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Abstract
The transition density function plays an important role in understanding and explaining
the dynamics of the stochastic process. We propose an approach which can be used for
the analytic approximation of the transition density related to a multi-scale stochastic
volatility model. Using perturbation theory, we compute the leading-order term and the
first-order correction terms. A numerical test also confirms the effectiveness of the model.
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1. Introduction
A stochastic process provides a useful tool to analyze time-series data and wide appli-

cations in many fields such as physics, finance, biotechnology, telecommunication studies,
and so on. Especially, the transition density function of a continuous-time process plays
an important role in understanding and explaining the dynamics of the process. How-
ever, the transition density functions are unknown for general diffusion processes except
for a few special cases (refer to Aït-Sahalia [2], Black and Scholes [3], Cox et al. [5],
and Vasicek [11]). So, finding analytical approximations to them is an important as an
alternative approach. The main advantage of the analytical approximation approaches
compared to other numerical methods, such as finite-difference method and Fourier inver-
sion et al., is that in general the first ones are much faster and precise at least under certain
model parameter regime. In addition, analytic approximation formulas retain qualitative
model information and preserve an explicit dependence of the results on the underlying
parameters.

Fat-tailed distribution and volatility clustering are stylized facts in the area of financial
modeling. Generally, the impact of shocks, which accounts for fat-tailed distributions,
tends to be short-lived, while the effects of business cycles, which explain volatility clus-
tering, are more lasting. A one-time scale model cannot reflect these facts, whereas a
multi-scale model can. Particularly, two factors in volatility are needed in order to express
a well-separated time scale and these not only control the persistence of the volatility but
also revert rapidly to the mean and contribute to the volatility of volatility (refer to Adrian
and Rosenberg [1], Chernov et al. [4], and Gallant et al. [8]).
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Based upon the observation that multi-scale stochastic volatility exists in financial time-
series data, we incorporate a slowly varying process into the result of Fouque and Zhou
[6] and formulate a two-factor stochastic volatility model which contains a slowly varying
process representing one persistent factor for volatility and an ergodic process displaying
rapidly moving fluctuations. Using perturbation theory, we obtain the approximate tran-
sition density under the multi-scale stochastic volatility model. Our result can easily be
applied to perturbed Gaussian copula and to the valuation of FX quanto options to a
third currency, though these remain topics for future research.

2. Main results
2.1. Problem formulation

We start with the process (Xt, Yt, Zt) which follows stochastic differential equations
under a risk-neutral measure:

dXt = f(Yt, Zt)dW (X)
t , (2.1)

dYt = 1
ϵ

(m− Yt)dt+ ν
√

2√
ϵ
dW

(Y )
t ,

dZt = δg(Zt)dt+
√
δh(Zt)dW (Z)

t ,

where W (X)
t , W

(Y )
t , and W

(Z)
t are standard Brownian motions where are correlated as

follows:

d⟨W (X),W (Y )⟩t = ρXY dt, d⟨W (X),W (Z)⟩t = ρXZdt, d⟨W (Y ),W (Z)⟩t = ρY Zdt.

Here, the correlation coefficients ρXY , ρXZ , and ρY Z satisfy −1 ≤ ρXY , ρXZ , ρY Z ≤ 1 and
1 + 2ρXY ρXZρY Z − ρ2

XY − ρ2
XZ − ρ2

Y Z > 0 in order to ensure positive definiteness of the
covariance matrix of the standard Brownian motion and the parameters ϵ, ν, and δ are
positive constants with the same order of ϵ ≈ δ ≪ 1 being small. We also assume that
the usual Lipschitz and growth conditions for the coefficients g(z) and h(z) are satisfied.
We do not specify the concrete form of f in that it will not play an essential role in the
asymptotic method utilized in this paper. However, f must satisfy a bound above and
below 0.

For a fixed time T > 0, our goal is to calculate the following transition density of (2.1)
at time t < T :

uϵ,δ := P{XT ∈ dξ|Xt = x, Yt = y, Zt = z},

where ξ is an arbitrary number.

