obtained using the Q-SR is

acceptable, but still far from the maximum reward and, hence,

it demands additional convergence time. For the QBIASSR,

the difference between the learning curves is high compared to

iBSR, thereby generating a low mean-average reward as

witnessed in Fig. 5. On the other hand, the Q-SR is observed

to yield much flatter learning process.

Fig. 5. Learning results for 6 episodes

Fig. 6. Average reward for TOSL-iBSR for 6 episodes

240

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 7, No. 3, July 2019

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Fig. 7. Average reward for Q-SR for 6 episodes

Fig. 8. Average reward for TOSL-QBIASSR for 6 episodes

Fig. 9 illustrates the mean-average reward for the three

algorithms over 3600 steps and 6 episodes. This gives us a

clear picture as to the performance of the three algorithms. As

it can be seen, the Q-SR curve shows poor learning since, after

3 episodes, it is still unable to repeat its behavior which is

indicative of a lack of learning, repeatability and consistency.

It shall be stated that the task was not fully completed after

episode 4. The learning curve of iBSR shows that the robot

has learned to perform the task in an effective manner with

continuous improvement; whereas, QBIASSR curve, albeit

starting with a higher reward, remained unable to maintain its

superiority. For implementation, Intel Core 2 Duo processor

under Windows 64 bits has been utilized. To evaluate the

computational cost, CPU time per step (s) is defined as a

measure. The results in Table 1 shows that Q-SR is the second

most effective learning process after TOSL-iBSR; whereas,

TOSL-QBIASSR demanded more learning steps to complete

the task. The same can be observed through Figs. 7 and 8.

Fig. 9. Mean-average reward per 3600 steps

B. Scene 1: Maze grid 6 6m

A more complex scenario (Fig. 3) for navigation is considered

where obstacles are placed randomly. The learning process is

repeated for 6 episodes; 3600 time steps per episode. The

results shown in Fig. 10 highlight the performances of each

learning process. It is worth mentioning that Q-SR has not

been able to complete the task even for once within specified

number of steps. TOSL-QBIASSR has been moderate in

performance and is dominated by TOSL-iBSR for attaining

highest reward. The QBIASSR learning process is very slow

and sluggish as compare to the iBSR whose learning curve

demonstrates notable continuous improvement.

The results of the learning experiments are individually shown

in Figs. 11-13. The average reward obtained using Q-SR is

always negative; therefore, completely fails in this scenario.

For the QBIASSR, in only half of the episodes, the learning

curve has been able to attain steady state value, thereby

generating a low mean-average reward as compare with iBSR

whose performance has been very much consistent

throughout.

The mean-average reward for the three learning processes

over 3600 steps and 6 episodes are shown in Fig. 14. The

learning curve of Q-SR presents continuous attainment of

negative reward; hence, it has not been able to accomplish the

task even for once. The mean average reward obtained using

iBSR exhibits that it started with higher positive value and is

able to continuously improve as compared to QBIASSR that

experiences many ups and down before attaining the steady

state value after 4 episodes. The computational cost for scene

2, shown in Table 1, has been increased due to its complexity.

The computational cost of TOSL with QBIASSR is higher in

magnitude as compared to other two. The TOSL-iBSR found

to be computationally efficient due to the reason that it

requires much lesser number of steps to accomplish the task.

241

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 7, No. 3, July 2019

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Fig. 10. Learning results for 6 episodes

Fig. 11. Average reward for TOSL-iBSR for 6 episodes

Fig. 12. Average reward for Q-SR for 6 episodes

Fig. 13. Average reward for TOSL-QBIASSR for 6 episodes

Fig. 14. Mean-average reward per 3600 steps

Table I

 COMPUTATIONAL COST

 CPU time / step (s)

