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Abstract— In mobile robotics, navigation is considered as one 

of the most primary tasks, which becomes more challenging 

during local navigation when the environment is unknown. 

Therefore, the robot has to explore utilizing the sensory 

information. Reinforcement learning (RL), a biologically-

inspired learning paradigm, has caught the attention of many as 

it has the capability to learn autonomously in an unknown 

environment. However, the randomized behavior of exploration, 

common in RL, increases computation time and cost, hence 

making it less appealing for real-world scenarios. This paper 

proposes an informed-biased softmax regression (iBSR) learning 

process that introduce a heuristic-based cost function to ensure 

faster convergence. Here, the action-selection is not considered as 

a random process, rather, is based on the maximum probability 

function calculated using softmax regression. Through 

experimental simulation scenarios for navigation, the strength of 

the proposed approach is tested and, for comparison and analysis 

purposes, the iBSR learning process is evaluated against two 

benchmark algorithms.  

 
 

Index Terms— Reinforcement learning, mobile robots, 

navigation, autonomous, unknown environment  
 

I. INTRODUCTION 

N RECENT years, the impact of robots in our daily lives and 

in industry has increased by manifolds. According to the 

World Robotics Report 2018, the demand for robots increased 

by 31% in one year as compared to 2016. Whether it is an 

industrial robot, mobile robot or any other, if it has to interact 

with the environment, it should be able to navigate. The task 

of navigation can be further broken down into localization and 

path planning. In localization, the robot’s pose, i.e. its 

orientation and translation needs to be determined with respect 

to the surroundings. Path-planning is a process in which a 

robot should be able to find out its collision-free, feasible path 

in an on-line or off-line fashion, from the start to the goal 

point.  

The task of path-planning can be more challenging in the 

presence of obstacles and in unknown environments. The 

basic trait of the autonomous mobile robot is that it should be 
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able to traverse through the obstacles in a safe manner and 

attain the goal position. Navigation requires the robot to 

continuously update its information about the surroundings 

and plan its next action, accordingly. In general, such 

information is acquired by means of various sources, such as 

GPS [1], ultrasonic [2], and laser range finder [3]. This 

information about the robot’s pose and obstacles’ location is, 

then, utilized to control the movements of the robot through its 

actuators. 

Over the last decade, many researchers have been 

continuously striving to solve the problem of path-planning in 

an effective manner. The most notable algorithms in this 

respect are A* [4], Dijkstra [5], PRM [6], and RRT [7]. More 

recently, researchers have shown their keen interest towards 

biologically-inspired algorithms, such as ANN [8], GA [9], 

PSO [10], and RL [11]. Among these, RL algorithms have 

received special attention due to their efficient problem 

solving in various fields such as control engineering, game 

theory, and even robotics.  

The most renowned one of all RL algorithms is Q-learning 

[12], proposed in 1989, based upon the learning from delayed 

rewards and punishments. Since then, many researchers have 

quite effectively utilized Q-learning for mobile robot 

navigation and obstacle avoidance [13, 14]. The Q-learning 

has also been tested for solving mobile robots’ path-planning 

problem in 3D environments [15]. Many authors have also 

proposed hybrid approaches by combining the un-supervised 

RL with Fuzzy Logic [16, 17], or Artificial Neural Network 

[18, 19].  

The learning process, true online SARSA Q-biased softmax 

regression (TOSL-QBIASSR) [20], evolved from classical Q-

learning, has attempted to tackle a wide variety of robotic 

tasks with minimal tuning required. A complimentary low-

reward-loop evasion algorithm has been utilized to avoid local 

minima sequences. An open-source software framework is 

also developed with a large collection of various learning 

processes.  

Recent research has attempted to integrate deep learning 

with RL as deep reinforcement learning (DRL) to deal with a 

wide variety of control problems. Although, deep learning 

enables an effective learning process for high-dimensional 

tasks, it also requires high computational costs both in terms 

of the number of used cores and computational time. This is a 

drawback which prevents such algorithms to be considered for 

real-time applications. 

From the literature review, the conclusion can be drawn that 

there is a remarkable tendency among researchers to solve 

navigation problems using RL since, in most cases the 
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environment is unknown and involves a great degree of 

uncertainty. The bench marking Q-learning algorithm has 

been tested for many scenarios and is found to be effective as 

it can deal with unknown non-deterministic Markovian 

systems. The more recent TOSL-QBIASSR learning tested for 

multiple tasks is claimed to be effective. Therefore, for 

comparison and analysis, Q-learning with softmax regression 

(Q-SR) and TOSL-QBIASSR has been chosen as the test 

bench.  

