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Abstract

In this paper, we consider generalized Tribonacci circulant type matrices, including the
circulant and left circulant. Firstly, we discuss the invertibility of generalized Tribonacci
circulant matrix and give the explicit determinant and inverse matrix based on construct-
ing the transformation matrices. Afterwards, by utilizing the relation between circulant
and left circulant, the invertibility of generalized Tribonacci left circulant matrix is also
discussed. The determinant and inverse of generalized Tribonacci left circulant matrix are
given respectively.
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1. Introduction and preliminaries

A matrix G, € M, is called circulant matrix if it is of the form

c €1 ' Cp-l
Ch—1 Co -+ Cp-2
Cp =
C]_ C2 DY CO
It is evidently determined by its first row, we denote G, := Circ(co,c1, -+ ,¢n-1). And
the n x n left circulant matrix D,, := LCirc(dy,dy,- - ,dn—1) is defined as
do di -+ dp
di doy - dy
Dn = : Do : ’
dp—1 do -+ dnp—2

where each row is a cyclic shift of the row above to the left.

Circulant type matrices not only have many connections to problems in physics, geom-
etry and numerical analysis, but also have important applications in various disciplines
including signal and image processing [1], networks engineering [13,19], solving ordinary
and partial differential equations [6,12]. In recent years, the investigation of the circulant
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type matrices attracts much attention. Bani-Domi and Kittaneh [2] gave two general norm
equalities for circulant and skew circulant operator matrices. Karner et al. [14] presented
the eigendecompositions and singular value decompositions of real circulant type matrices.
In addition, the determinant of the circulant matrix C, = Cire(co,c1,- - ,cn—1) is also
given by the following formulas [7]:

n—1
det G, = H g(w),

j=0

and if G, is invertible, then
C,! = Circ(bo,br, -+ ,by_1),

where b, = % ?:_01 g(W) w3 (s =0,1,--- ,n—1), g(z) = ?:_& cjz? and w = exp(%).
Unfortunately, these formulas are not computationally feasible as their complexities in-
crease drastically when n is getting large.

In order to overcome the deficiency above, some scholars gave the explicit determinants
and inverses of circulant type matrices involving some famous numbers [3,4,8-11, 16, 18,
20,21]. For example, Shen et al. [18] considered circulant matrices with Fibonacci and
Lucas numbers and presented their explicit determinants and inverses by constructing
the transformation matrices. Jiang et al. [10] discussed the invertibility of circulant
type matrices involving the sum and product of Fibonacci and Lucas numbers and gave
the determinants and the inverses of these matrices. Bozkurt and Tam [3] proposed the
determinants and the inverses of circulant matrices involving Jacobsthal and Jacobsthal-
Lucas numbers. Yazlik and Taskara [20] evaluated the determinant and the inverse of
circulant matrix with generalized k-Horadam numbers. Liu and Jiang [16] discussed the
invertibility of Tribonacci circulant type matrices and presented the explicit determinants
and inverses of Tribonacci circulant and Tribonacci left circulant matrices. In addition,
Jiang and Hong [9] considered Tribonacci skew circulant type matrices and gave their
exact determinants and inverses by utilizing only the Tribonacci numbers.

(

For n > 3, the generalized Tribonacci sequence {Tna)} is defined by the following recurr-
ence relations [15,17]:

7@ = o7\ 4 o7\, 4 0T, T =0, T =a, T = au, (1.1)

where a,u,v and w are arbitrary positive integers. When a = v = v = w = 1, the
generalized Tribonacci sequence reduces to the Tribonacci sequence {7}, } in [5]. Let A1, A2
and A3 be the roots of the characteristic equation A3 — uA? — v\ —w = 0, then we have

AL+ Ao+ )\3 = u,
AAg + A1 A3 + A A3 = —v,
)\1)\2/\3 = w.

