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Abstract
A class of inverse problems for a heat equation with involution perturbation is considered
using four different boundary conditions, namely, Dirichlet, Neumann, periodic and anti-
periodic boundary conditions. Proved theorems on existence and uniqueness of solutions
to these problems are presented. Solutions are obtained in the form of series expansion
using a set of appropriate orthogonal basis for each problem. Convergence of the obtained
solutions is also discussed.
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1. Introduction
Differential equations with modified arguments are equations in which the unknown

function and its derivatives are evaluated with modifications of time or space variables;
such equations are called in general functional differential equations. Among such equa-
tions, one can single out equations with involutions [9].

Definition 1.1. [11, 42] A function α(x) ̸≡ x that maps a set of real numbers, Γ, onto
itself and satisfies on Γ the condition

α (α(x)) = x, or α−1(x) = α(x)
is called an involution on Γ.

Equations containing involution are equations with an alternating deviation (at x∗ < x
being equations with advanced, and at x∗ > x being equations with delay, where x∗ is a
fixed point of the mapping α(x)).

Equations with involutions have been studied by many researchers, for example, Ashyra-
lyev [5,6], Babbage [7], Przewoerska-Rolewicz [27–33], Aftabizadeh and Col. [1], Andreev
[3, 4], Burlutskayaa and Col. [8], Gupta [13–15], Kirane [20], Watkins [39], and Wiener
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[40–43]. Spectral problems and inverse problems for equations with involutions have re-
ceived a lot of attention as well, see for example, [18, 22, 35–37], and equations with a
delay in the space variable have been the subject of many research papers, see for exam-
ple, [2, 34]. Furthermore, for equations containing transformation of the spatial variable
in the diffusion term, we can cite the talk of Cabada and Tojo [10], where they gave an
example that describes a concrete situation in physics: Consider a metal wire around a
thin sheet of insulating material in a way that some parts overlap some others as shown
in Figure 1.

Figure 1. An application of heat equation with involution [10]

Assuming that the position y = 0 is the lowest of the wire, and the insulation goes up
to the left at −Y and to the right up to Y. For the proximity of two sections of wires they
added the third term with modifications on the spatial variable to the right-hand side of
the heat equation with respect to the wire:

∂T

∂t
(y, t) = a

∂2T

∂y2 (y, t) + b
∂2T

∂y2 (−y, t).

Such equations have also a purely theoretical value. For general facts about partial func-
tional differential equations and for properties of equations with involutions in particular,
we refer the reader to the books of Skubachevskii [38], Wu [44] and Cabada and Tojo [9].

In this paper, we consider inverse problems for a heat equation with involution using
four different boundary conditions. We seek formal solutions to these problems in a form
of series expansions using orthogonal basis obtained by separation of variables and we also
examine the convergence of the obtained series solutions. The main results on existence
and uniqueness are formulated in four theorems in the last section of this paper along with
an illustrating example.

Concerning inverse problems for heat equations, some recent works have been imple-
mented by Kaliev [16,17], Sadybekov [25,26] and Kirane [12,19].

2. Statements of problems
Consider the heat equation

ut (x, t) − uxx (x, t) + εuxx (−x, t) = f (x) , (x, t) ∈ Ω, (2.1)
where, ε is a nonzero real number such that |ε| < 1 and Ω is a rectangular domain given
by Ω = {−π < x < π, 0 < t < T}. Our aim is to find a regular solution to the following
four inverse problems:
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IP1: Inverse Problem with Dirichlet Boundary Conditions.
Find a pair of functions u (x, t) and f (x) in the domain Ω satisfying equation (2.1) and
the conditions

u (x, 0) = φ (x) , u (x, T ) = ψ (x) , x ∈ [−π, π] , (2.2)
and the homogeneous Dirichlet boundary conditions

u (−π, t) = 0, u (π, t) = 0, t ∈ [0, T ] , (2.3)
where φ (x) and ψ (x) are given, sufficiently smooth functions.