In this paper, using simulation, it is shown that the proposed 

approach outperforms the Q-SR and TOSL-QBIASSR. In 

detail, the main focus of this research is to perform 2D 

navigation in an unknown environment by combining the 

recent TOSL-QBIASSR learning process with a more 

informed action-selection technique. The contributions of this 

paper are three-fold:  

 The true online SARSA informed-Biased Softmax 

Regression (TOSL-iBSR) is proposed which 

introduce a heuristic-based cost function to TOSL-

QBIASSR to ensure faster convergence;  

 An optimum action-selection is proposed based upon 

the maximum probability function value of the state 

instead of randomly picking the action; and  

 A learning process based upon the Boltzmann 

distribution does not use a constant thermodynamic 

temperature; rather, an annealing schedule is 

introduced to ascertain the global maximum by 

moving towards narrower and narrower regions from 

wider ones in the start.       

The paper is structured as follows: In section II, a brief 

summary of RL is presented together with a problem 

statement. The proposed approach based upon the existing 

QBIASSR algorithm is detailed in Section III. Section IV 

addresses the environment setup and implementation issues. 

Section V includes simulation results, analysis and discussion. 

Finally, section VI summarizes the conclusion and future 

work.  

 

II. BACKGROUND 

In this section, a brief summary of the related RL 

algorithms is provided, followed by the problem statement. 

 

Assumption: 
The differential drive robot considered is from the broad class 

of Wheeled Mobile Robots (WMRs). It is assumed that the 

moving frame is associated to the robot using which location 

of the robot  x, y in 2D plane and heading angle can be 

updated and available at all times. 

 

2.1 Markov Decision Process 

The process of learning and improvement has always been 

considered as a built-in feature among humans. Based upon 

these characteristics, a well-known mathematician, Alan 

Turing, invented the Turing machine in 1936 [21]. This 

machine mechanically operated on discrete states, where the 

state register stored the state of the machine. It was also 

featured with decision-making so as to select suitable actions. 

Markov generalized this idea for the situations, where the 

outcomes are partly random and partly under the control of a 

decision-maker [22]. The process, formally named after 

Markov as Markov Decision Process (MDP), is extensively 

applied in many disciplines, such as robotics and automatic 

control to name a few. An MDP is defined as a 5-tuple 

    a, , , , ,S A P Rs s a r s , where 

 S is a finite set of states, 

 A is a finite set of actions, 

  a ,P s s a is the transition probability to define the 

chances that the next state s will be picked as a 

consequence of action a , 

  R r s is the expected reward received due to 

action a while in state s , r is a signed value used for 

the reward or punishment, 

  are specific parameters for some RL algorithms’ 

settings. This will be the discount factor  0 1,  and 

learning rate  0 1,   in our case.   

The output of the process is dependent upon the selection of 

the policy  :  S A , that specifies the action   s , chosen 

by the decision-maker while in state s . The goal of the 

Markov record process is to determine the state and reward 

sequence given that the policy   s ensures a maximum 

cumulative reward. RL has proved itself to be an effective tool 

for closed-loop problems that satisfy the Markov property as 

to maximize numerical reward in an unknown environment 

[11], [23], [24].     

 

2.2 Reinforcement Learning 

Almost in all RL algorithms, the main focus of RL algorithms 

is upon maximizing policy valueV , which is a direct indicator 

of the long-term desirability of states considering the rewards 

available in those states.  

Widely accepted, Q-learning is probably the most practical 

and effective algorithm that belongs to the Temporal 

Difference (TD) learning, a model-independent and fully-

incremental algorithm. The state-value functionV 
gives 

information about the desirability of that state for an agent 

under a policy , and is defined as: 

    k kmax Q ,  aV s s a   (1) 

The successful outcome of the Q-learning (Algorithm 1), as 

well as of most RL algorithms is heavily affected by the 

exploration and exploitation phenomena. The optimal choice 

between these two needs to be made because none of them can 

be pursued exclusively without failing at the task. The agent’s 

behavior must be evaluated by repeatedly trying different 

combinations of parameters and  in order to define the 

balance between the two.    
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Algorithm 1: Q-Learning 