2.2. Asymptotic method
Perturbation theory as developed by Fouque et al. [7] is a methodology which is utilized

to find an approximated solution when the original problem is difficult to solve by sepa-
rating it into more easily solvable, simple parts. If we apply the Feynman-Kac formula,
we find that uϵ,δ satisfies the following Kolmogorov backward equation

Lϵ,δuϵ,δ(t, x, y, z) = 0, t < T, (2.2)

Lϵ,δ := 1
ϵ
L0 + 1√

ϵ
L1 + L2 +

√
δM1 + δM2 +

√
δ

ϵ
M3,

uϵ,δ(T, x, y, z) = δ(ξ;x),
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where

L0 = (m− y) ∂
∂y

+ ν2 ∂
2

∂y2 , L1 = ν
√

2ρXY f(y, z) ∂2

∂x∂y
,

L2 = ∂

∂t
+ 1

2
f2(y, z) ∂

2

∂x2 , M1 = ρXZf(y, z)h(z) ∂2

∂x∂z
,

M2 = g(z) ∂
∂z

+ 1
2
h2(z) ∂

2

∂z2 , M3 = ν
√

2ρY Zh(z) ∂2

∂y∂z
.

Here, δ(ξ;x) is the Dirac delta function of ξ with a spike at ξ = x. Note that L0 is
the infinitesimal generator of the Ornstein-Uhlenbeck (OU) process Yt. L1 contains the
mixed partial derivative due to the correlation of the two Brownian motions W (X) and
W (Y ). L2 is the operator of a generalized version of the Brownian motion at the volatility
level f(y, z) in stead of constant volatility. M1 includes the mixed partial derivative due
to the correlation of the two Brownian motions W (X) and W (Z). M2 is the infinitesimal
generator of the process Zt. Finally, M3 holds the mixed partial derivative due to the
correlation of the two Brownian motions W (Y ) and W (Z).

Before we solve the problem (2.2), we write a useful lemma about the centering (or
solvability) condition on the Poisson equation related to the operator L0 as follows:

Lemma 2.1. If solution to the Poisson equation
L0χ(y) + ψ(y) = 0 (2.3)

exists, then the centering condition ⟨ψ⟩ =
∫
ψ(y) 1√

2πν2 exp
[
− (y−m)2

2ν2

]
= 0 must be satis-

fied, where the notation ⟨·⟩ is the average (or expectation) with respect to the invariant
distribution of Yt. If then, solutions of (2.3) are given cy the form

χ(y) =
∫ ∞

0
Ey[ψ(Yt) | Y0 = y]dt.

Proof. Refer to Fouque et al. [7]. �
Applying the solution of problem (2.2) to an asymptotic method, we consider the as-

ymptotic expansion as follows:
uϵ,δ(t, x, y, z) = Σ∞

j=0δ
j/2uϵ

j(t, x, y, z), (2.4)

uϵ
j(t, x, y, z) = Σ∞

i=0ϵ
i/2ui,j(t, x, y, z).

Therefore, uϵ,δ is a series of the general term ϵi/2δj/2ui,j . Plugging expansion (2.4) into
(2.2) respectively leads to uϵ

0 and uϵ
1 which satisfies the problem(1

ϵ
L0 + 1√

ϵ
L1 + L2

)
uϵ

0 = 0, t < T, (2.5)

uϵ
0(T, x, y, z) = δ(ξ;x)

and (1
ϵ
L0 + 1√

ϵ
L1 + L2

)
uϵ

1 = −
(
M1 + 1√

ϵ
M3

)
uϵ

0, t < T, (2.6)

uϵ
1(T, x, y, z) = 0.

Note that these are singular perturbation problems with respect to the small parameter ϵ.

Theorem 2.2. The leading-order term u0,0 is independent of y and satisfies the partial
differential equation (PDE) problem

⟨L2⟩u0,0(t, x, z) = 0 (2.7)
u0,0(T, x, z) = δ(ξ;x),
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where

⟨L2⟩ = ∂

∂t
+ 1

2
⟨f2(·, z)⟩ ∂

2

∂x2

and then one obtains the solution u0,0 of the PDE

u0,0 = 1
σ(z)

√
2π(T − t)

exp
[
− (ξ − x)2

2σ2(z)(T − t)

]
, (2.8)

where σ(z) =
√

⟨f2(·, z)⟩.

Proof. Applying the expansion (2.4) with j = 0 to (2.5) leads to
1
ϵ
L0u0,0 + 1√

ϵ
(L0u1,0 + L1u0,0) + (L0u2,0 + L1u1,0 + L2u0,0)

+
√
ϵ (L0u3,0 + L1u2,0 + L2u1,0) + · · · = 0. (2.9)

Multiplying (2.9) by ϵ and then letting ϵ go to zero, we obtain

L0u0,0 = 0. (2.10)

Recalling that the operator L0 is the generator of the OU process Yt, the solution u0,0 of
(2.10) must be a constant with respect to the y variable; u0,0 = u0,0(t, x, z). Also, we have
L0u1,0 + L1u0,0 = 0. L1u0,0=0 holds since u0,0 does not rely on the y variable. So, we
have

L0u1,0 = 0.