IP2: Inverse Problem with Neumann Boundary Conditions.
Find a pair of functions u (x, t) and f (x) in the domain Ω satisfying equation (2.1),
conditions (2.2) and the homogeneous Neumann boundary conditions

ux (−π, t) = 0, ux (π, t) = 0, t ∈ [0, T ] . (2.4)
IP3: Inverse Problem with Periodic Boundary Conditions.

Find a pair of functions u (x, t) and f (x) in the domain Ω satisfying equation (2.1),
conditions (2.2) and the periodic boundary conditions

u (−π, t) = u (π, t) , ux (−π, t) = ux (π, t) , t ∈ [0, T ] . (2.5)
IP4: Inverse Problem with Anti-Periodic Boundary Conditions.

Find a pair of functions u (x, t) and f (x) in the domain Ω satisfying equation (2.1),
conditions (2.2) and the anti-periodic boundary conditions

u (−π, t) = −u (π, t) , ux (−π, t) = −ux (π, t) , t ∈ [0, T ] . (2.6)
By a regular solution of problems IP1, IP2, IP3 and IP4, we mean a pair of functions

u (x, t) and f (x) of the class u (x, t) ∈ C2,1
x,t (Ω) , f (x) ∈ C [−π, π] .

3. Solution method
Here we seek solutions to problems IP1, IP2, IP3 and IP4 in a form of series expansion

using a set of functions that form orthogonal basis in L2(−π, π). To find the appropriate set
of functions for each problem, we shall solve the homogeneous equation corresponding to
equation (2.1) along with the associated boundary conditions using separation of variables.

3.1. Spectral problems
Separation of variables leads to the following spectral problems for IP1, IP2, IP3 and

IP4, respectively,
X ′′(x) − ϵX ′′(−x) + λX(x) = 0, X(−π) = X(π) = 0, (3.1)

X ′′(x) − ϵX ′′(−x) + λX(x) = 0, X ′(−π) = X ′(π) = 0, (3.2)

X ′′(x) − ϵX ′′(−x) + λX(x) = 0, X(−π) = X(π), X ′(−π) = X ′(π), (3.3)

X ′′(x) − ϵX ′′(−x) + λX(x) = 0, X(−π) = −X(π), X ′(−π) = −X ′(π). (3.4)
The eigenvalue problems (3.1) - (3.4) are self-adjoint and hence they have real eigenval-
ues and their eigenfunctions form a complete orthogonal basis in L2 (−π, π) [24]. Their
eigenvalues are, respectively, given by

λ1k = (1 − ε)
(
k + 1

2

)2
, k ∈ N ∪ {0} , λ2k = (1 + ε) k2, k ∈ N, (7.a)
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λ1k = (1 − ε) k2, λ2k = (1 + ε)
(
k + 1

2

)2
, k ∈ N ∪ {0} , (8.a)

λ1k = (1 − ε) k2, k ∈ N ∪ {0} , λ2k = (1 + ε) k2, k ∈ N, (9.a)

λ1k = (1 + ε)
(
k + 1

2

)2
, λ2k = (1 − ε)

(
k + 1

2

)2
, k ∈ N ∪ {0} , (10.a)

and the corresponding eigenfunctions are given by

X1k = cos
(
k + 1

2

)
x, k ∈ N ∪ {0} , X2k = sin kx, k ∈ N, (7.b)

X0 = 1, X1k = cos kx, k ∈ N, X2k = sin
(
k + 1

2

)
x, k ∈ N ∪ {0} , (8.b)

X0 = 1, X1k = cos kx, X2k = sin kx, k ∈ N, (9.b)

X1k = sin
(
k + 1

2

)
x X2k = cos

(
k + 1

2

)
x, k ∈ N ∪ {0} . (10.b)

Lemma 3.1. The systems of functions (7.b) - (10.b) are complete and orthogonal in
L2 (−π, π) .

Proof. Here we present the proof for the system of functions (7.b). The orthogonality
follows from the direct calculations:∫ π

−π
X1nX2m dx = 0, n ∈ N ∪ {0} , m ∈ N,

and ∫ π

−π
XinXim dx = 0, m ̸= n, i = 1, 2.