Input: 
 States  1 x, ,nX   

Actions  a1,…,nA   

Reward function :  R X A   

Learning rate  0 1,  , typically  is set to be 0.1 

Discounting factor  0 1,    

 
Procedure:    

 Initialize Q :  X A  arbitrarily 

repeat  
  Pick state sX  
  repeat 
   select new action a (based upon the 

exploration strategy) 

perform action a   

observe new state s and attain reward R  
update 

        Q s,a Q s,a V s Q s,a     R  

   aV s max Q s,a   

update state s s      
  until s is not a terminal state   
 until Q is not converged 

Output: 
 Best action selection a   

 

An improved and practical modification to the Q-learning, 

State-Action-Reward-State-Action (SARSA) [25], performs 

the learning based upon the action performed by the current 

policy instead of the greedy policy.    

         Q , Q , Q , Q ,      Rs a s a s a s a   (2) 

Hence, a , the action to be performed in the next step must 

also be evaluated before updating  Q ,s a . Another variant of 

SARSA, the true online SARSA   algorithm (TOSL), 

proved to be a more efficient learning process [26].  

The recently proposed mechanism, TOSL-QBIASSR, 

combines the advantages of both TOSL and softmax 

regression. The basic idea is to improve efficiency for the 

cases where agent experiences new states with strong 

resemblance to already explored ones. In this approach, 

softmax regression is performed over a scaled Q-value, 

defined as  
biased

Q s : 

      
biased

Q Q bias s s s   (3) 

where,  bias s is a vector generated based upon the 

information gathered from other states of Q similar to s . At 

each step the bias is updated using averaged information from 

sets of states that share some structure with the current state s . 

The working of TOSL-QBIASSR is detailed in Algorithm 2 

[20]: 

 

Algorithm 2: TOSL Q-biased softmax regression (TOSL-

QBIASSR) 

Input: 
 States  1 2 m, , ,S s s s   

Actions  1 2 p, ,…,A a a a   

Input variables  1 2 n, , ,X = x x x  

       1 2 pQ Q , ,Q , , ,Q , 
 

s s a s a s a   

 iQ ,  S S Xs x subset of states Sss with 

     1 2j j j , , ,n i   x ss x s     

Agent in state s must select action a given Q    

 
Procedure:    

 for all the i x x do   

             i i ibias , avg Q , ,  S SSs x s x ss s x , 

pick state Xs  
 end 

   
0

1 n

i

i

bias bias ,
n 

 s s x   

     
biased

Q Q bias s s s   

 softmax_selection biasedQ ,Temperature a   

 

Output: 

 Best action selection a   

 

2.3 Problem Statement 

Consider an agent, in our case a mobile robot, operating in a 

virtual environment in the presence of obstacles. Given the 

initial state 0s and ending goal state g , the robot has to 

determine its path using RL. The path is a sequence of 

adjacent traversable cells,     ,next ,next , ,s s s g ; and 

 next x stands for the successor of cell x and, for this paper, it 

will be the neighboring (adjacent) cell. 

III. LEARNING PHASE OF THE AGENT 

In mobile robotics, navigation and wandering are considered 

as the foremost scenarios for operating with the former 

regarded as more complex. In robotics navigation, the task is 

to enroute through the obstacles safely and approach the 

target. In most RL algorithms, the mobile robot observes the 

environment and updates its reward, which it intends to 

maximize. Usually, the agent drives itself based upon the 

acquisition of the highest award. Therefore, it is desired to 

induce information about the goal to accelerate the 

achievement of the highest reward, thus also ensuring that the 

agent approaches the solution in a finite time.  

In TOSL-iBSR (Algorithm 3), an acceptance probability 

function  P , ,e e T , depending upon energies  Ee s and 

 E e s of the two states and a global time varying 

temperatureT , is introduced in order to define the probability  
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Algorithm 3: TOSL informed-biased softmax regression 

(TOSL-iBSR) 

Input: 
 States  1 2 m, , ,S s s s   

Actions  1 2 p, ,…,A a a a   

Input variables  1 2 n, , ,X = x x x  

       1 2 pQ Q , ,Q , , ,Q , 
 

s s a s a s a   

Temperature maxT T   

 iQ ,  S S Xs x subset of 

states Sss with      1 2j j j , , ,n i   x ss x s     

Agent in state s must select action a given Q    

 
Procedure:    

 for all i x x    

             i i ibias , avg Q , ,  S SSs x s x ss s x  , 

pick state Xs  
 end 

generate biased state    
0

1 n

i

i

bias bias ,
n 

 s s x   

generate virtual vector      
biased

Q Q bias s s s  

temperature update  gT T    

input feature for softmax 

regression      i biased
Q s s


J

z
T

  

acceptance probability 

function     i

softmaxP , ,  e e T z   

select action  argmax  P , ,  aa e e T   

Output: 
 Best action selection a  

 

of making the transition from the current state s to a candidate 

new state s . The probability function P is bound to be non-

negative in order to avoid local minimum. 