RL algorithm Scene 1 Scene 2

Q-SR 0.203 0.350

TOSL-QBIASSR 0.352 0.481

TOSL-iBSR 0.040 0.068

VI. CONCLUSION

In this research, a new and improved learning process, named

as, TOSL informed-biased softmax regression (TOSL-iBSR)

is presented for mobile robot navigation. The novel

exploration technique is equipped with the ability to pick the

most suitable action in order to maximize the reward point and

minimize the convergence rate. One of the notable

contributions of the present study is to establish the frame-

work between Python and the V-REP and to use an actual

robot with all physical parameters, instead of merely using a

point robot [27, 28, 29] as in most RL navigation-based

research literature. A virtual scenario for 2D navigation is

generated to test the efficiency of the proposed approach. The

performance of the robot during navigation using the TOSL-

242

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 7, No. 3, July 2019

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

iBSR is, then, compared with the Q-SR and the TOSL-

QBIASSR. Using the approach presented in this paper, the

robot is found to complete the navigation task while attaining

a higher positive reward and less computational cost.

Despite this accomplishment, one of the minor drawbacks that

reduces the generalization may be that the true pose of the

robot is available at all time sequences and that the sensory

information is noise-free, - which is certainly not the case in

real workspaces. In such scenario, an effective approach can

be the introduction of a robust estimation technique. As to the

future work, it involves the extension and testing of the iBSR

for multiple real tasks in actual real-world settings. In

addition, the proposed algorithm can be extended for more

practical high-dimensional tasks. Incorporating DRL into the

proposed algorithm can also generate a promising learning

process. Finally, we intend to test the proposed algorithm in a

more complex environment, namely scattered, denser, and

dynamic.

REFERENCES

[1] S.-H. Kim, C.-W. Roh, S.-C. Kang and M.-Y. Park, "Outdoor navigation

of a mobile robot using differential GPS and curb detection," in

Proceedings of IEEE international conference on Robotics and

Automation, 2007.

[2] L. Moreno, J. M. Armingol, S. Garrido, A. D. L. Escalera and M. A.

Salichs, "A genetic algorithm for mobile robot localization using

ultrasonic sensors," Journal of Intelligent and Robotic Systems, vol. 34,

no. 2, pp. 135-154, 2002.

[3] A. Sinha and P. Papadakis, "Mind the gap: Detection and traversability

analysis of terrain gaps using LIDAR for safe robot navigation,"

Robotica, vol. 31, no. 7, pp. 1085-1101, 2013.

[4] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach,

Pearson Education Limited, 2016.

[5] R. E. Korf, Artificial intelligence search algorithms, Chapman &

Hall/CRC, 2010.

[6] L. E. Kavraki, M. N. Kolountzakis and J.-C. Latombe, "Analysis of

probabilistic roadmaps for path planning," in Proceedings international

conference on robotics and automation, 1996.

[7] N. A. Melchior and R. Simmons, "Particle RRT for path planning with

uncertainty," in Proceedings of IEEE international conference on

robotics and automation, 2007.

[8] S. X. Yang and C. Luo, "A neural network approach to complete

coverage path planning," IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), vol. 34, no. 1, pp. 718-724, 2004.

[9] M. Z. Malik, A. Eizad and M. U. Khan, Path planning algorithms for

mobile robots: a comprehensive comparative analysis, LAP LAMBERT

Academic Publishing, 2014.

[10] M. S. Alam, M. U. Rafique and M. U. Khan, "Mobile robot path

planning in static environments using particle swarm optimization,"

International journal of computer science and electronics engineering,

vol. 3, no. 3, 2015.

[11] R. S. Sutton and A. G. Barto, Reinforcement Learning: An introduction,

MIT press, 2018.

[12] C. J. C. H. Watkins, "Learning from delayed rewards," King's College,

Cambridge, Ph.D. thesis, 1989.

[13] K. L. Smart W, "Practical reinforcement learning in continuous spaces,"

in Proceedings of the seventeenth international conference on machine

learning, 2000.