Hence, it only remains to prove the completeness of the system in L2(−π, π), i.e., we need
to show that if∫ π

−π
f(x) cos

(
k + 1

2

)
x dx = 0, k ∈ N ∪ {0} , (3.5)

and ∫ π

−π
f(x) sin kx dx = 0, k ∈ N, (3.6)

then f(x) ≡ 0 in (−π, π). To show this, we are going to use the fact that
{

cos
(
k + 1

2

)
x
}

k∈N∪{0}
and {sin kx}k∈N are complete in L2(0, π), see [23] for example. Now, suppose that the
equation (3.5) holds. We then have

0 =
∫ π

−π
f(x) cos

(
k + 1

2

)
x dx =

∫ π

0
(f(x) + f(−x)) cos

(
k + 1

2

)
x dx.

Hence, by the completeness of the system
{

cos
(
k + 1

2

)
x
}

k∈N∪{0}
in L2(0, π), we have

f(x) = −f(−x), −π < x < π. Similarly, if equation (3.6) holds, we have

0 =
∫ π

−π
f(x) sin kx dx =

∫ π

0
(f(x) − f(−x)) sin kx dx.

Then, by the completeness of the system {sin kx}k∈N in L2(0, π), we have f(x) = f(−x), −π <
x < π. Therefore, we must have f(x) ≡ 0 in (−π, π). Completeness and orthogonality of
the systems of functions (8.b) - (10.b) can be proved similarly. �

Since each one of the systems of eigenfunctions (7.b) - (10.b) is complete and forms
a basis in L2 (−π, π), the solution pair u(x, t) and f(x) of each inverse problem can be
expressed in a form of series expansion using the appropriate set of eigenfunctions.
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3.2. Existence of solutions
Here, we give a full proof of existence of solution to the Inverse Problem IP1. Existence

of solutions to the other three problems can be proved similarly. Using the orthogonal
system (7.b), the functions u (x, t) and f (x) can be represented as follows

u (x, t) =
∞∑

k=0
u1k (t) cos

(
k + 1

2

)
x+

∞∑
k=1

u2k (t) sin kx, (3.7)

f (x) =
∞∑

k=0
f1k cos

(
k + 1

2

)
x+

∞∑
k=1

f2k sin kx, (3.8)

where the coefficients u1k (t) , u2k (t) , f1k, f2k are unknown. Substituting (3.7) and (3.8)
into equation (2.1), we obtain the following equations relating the functions u1k (t) , u2k (t)
and the constants f1k, f2k:

u′
1k (t) + (1 − ε)

(
k + 1

2

)2
u1k (t) = f1k, (3.9)

u′
2k (t) + (1 + ε) k2 u2k (t) = f2k. (3.10)

Solving these equations we obtain

u1k (t) = f1k

(1 − ε)
(
k + 1

2

)2 + C1ke
−(1−ε)(k+ 1

2 )2
t,

u2k (t) = f2k

(1 + ε) k2 + C2ke
−(1+ε)k2t,

where the unknown constants C1k, C2k, f1k, f2k are to be determined using the conditions
in (2.2). Let φik, ψik, i = 1, 2 be the coefficients of the series expansions of φ (x) and ψ (x),
respectively, i.e.,

φ1k = 1
π

π∫
−π

φ (x) cos
(
k + 1

2

)
x dx, φ2k = 1

π

π∫
−π

φ (x) sin kx dx,

ψ1k = 1
π

π∫
−π

ψ (x) cos
(
k + 1

2

)
x dx, ψ2k = 1

π

π∫
−π

ψ (x) sin kx dx.

Then, the two conditions in (2.2) leads to

f1k

(1 − ε)
(
k + 1

2

)2 + C1k = φ1k,
f1k

(1 − ε)
(
k + 1

2

)2 + C1ke
−(1−ε)(k+ 1

2 )2
T = ψ1k,

f2k

(1 + ε) k2 + C2k = φ2k,
f2k

(1 + ε) k2 + C2ke
−(1+ε)k2T = ψ2k.