In the proposed algorithm, when computing the input feature 

for softmax regression, the energy-based cost function is 

introduced by means of the cost function  J s , which is 

calculated at each possible next state during the learning 

process. Many approaches can be used to define a 

suitable  J s as either: heuristic-based function such as the 

distance covered from the start, the remaining distance, or a 

combination of both. In this work, cost is introduced as the 

Euclidean norm of the remaining distance:  

    J s s g   (4) 

The evolution of the state s of the system is also affected by 

temperature T . The evolution process is sensitive to coarser 

energy variations for a large T ; whereas, for a small T , it is 

sensitive to finer such variations.  Considering this fact, the 

algorithm initializes with quite high temperature, maxT , and 

gradually approaches towards zero, 0T , following some 

annealing schedule  g T . 

    1g   T T T   (5) 

where,  is considered as a small number. Combining this with 

the built-in feature of RL as to search for the states with 

highest reward, the agent drifts towards low-energy regions 

that become narrower and narrower and, finally, moves 

downhill. 

To assess the goodness of true online SARSA with informed-

biased softmax regression (TOSL-iBSR), a comparison with 

two well-known approaches is made, namely, Q-learning with 

softmax regression (Q-SR), and true online SARSA with Q-

biased softmax regression (TOSL-QBIASSR). In the context 

of this paper, 2D navigation scenario in Virtual Robot 

Experimentation Platform (V-REP) is considered. The setup 

and results are described in Section 4 and 5. This comparative 

study proves that TOSL-iBSR outperforms other learning 

processes, both in terms of the mean-average reward and the 

convergence rate.  

IV. IMPLEMENTATION PRE-REQUISITES 

In the first step, the virtual environments are developed in V-

REP. The routines for the learning process and the robot 

movement’s control were written in Python. The versatility of 

the scheme that makes it different from others is the use of a 

mobile robot with physical characteristics in a virtual 

environment. The whole learning process is executed in real-

time where Remote API is used to control the robot’s 

movement from within Python.  

 

4.1 Physical characteristics of the mobile robot 

The Pioneer 3dx mobile robot, shown in Fig. 1, is a 

differential drive robot developed by Adept. The 3D model of 

this robot is readily available in the V-REP library. The robot 

is equipped with 16 ultrasonic sensors, with related 

information as to the obstacles available in Python. It features 

2 powered rear wheels and 1 castor wheel. 

 

 

 
Fig. 1. Pioneer 3dx 
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4.2 Modeling of the work environment 

The real-world environments are commonly filled with 

obstacles of different sizes. Figs. 2 and 3 represents the virtual 

scenes developed in V-REP. The elements that exist in the 

environments are: 

Virtual Scenario 1 

Workspace: The environment is a 4 4m grid resembling a 

maze, which is fully confined from the outer end. 

Obstacles: Three obstacles with size attribute of 

 0 1 1 0 0 4. , . , . m , and another bigger one as  0 1 2 0 0 4. , . , . m . 

Virtual Scenario 2 

Workspace: The environment is a 6 6m grid fully confined 

from the outer end. 

Obstacles: Five obstacles are placed in a disordered manner 

with size attributes of  0 1 0 5 0 4. , . , . m , and  0 1 1 0 0 4. , . , . m . 

 

Target: The target is a bounding box. 

Robot and sensors: The Pioneer robot viewable in the scene 

is equipped with 16 ultrasonic sensors covering all sides. The 

ultrasonic beam angle is defined as 30 and conically shaped 

with the range measurement defined as 1 0. m .     