[14] K. L. Smart W, "Effective reinforcement learning for mobile robots," in

Proceedings of the international conference on robotics and automation,

2002.

[15] D. Aranibar and P. Alsina, "Reinforcement learning-based-path planning

for autonomous robots," ENRI: Encontrol Nacional de Robotica

Inteligente, 2004.

[16] H. Boem and H. Cho, "A sensor-based navigation for a mobile robot

using fuzzy logic and reinforcement learning," IEEE Transaction on

System, Man, and Cybernetics, vol. 25, pp. 464-477, 1995.

[17] N. Yung and C. Ye, "Self-learning fuzzy navigation of mobile vehicle,"

in Proceedings of the international conference on signal processing,

1996.

[18] G. Yang, E. Chen and C. An, "Mobile robot navigation using neural Q-

learning," in IEEE proceedings of the third international conference on

machine learning and cybernetics, 2004.

[19] K. Macek, I. Petrovic and N. Peric, "A reinforcement learning approach

to obstacle avoidance of mobile robots," in 7th international workshop

on advanced motion control, 2002.

[20] A. Martínez-Tenor, J. A. Fernández-Madrigal, A. Cruz-Martín and J.

González-Jiménez, "Towards a common implementation of

reinforcement learning for multiple robotic tasks," Expert Systems with

Applications, vol. 100, pp. 246-259, 2018.

[21] H. Andrew, Alan Turing: The Enigma, Princeton University Press, 2012.

[22] R. Bellman, "A Markovian decision process," Journal of Mathematics

and Mechanics, pp. 679-684, 1957.

[23] A. G. Barto, R. G. Sutton and C. W. Anderson, "Neuronlike elements

that can solve difficult learning control problems," IEEE Transactions on

Systems, Man, and Cybernetics, vol. 13, pp. 835-846, 1983.

[24] A. G. Barto, R. S. Sutton and P. S. Brouwer, "Associative search

network: A reinforcement learning associative memory," Biological

Cybernetics, pp. 201-211, 1981.

[25] G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist

system, vol. 37, Cambridge, England: University of Cambridge,

Department of Engineering, 1994.

[26] H. Van Seijen, M. A. R, P. M. Pilarski and M. M. C. a. S. R. S, "Ture

online temporal-difference learning," The Journal of Machine Learning

Research, vol. 17, no. 1, pp. 5057-5096, 2016.

[27] R. Abiyev, D. Ibrahim and B. Erin, "Navigation of mobile robots in the

presence of obstacles," Advances in Engineering Software, vol. 41, pp.

1179-1186, 2010.

[28] A. I. Panov, K. S. Yakovlev and R. Suvorov, "Grid path planning with

deep reinforcement learning: preliminary results," Procedia Computer

243

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 7, No. 3, July 2019

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Science, vol. 123, pp. 347-353, 2018.

[29] J. d. R. Millan, "Reinforcement learning of goal-directed obstacle-

avoiding reaction strategies in an autonomous mobile robot," Robotics

and Autonomous Systems, vol. 15, pp. 275-299, 1995.

[30] R. Bellman, "The theory of dynamic programming," RAND Corp Sanata

Monica CA, 1954.

BIOGRAPHIES

Muhammad Umer KHAN received the

B.S. in computer science from the

International Islamic University,

Islamabad, in 2004, and the Ph.D. in

electrical engineering from the Pakistan

Institute of Engineering and Applied

Sciences, Islamabad, in 2011.

 From 2011 to 2017, he was serving as

an Assistant Professor with the

Department of Mechatronics Engineering, Air University, He

was a post-doctoral fellow with the Department of Computing,

Hong Kong Polytechnic University, Hong Kong, from 2014 to

2015. Since 2018, he has been with the Mechatronics

Engineering Department, Atilim University, Turkey. His

current research interests include robust control, linear matrix

inequalities, reinforcement learning, vision-based control, and

navigation.

244

http://dergipark.gov.tr/bajece