Solving these set of algebraic equations, we get

C1k = φ1k − ψ1k

1 − e−(1−ε)(k+ 1
2 )2

T
, f1k = (1 − ε)

(
k + 1

2

)2
(φ1k − C1k) ,

C2k = φ2k − ψ2k

1 − e−(1+ε)k2T
, f2k = (1 + ε) k2 (φ2k − C2k) .
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Now, substituting u1k (t) , u2k (t) , f1k, f2k into (3.7) and (3.8) we get

u (x, t) = φ (x) +
∞∑

k=0
C1k

(
e−(1−ε)(k+ 1

2 )2
t − 1

)
cos

(
k + 1

2

)
x

+
∞∑

k=1
C2k

(
e−(1+ε)k2t − 1

)
sin kx,

and

f (x) = −φ′′ (x) + εφ′′ (−x) −
∞∑

k=0
(1 − ε)

(
k + 1

2

)2
C1k cos

(
k + 1

2

)
x

−
∞∑

k=1
(1 + ε) k2C2k sin kx.

Note that for f (x) ∈ C [−π, π], it is required that φ(x) ∈ C2 [−π, π].

3.3. Convergence of series
In order to justify that the obtained formal solution is indeed a true solution, we need

to show that the series appeared in u(x, t) and f(x) as well as the corresponding series
representations of uxx(x, t) and ut(x, t) converge uniformly in Ω. For this purpose, let

φ(i) (−π) = φ(i) (π) = 0, i = 0, 2,

ψ(i) (−π) = ψ(i) (π) = 0, i = 0, 2.
Hence, on integration by parts, C1k and C2k can now be rewritten as

C1k =
φ

(3)
2k − ψ

(3)
2k(

1 − e−(1−ε)(k+ 1
2 )2

T
)(

k + 1
2

)3 , C2k = −
φ

(3)
1k − ψ

(3)
1k(

1 − e−(1+ε)k2T
)
k3 .

where,

φ
(3)
1k = 1

π

π∫
−π

φ′′′ (x) cos kx dx, φ
(3)
2k = 1

π

π∫
−π

φ′′′ (x) sin
(
k + 1

2

)
x dx,

ψ
(3)
1k = 1

π

π∫
−π

ψ′′′ (x) cos kx dx, ψ
(3)
2k = 1

π

π∫
−π

ψ′′′ (x) sin
(
k + 1

2

)
x dx.

Hence, the series representation of u (x, t) and f(x) can be expressed as

u (x, t) = φ (x) +
∞∑

k=1

1 − e−(1+ε)k2t

1 − e−(1+ε)k2T

(
φ

(3)
1k − ψ

(3)
1k

k3

)
sin kx

−
∞∑

k=0

1 − e−(1−ε)(k+ 1
2 )2

t

1 − e−(1−ε)(k+ 1
2 )2

T

φ(3)
2k − ψ

(3)
2k(

k + 1
2

)3

 cos
(
k + 1

2

)
x,

and

f (x) = −φ′′ (x) + εφ′′ (−x) +
∞∑

k=1

1 + ε

k

(
φ

(3)
1k − ψ

(3)
1k

1 − e−(1+ε)k2T

)
sin kx

−
∞∑

k=0

(1 − ε)(
k + 1

2

) ( φ
(3)
2k − ψ

(3)
2k

1 − e−(1−ε)(k+ 1
2 )2

T

)
cos

(
k + 1

2

)
x.
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For convergence, we then have the following estimates for u (x, t) and f (x)

|u (x, t)| ≤ |φ (x)| + c
∞∑

k=1

∣∣∣φ(3)
1k

∣∣∣+ ∣∣∣ψ(3)
1k

∣∣∣
k3 + c

∞∑
k=0

∣∣∣φ(3)
2k

∣∣∣+ ∣∣∣ψ(3)
2k

∣∣∣(
k + 1

2

)3

and

|f (x)| ≤
∣∣φ′′ (x)

∣∣ +
∣∣φ′′ (−x)

∣∣+ c
∞∑

k=1

(∣∣∣φ(3)
1k

∣∣∣2 +
∣∣∣ψ(3)

1k

∣∣∣2 + 2
k2

)

+ c
∞∑

k=0

∣∣∣φ(3)
2k

∣∣∣2 +
∣∣∣ψ(3)