Then u1,0 is also independent of the y variable; u1,0 = u1,0(t, x, z). Therefore, the first two
terms u0,0 and u1,0 do not depend on the current level y of the fast scale volatility driving
the process Yt. One can continue to eliminate the terms of order 1,

√
ϵ, ϵ, · · · . From the

order 1 terms, we get L0u2,0 + L1u1,0 + L2u0,0 = 0. This PDE becomes

L0u2,0 + L2u0,0 = 0 (2.11)

due to the y-independence of u1,0. This is a Poisson equation for u2,0 with respect to the
operator L0 with the source term L2u0,0. Then, Lemma 2.1 applied to (2.11) leads to
(2.8). �

Note that u0,0 is identical to the transition density of the one-dimensional Brownian
motion, where only the coefficient σ is replaced by σ(z). Next, we obtain analytic formulas
for the correction terms u1,0 and u0,1, respectively.

Theorem 2.3. u1,0 is independent of the y variable and the first order correction term
satisfies the PDE

⟨L2⟩u1,0(t, x, z) = Au0,0

u1,0(T, x, z) = 0,

where A = ⟨L1L
−1
0 (L2 − ⟨L2⟩)⟩ and then one obtains the solution of the PDE

√
ϵu1,0 = −(T − t)R(z) ∂

3

∂x3u0,0,

where the constant parameter R(z) = νρXY
√

ϵ√
2 ⟨f(·, z)ϕy(·, z)⟩. Here, ϕ(y, z) is defined as

L0ϕ = f2(y, z) − ⟨f2(·, z)⟩.

Proof. The order
√
ϵ terms in (2.9) lead to L0u3,0 +L1u2,0 +L2u1,0 = 0 which is a Poisson

equation for u3,0 whose centering condition is given by

⟨L1u2,0 + L2u1,0⟩ = 0. (2.12)
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Meanwhile, from (2.7) and (2.11) we get

u2,0 = −L−1
0 (L2 − ⟨L2⟩)u0,0 + c(t, x, z) (2.13)

for an arbitrary function c(t, x, z) independent of the y variable. Plugging (2.13) into
(2.12), we derive a PDE for u1,0 as follows:

⟨L2⟩u1,0 = Au0,0.

We note that the operator A is the same as ⟨L1L
−1
0 (L2 − ⟨L2⟩)⟩. Then, we obtain the

result of Theorem 2.3 by direct computation. �

In order to obtain another first-order correction term, it is necessary to consider another
singular perturbation problem (2.6). Applying expansion (2.4) with j = 0 and j = 1 to
(2.6) leads to

1
ϵ
L0u0,1 + 1√

ϵ
(L0u1,1 + L1u0,1) + (L0u2,1 + L1u1,1 + L2u0,1)

+
√
ϵ (L0u3,1 + L1u2,1 + L2u1,1) + · · ·

= − 1√
ϵ
M3u0,0 − (M1u0,0 + M3u1,0) −

√
ϵ(M1u1,0 + M3u2,0) − · · · . (2.14)

Theorem 2.4. u0,1 is independent of the y variable and the another first-order correction
term satisfies the PDE problem

⟨L2⟩u0,1(t, x, z) = −⟨M1⟩u0,0 with u0,1(T, x, z) = 0,

where ⟨M1⟩ = ρXZh(z)⟨f(·, z)⟩ ∂2

∂x∂z after which it becomes possible to obtain the solution
of the PDE

√
δu0,1 = T − t

2
S(z) ∂2

∂x∂z
u0,0,

where S(z) = ρXZh(z)
√
δ⟨f(·, z)⟩.

Proof. Multiplying (2.14) by ϵ and then letting ϵ go to zero, we find the first two leading-
order terms as follows:

L0u0,1 = 0,
L0u1,1 + L1u0,1 = −M3u0,0.