 

 

 
Fig. 2. Navigation scenario, 4 4m with obstacles 

4.3 Reward Function 

The reward value is determined based upon the observation 

information of each state. Mostly, the reward value is updated 

based upon the distance from the obstacles and/or the target 

location. To define a simple yet effective reward function, the 

desired end-position of the task is defined as g ; each time the 

robot goes within the safe distance d , defined between 

obstacle O and the robot, a collision cn is detected. The reward 

rules are defined as follows: 

 

                

0 2     and 1

 and 1

c

c

R ,s g

r . R ,s O n

R ,s O n




   
   

  (6) 

 

 

 

 

 

 

 
Fig. 3. Navigation scenario, 6 6m with obstacles 

4.4 Interfacing Python with V-REP 

Fig. 4 illustrates the application architecture adapted for the 

implementation of the entire process. The architecture is 

system-independent; though, depending upon the operating 

system, the workspace configuration files need to be selected 

from within the V-REP installation folder. These 

configuration files consist of Remote API and Dynamic Link 

Libraries. The link to the V-REP server can be made through 

socket communication by specifying the IP address as well as 

a connection port. On the V-REP, Pioneer will perform the 

action chosen by Python. The sensory information is, then, 

forwarded to Python and is used for calculating the reward 

points and the next sequence state.  

The task is considered completed once the robot reaches 

target g . The first time it comes in close contact with an 

obstacle, a small penalty is imposed. 

V. SIMULATED EXPERIEMNTS AND DISCUSSIONS 

For the experimental evaluation of 2D navigation, the V-REP 

scene is kept the same as in [20] for true comparison. The 

Pioneer 3dx is a differential drive robot with 2 DC motors and 

encoders. The kinematics for the differential drive robot under 

no-slippage is 

 

0

0

0 1

x cos
v

y sin








   
    

     
       

  (7) 

where, v is the robot translational velocity and  is the robot 

rotational velocity defined with respect to the body frame. The 

linear and angular velocities of the robot are associated to the 

individual wheel’s angular velocities as: 
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Fig. 4. Application architecture

 

 

 

 

 
2

r l

r l

v

W

 

 








  (8) 

where, r and l are the angular velocities of the right and the 

left wheels, and W is the distance between the two’s centers. 

The control input is directly given to the wheels in terms 

of r and l . 

For the defined task and scenarios, the agent has the freedom 

to choose between any of its immediate neighboring states 

 E,NE,N,NW,W,SW,S,SE, . The last state, i.e. the null 

state, refers to the case where the next state is the same as the 

current one; therefore, in total there will be 9 possible  

actions. Through preliminary tests, the tuning parameters 

 and  are selected as 0.1and 0.9 . Three algorithms: Q-SR, 

TOSL-QBIASSR and TOSL-iBSR are evaluated in terms of 

the performance.  

A. Scene 1: Maze grid 4 4m  

The results of the learning process for the three algorithms are 

averaged for 6 episodes and plotted against 3600 times steps. 

From Fig. 5, it can be observed that the TOSL-iBSR 

outperforms both TOSL-QBIASSR and Q-SR. For episodic 

tasks, the mean-average reward is a true indicator as it gives 

us a clearer picture. At the start of the task, the mean-average 

reward is evaluated as negative. It can be witnessed that just 

after 500 steps with the learning process in place, the mean-

average reward began to pull up. The QBIASSR shows steady 

behavior towards the end of the task as it creeps towards the 

iBSR curve; therefore, it will obviously require additional 

steps in order to reach it. 

The learning curves for the three algorithms are also shown in 

Figs. 6-8. The average reward obtained using the Q-SR is 

acceptable, but still far from the maximum reward and, hence, 

it demands additional convergence time. For the QBIASSR, 

the difference between the learning curves is high compared to 

iBSR, thereby generating a low mean-average reward as 

witnessed in Fig. 5. On the other hand, the Q-SR is observed 

to yield much flatter learning process. 

 

 

 

 

 

 

 
Fig. 5. Learning results for 6 episodes 

 

 

 

Fig. 6. Average reward for TOSL-iBSR for 6 episodes 
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Fig. 7. Average reward for Q-SR for 6 episodes 

 

 

 

 
Fig. 8. Average reward for TOSL-QBIASSR for 6 episodes 

Fig. 9 illustrates the mean-average reward for the three 

algorithms over 3600 steps and 6 episodes. This gives us a 

clear picture as to the performance of the three algorithms. As 

it can be seen, the Q-SR curve shows poor learning since, after 

3 episodes, it is still unable to repeat its behavior which is 

indicative of a lack of learning, repeatability and consistency. 