2k

∣∣∣2 + 2(
k + 1

2

)2

,
for some positive constant c. Here, for the estimate of f(x), we have used the inequality
2ab ≤ a2 + b2. The convergence of the series in the estimate of u(x, t) is clearly achieved
if φ(3)

ik , ψ
(3)
ik , i = 1, 2 are finite. This can be ensured by assuming that φ′′′(x) and ψ′′′(x) ∈

L2(−π, π). Furthermore, by Bessel inequality for trigonometric series, the following series
converge:

∞∑
k=1

∣∣∣φ(3)
ik

∣∣∣2 ≤C
∥∥φ′′′ (x)

∥∥2
L2(−π,π) , i = 1, 2,

∞∑
k=1

∣∣∣ψ(3)
ik

∣∣∣2 ≤C
∥∥ψ′′′ (x)

∥∥2
L2(−π,π) , i = 1, 2.

Therefore, by the Weierstrass M-test (see [21]), the series representations of u(x, t) and
f(x) converge absolutely and uniformly in the region Ω. The convergence of the series
representations of uxx(x, t) and ut(x, t) which are obtained by term-wise differentiation of
the series representation of u(x, t) can be shown is a similar way.

3.4. Uniqueness of solution
Suppose that there are two solution sets {u1 (x, t) , f1 (x)} and {u2 (x, t) , f2 (x)} to the

Inverse Problem IP1. Denote

u (x, t) = u1 (x, t) − u2 (x, t) ,

and
f (x) = f1 (x) − f2 (x) .

Then, the functions u (x, t) and f (x) clearly satisfy equation (2.1), the boundary condi-
tions in (2.3) and the homogeneous conditions

u (x, 0) = 0, u (x, T ) = 0, x ∈ [−π, π] (3.11)

Let us now introduce the following

u1k (t) = 1
π

π∫
−π

u (x, t) cos
(
k + 1

2

)
x dx, k ∈ N ∪ {0} , (3.12)

u2k (t) = 1
π

π∫
−π

u (x, t) sin kx dx, k ∈ N, (3.13)

f1k = 1
π

π∫
−π

f (x) cos
(
k + 1

2

)
x dx, k ∈ N ∪ {0} , (3.14)
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f2k = 1
π

π∫
−π

f (x) sin kx dx, k ∈ N. (3.15)

Note that the homogeneous conditions in (3.11) lead to

uik(0) = uik(T ) = 0, i = 1, 2. (3.16)

Differentiating equation (3.12) gives

u′
1k (t) = 1

π

π∫
−π

(uxx (x, t) − εuxx (−x, t)) cos
(
k + 1

2

)
x dx+ f1k,

which on integrating by parts and using the conditions in (2.2) reduces to

u′
1k (t) = (ε− 1)

(
k + 1

2

)2
u1k + f1k.

One can then easily show that this equation together with the conditions u1k(0) =
u1k(T ) = 0 imply that

f1k = 0, u1k (t) ≡ 0.
Similarly, for u2k and f2k as given in (3.13) and (3.15), respectively, one can show that

f2k = 0, u2k (t) ≡ 0.

Therefore, due to the completeness of the system of eigenfunctions (7.b) in L2 (−π, π), we
must have

f (t) ≡ 0, u (x, t) ≡ 0, (x, t) ∈ Ω̄.
This ends the proof of uniqueness of solution to the Inverse Problem IP1. Uniqueness of
solutions to the Inverse Problems IP2, IP3 and IP4 can be proved in a similar way.