Because the operator L0 is the generator of the OU process Yt, u0,1 (the solution of
L0u0,1 = 0) must be a constant with respect to the y variable. Because M3 has a derivative
with respect to the y variable and u0,0 does not rely on y, we obtain M3u0,0 = 0. Moreover,
because each term of L1 has a derivative with respect to y, L1u0,1 = 0 holds. Thus, the
equation L0u1,1 + L1u0,1 = −M3u0,0 reduces to L0u1,1 = 0, meaning that u1,1 does not
depend on the y variable. Hence, the two terms u0,1 and u1,1 do not depend on the
current level y of the fast-scale volatility driving process Yt; u0,1 = u0,1(t, x, z) and u1,1 =
u1,1(t, x, z). In this way, it becomes possible to continue to remove the terms of order 1,

√
ϵ,

ϵ and others. For the order 1 term, we have L0u2,1+L1u1,1+L2u0,1 = −(M1u0,0+M3u1,0).
This PDE becomes L0u2,1 + L2u0,1 + M1u0,0 = 0 due to the y-independence of u1,0 and
u1,1. This is a Poisson equation for u2,1 with respect to the operator L0 in the y variable,
which has a solution only if L2u0,1 + M1u0,0 is centered with respect to the invariant
distribution of Yt. Because u0,0 and u0,1 do not depend on the variable y, we have

⟨L2⟩u0,1 = −⟨M1⟩u0,0.

We note that the operator ⟨M1⟩ is the same as ρXZh(z)⟨f(·, z)⟩ ∂2

∂x∂z . Then, we obtain the
result of Theorem 2.4 by direct computation. �
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As a result, one can approximate uϵ,δ to the summation of the leading-order term u0,0
and the first correction terms u1,0 and u0,1 as follows:

uϵ,δ(t, x, y, z) ≈ u0,0(t, x, z) +
√
ϵu1,0(t, x, z) +

√
δu0,1(t, x, z).

Note that all the original parameters are absorbed in the group parameters R(z) and
S(z), respectively. Also, The present level y(z) of the hidden process Yt need not be
specified in the present approximation. It is melted down into the group parameters in
the averaged form. By a straightforward calculation, we obtain

∂3u0,0
∂x3 =

{
− 3(ξ − x)√

2πσ5(z)(T − t)5/2 + (ξ − x)3
√

2πσ7(z)(T − t)7/2

}
exp

[
− (ξ − x)2

2σ2(z)(T − t)

]
,

∂2u0,0
∂x∂z

=
{

−σ′(z) + σ(z)(ξ − x)2

(T − t)σ3(z)
− 2σ′(z)

σ(z)

} (ξ − x)√
2πσ3(z)(T − t)3/2 exp

[
− (ξ − x)2

2σ2(z)(T − t)

]
,

respectively. We can use
√
ϵu1,0 and

√
δu0,1 from this result to obtain an analytic approx-

imation of the transition density.
In order to guarantee that our approximated transition density function is non-negative,

we newly define the following:

ũϵ,δ = 1
N
u0,0

(
1 + tanh

(√
ϵu1,0
u0,0

+
√
δu0,1
u0,0

))
. (2.15)

Here, the normalizing constant N must be introduced owing to the presence of the second
partial derivative in slow-scale factor.

3. Numerical experiment
In this section, we illustrate the effectiveness of our approach (2.15) by showing a

numerical result. The chosen parameter values are as follows:
R(z) = 0.02, S(z) = 0.03, T − t = 1, σ(z) = 0.5, σ′(z) = 0.9, x = 0.

Figure 1 shows that constant volatility is the leading-order term (standard Gaussian),
short-scale volatility is a combination of the leading-order term and the first correction
term driven by the fast moving fluctuation (Fouque and Zhou model), and the multi-scale
volatility is a combination of the leading-order term and the first correction terms under
the multi-scale stochastic volatility model. Figure 1 shows that these three models do
not take negative values at any point and that the short-scale volatility and multi-scale
volatility shift to the right from the constant volatility. Furthermore, there is a small gap
between the model by Fouque and Zhou and the multi-scale stochastic volatility model.
However, this implies that the prices of financial derivatives with short-term maturity
levels are ruled by a fast-scale volatility process, while those of financial derivatives with
long-term maturity levels are dominated by a slow-scale volatility process in the area of
financial modeling. Note that our numerical result shows that this picture is sensitive
to the choice of the involved parameters and gives a lot of flexibility to the shape of the
transition densities.

4. Final remarks
Stochastic processes are popular in modeling various economics and financial variables.

The transition density function plays a key role in the analysis of continuous-time diffusion
models. In this paper, we obtained the analytic approximation of the transition density of
a multi-scale stochastic volatility model. A simulation result shows that our result could
explain a financial point of view.

This paper offers various possible directions for further development. For example, our
result can easily be applied to perturbed Gaussian copula and to the valuation of FX
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Figure 1. Multi-scale stochastic volatility effects on the transition density.

quanto options to a third currency. Also, this result can provide a very useful guide for
credit risk management (refer to [9] and [10]). We leave these issues as future research
topics.
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