It shall be stated that the task was not fully completed after 

episode 4. The learning curve of iBSR shows that the robot 

has learned to perform the task in an effective manner with 

continuous improvement; whereas, QBIASSR curve, albeit 

starting with a higher reward, remained unable to maintain its 

superiority. For implementation, Intel Core 2 Duo processor 

under Windows 64 bits has been utilized. To evaluate the 

computational cost, CPU time per step (s) is defined as a 

measure. The results in Table 1 shows that Q-SR is the second 

most effective learning process after TOSL-iBSR; whereas, 

TOSL-QBIASSR demanded more learning steps to complete 

the task. The same can be observed through Figs. 7 and 8.  

 
Fig. 9. Mean-average reward per 3600 steps 

 

B. Scene 1: Maze grid 6 6m  

A more complex scenario (Fig. 3) for navigation is considered 

where obstacles are placed randomly. The learning process is 

repeated for 6 episodes; 3600 time steps per episode. The 

results shown in Fig. 10 highlight the performances of each 

learning process. It is worth mentioning that Q-SR has not 

been able to complete the task even for once within specified 

number of steps. TOSL-QBIASSR has been moderate in 

performance and is dominated by TOSL-iBSR for attaining 

highest reward. The QBIASSR learning process is very slow 

and sluggish as compare to the iBSR whose learning curve 

demonstrates notable continuous improvement.  

The results of the learning experiments are individually shown 

in Figs. 11-13. The average reward obtained using Q-SR is 

always negative; therefore, completely fails in this scenario. 

For the QBIASSR, in only half of the episodes, the learning 

curve has been able to attain steady state value, thereby 

generating a low mean-average reward as compare with iBSR 

whose performance has been very much consistent 

throughout. 

The mean-average reward for the three learning processes 

over 3600 steps and 6 episodes are shown in Fig. 14. The 

learning curve of Q-SR presents continuous attainment of 

negative reward; hence, it has not been able to accomplish the 

task even for once. The mean average reward obtained using 

iBSR exhibits that it started with higher positive value and is 

able to continuously improve as compared to QBIASSR that 

experiences many ups and down before attaining the steady 

state value after 4 episodes. The computational cost for scene 

2, shown in Table 1, has been increased due to its complexity. 

The computational cost of TOSL with QBIASSR is higher in 

magnitude as compared to other two. The TOSL-iBSR found 

to be computationally efficient due to the reason that it 

requires much lesser number of steps to accomplish the task. 
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Fig. 10. Learning results for 6 episodes 

 
Fig. 11. Average reward for TOSL-iBSR for 6 episodes 

 
Fig. 12. Average reward for Q-SR for 6 episodes 

 

 
Fig. 13. Average reward for TOSL-QBIASSR for 6 episodes 

 

 

 
Fig. 14. Mean-average reward per 3600 steps 

 

Table I 

 COMPUTATIONAL COST 

 CPU time / step (s) 

RL algorithm Scene 1 Scene 2 

Q-SR 0.203 0.350 

TOSL-QBIASSR 0.352 0.481 

TOSL-iBSR 0.040 0.068 

 

VI. CONCLUSION 

In this research, a new and improved learning process, named 

as, TOSL informed-biased softmax regression (TOSL-iBSR) 

is presented for mobile robot navigation. The novel 

exploration technique is equipped with the ability to pick the 

most suitable action in order to maximize the reward point and 

minimize the convergence rate. One of the notable 

contributions of the present study is to establish the frame-

work between Python and the V-REP and to use an actual 

robot with all physical parameters, instead of merely using a 

point robot [27, 28, 29] as in most RL navigation-based 

research literature. A virtual scenario for 2D navigation is 

generated to test the efficiency of the proposed approach. The 

performance of the robot during navigation using the TOSL-
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iBSR is, then, compared with the Q-SR and the TOSL-

QBIASSR. Using the approach presented in this paper, the 

robot is found to complete the navigation task while attaining 

a higher positive reward and less computational cost. 

Despite this accomplishment, one of the minor drawbacks that 

reduces the generalization may be that the true pose of the 

robot is available at all time sequences and that the sensory 

information is noise-free, - which is certainly not the case in 

real workspaces. In such scenario, an effective approach can 

be the introduction of a robust estimation technique. As to the 

future work, it involves the extension and testing of the iBSR 

for multiple real tasks in actual real-world settings. In 

addition, the proposed algorithm can be extended for more 

practical high-dimensional tasks. Incorporating DRL into the 

proposed algorithm can also generate a promising learning 

process. Finally, we intend to test the proposed algorithm in a 

more complex environment, namely scattered, denser, and 

dynamic.  
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