4. Main results and example solution
4.1. Main results

The main results for the Inverse Problems IP1, IP2, IP3 and IP4 can be summarized
in the following theorems:

Theorem 4.1. Let φ (x) , ψ (x) ∈ C2 [−π, π], φ′′′(x), ψ′′′(x) ∈ L2(−π, π) and φ(i) (±π) =
ψ(i) (±π) = 0, i = 0, 2. Then, a unique solution to the Inverse Problem IP1 exists and it
can be written in the form

u (x, t) = φ (x) +
∞∑

k=1

1 − e−(1+ε)k2t

1 − e−(1+ε)k2T

(
φ

(3)
1k − ψ

(3)
1k

k3

)
sin kx

−
∞∑

k=0

1 − e−(1−ε)(k+ 1
2 )2

t

1 − e−(1−ε)(k+ 1
2 )2

T

φ(3)
2k − ψ

(3)
2k(

k + 1
2

)3

 cos
(
k + 1

2

)
x,

f (x) = −φ′′ (x) + εφ′′ (−x) +
∞∑

k=1

1 + ε

k

(
φ

(3)
1k − ψ

(3)
1k

1 − e−(1+ε)k2T

)
sin kx

−
∞∑

k=0

(1 − ε)(
k + 1

2

) ( φ
(3)
2k − ψ

(3)
2k

1 − e−(1−ε)(k+ 1
2 )2

T

)
cos

(
k + 1

2

)
x,
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where

φ
(3)
1k = 1

π

π∫
−π

φ′′′ (x) cos kx dx, φ
(3)
2k = 1

π

π∫
−π

φ′′′ (x) sin
(
k + 1

2

)
x dx,

ψ
(3)
1k = 1

π

π∫
−π

ψ′′′ (x) cos kx dx, ψ
(3)
2k = 1

π

π∫
−π

ψ′′′ (x) sin
(
k + 1

2

)
x dx.

Theorem 4.2. Let φ (x) , ψ (x) ∈ C2 [−π, π], φ′′′(x), ψ′′′(x) ∈ L2(−π, π) and φ′ (±π) =
ψ′ (±π) = 0. Then a unique solution to the Inverse Problem IP2 exists and it can be
written in the form

u (x, t) = φ (x) + t

T
(ψ0 − φ0) +

∞∑
k=1

(
1 − e−(1−ε)k2t

) (
ψ

(3)
2k − φ

(3)
2k

)
(
1 − e−(1−ε)k2T

)
k3 cos kx

−
∞∑

k=0

(
1 − e−(1+ε)(k+ 1

2 )2
t
)(

ψ
(3)
1k − φ

(3)
1k

)
(

1 − e−(1+ε)(k+ 1
2 )2

T
)(

k + 1
2

)3 sin
(
k + 1

2

)
x,

f (x) = −φ′′ (x) + εφ′′ (−x) + ψ0 − φ0
T

−
∞∑

k=1

(1 − ε)
(
φ

(3)
2k − ψ

(3)
2k

)
k
(
1 − e−(1−ε)k2T

) cos kx

+
∞∑

k=0

(1 + ε)
(
φ

(3)
1k − ψ

(3)
1k

)
(
k + 1

2

)(
1 − e−(1+ε)(k+ 1

2 )2
T
) sin

(
k + 1

2

)
x,

where

φ0 = 1
2π

π∫
−π

φ (x) dx, ψ0 = 1
2π

π∫
−π

ψ (x) dx,

φ
(3)
1k = 1

π

π∫
−π

φ′′′ (x) cos
(
k + 1

2

)
x dx, φ

(3)
2k = 1

π

π∫
−π

φ′′′ (x) sin kx dx,

ψ
(3)
1k = 1

π

π∫
−π

ψ′′′ (x) cos
(
k + 1

2

)
x dx, ψ

(3)
2k = 1

π

π∫
−π

ψ′′′ (x) sin kx dx.

Theorem 4.3. Let φ (x) , ψ (x) ∈ C2 [−π, π], φ′′′(x), ψ′′′(x) ∈ L2(−π, π) and φ(i) (−π) =
φ(i) (π) , ψ(i) (−π) = ψ(i) (π) , i = 0, 1, 2. Then, a unique solution to the Inverse Problem
IP3 exists and it can be written in the form

u (x, t) = φ (x) + t

T
(ψ0 − φ0) −

∞∑
k=1

(
1 − e−(1−ε)k2t

) (
φ

(3)
2k − ψ

(3)
2k

)
(
1 − e−(1−ε)k2T

)
k3 cos kx

+
∞∑

k=1

(
1 − e−(1+ε)k2t

) (
φ

(3)
1k − ψ

(3)
1k

)
(
1 − e−(1+ε)k2T

)
k3 sin kx,

f (x) = −φ′′ (x) + εφ′′ (−x) + ψ0 − φ0
T

−
∞∑

k=1

(1 − ε)
(
φ

(3)
2k − ψ

(3)
2k

)
(
1 − e−(1−ε)k2T

)
k

cos kx

+
∞∑

k=1

(1 + ε)
(
φ

(3)
1k − ψ

(3)
1k

)
(
1 − e−(1+ε)k2T

)
k

sin kx,
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where

φ0 = 1
2π

π∫
−π

φ (x) dx, ψ0 = 1
2π

π∫
−π

ψ (x) dx,

φ
(3)
1k = 1

π

π∫
−π

φ′′′ (x) cos kx dx, φ
(3)
2k = 1

π

π∫
−π

φ′′′ (x) sin kx dx,

ψ
(3)
1k = 1

π

π∫
−π

ψ′′′ (x) cos kx dx, ψ
(3)
2k = 1

π

π∫
−π

ψ′′′ (x) sin kx dx.

Theorem 4.4. Let φ (x) , ψ (x) ∈ C2 [−π, π], φ′′′(x), ψ′′′(x) ∈ L2(−π, π) and φ(i) (−π) =
−φ(i) (π) , ψ(i) (−π) = −ψ(i) (π) , i = 0, 1, 2. Then, a unique solution to the Inverse Prob-
lem IP4 exists and it can be written in the form

u (x, t) = φ (x) −
∞∑

k=0

(
1 − e−(1−ε)(k+ 1

2 )2
t
)(

φ
(3)
2k − ψ

(3)
2k

)
(

1 − e−(1−ε)(k+ 1
2 )2

T
)(

k + 1
2

)3 cos
(
k + 1

2

)
x

+
∞∑

k=0

(
1 − e−(1+ε)(k+ 1

2 )2
t
)(

φ
(3)
1k − ψ

(3)
1k

)
(

1 − e−(1+ε)(k+ 1
2 )2

T
)(

k + 1
2

)3 sin
(
k + 1

2

)
x,

f (x) = −φ′′ (x) + εφ′′ (−x) −
∞∑

k=0

(1 − ε)
(
φ

(3)
2k − ψ

(3)
2k

)
(
k + 1

2

)(
1 − e−(1−ε)(k+ 1

2 )2
T
) cos

(
k + 1

2

)
x

+
∞∑

k=0

(1 + ε)
(
φ

(3)
1k − ψ

(3)
1k

)
(
k + 1

2

)(
1 − e−(1+ε)(k+ 1

2 )2
T
) sin

(
k + 1

2

)
x,

where

φ
(2)
1k = 1

π

π∫
−π

φ′′′ (x) cos
(
k + 1

2

)
x dx, φ

(2)
2k = 1

π

π∫
−π

φ′′′ (x) sin
(
k + 1

2

)
x dx,

ψ
(2)
1k = 1

π

π∫
−π

ψ′′′ (x) cos
(
k + 1

2

)
x dx, ψ

(2)
2k = 1

π

π∫
−π

ψ′′′ (x) sin
(
k + 1

2

)
x dx.

4.2. Example solution
For the sake of illustration, we present here a simple example solution for the Inverse

Problem IP1. For this purpose, we consider the following choice of conditions (2.2):

u (x, 0) = 0, u (x, T ) = sin x, x ∈ [−π, π] ,

i.e., we have φ (x) = 0 and ψ (x) = sin x. Calculating the coefficients of the series solutions
as given in Theorem 4.1, we get

u(x, t) = 1 − e−(1+ε)t

1 − e−(1+ε)T sin x, and f(x) = 1 + ϵ

1 − e−(1+ε)T sin x.

These solutions are illustrated in Figures 2 and 3.
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Figure 2. Graphs of u(x, t) at different times (left) and f(x) (right) for ϵ = 0.1
and T = 1.

Figure 3. Graphs of u(x, t) at t = 0.5 (left) and f(x) (right) for different values
of ϵ and for T = 1.
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