and the Binet formula of the sequences {T; 7(111)} have the form
TD = b AT + oY + b AL, (1.2)

where b, = A [Ty jur(1/ Ak — X)) (B =1,2,3).
In the present paper, we consider generalized Tribonacci circulant type matrices. Firstly,
we define a generalized Tribonacci circulant matrix

R, = Cire(T\™, TV, -, T(®)
and a generalized Tribonacci left circulant matrix

Ly = LCirc(Tl(a), Tg(a), L T,
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which are generalizations of Tribonacci circulant and Tribonacci left circulant matrices
from [16], respectively. Afterwards, the invertibility of matrices R,, and £,, are discussed.
Furthermore, the explicit determinants and inverses of these matrices are derived by con-
structing the transformation matrices, which are only related to the generalized Tribonacci
numbers.

For the convenience of the discussion, throughout the paper we denote

p = —wT,Sa), q:= —UTéa) — QUTTECi)l, ri= Tl(a) — Té‘j_)l,

and adopt the following convention: for any sequence {a,}, Z;L:k a; = 0 in the case k > n.

Lemma 1.1. [7] Let C, = Circ(ci,ca,- - ,¢n) be an n x n circulant matriz. Then Cy, is
invertible if and only if f(wk) £0(k=0,1,2,---,n—1), where f(z) = 3", cjxj—l and
w = exp(2L).

Lemma 1.2. [11] Let

10 0 0
00 -~ 01
%, =00 - 10
01 -~ 00

be an n X n matriz. Then it holds that £, = K, R,.

Lemma 1.3. [16] The n x n tridiagonal matriz is given by

To T 0
73 T2 T1
An = ;
T3 T2 T1
0 T3 Ty
then . -
<72+\/722—47173> B <72— 7'22—47173>
2 2
det A,, = T2 £ AT
n \/7_22_47_17_3 ; 2 7é 173,
(n+1)(F)", 3 = 47173,

Lemma 1.4. [16] Let

ay a2 -+ QGp—2 0p—-1 Qan
T2 T1
T3 T2
B, =
T2 T1
73 T2 T1

be an n X n matriz. Then we have
n

det B,, = Z(—l)kHT{l_kak ~det Ap_1,

k=1
where
k k
(7-2-!—,/7-22—47-173) (7’2—, /7‘22—47'17'3)
2 - 2
— 2
det ‘Ak_l - \/7_2_47_ y T2 7é 4TlT37

5 173

k(%)k’_l, T4 = 47173,
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2. Determinant and inverse of generalized Tribonacci circulant matrix

In this section, let R,, = Circ(T 1(a) , T 2(a), N éa)) be a generalized Tribonacci circulant
matrix. Afterwards, we give an explicit formula for the determinant of the matrix R,,. In
addition, we also discuss the invertibility of R,, and compute the inverse matrix of R,.

Theorem 2.1. Let R, = C’irc(Tl(a),TQ(a), e ,Téa)) be a generalized Tribonacci circulant
matriz. Then we have

2
detR, = a KTI(“) — T+ S (T, ~ uT,g‘fl)ankl)m

k=1
n—2
_( T (T~ TO)5 f 0 Y T 5n_k_1) @] @
k=1
where
_ 2 _ Y n—2
s = 4 + W7 Ky =1""2 4w Z(_l)k+lrnfkf2T7§a_)k_l -det Aj_1,
T
k=1
n—2
Ky = Z(—l)k+1rn7k*2(T7(l(i)k+l — UTT(L(i)k) ~det Ap_1,
k=1
and
k K
2 2
= 2
det Ak_l B \/q2—4p7‘ y 4 7& 4p7‘,
k(%)kfla q* = 4pr.

Proof. Obviously, detR; = a,det Ry = a?(1 — v?) and det Rz = a3(1 — v — 2uw)[1 —
u(u? 4+ v)] + a®v?(u? + v) satisfy the formula (2.1). In the case n > 3, let

1 0
—Uu 1
—v 1 —u
—w 1 —u —v
Iy = 0 1 —u —v —w
0 1 —u —v —w

0 1 —u —v —w

and
1 0 0 -~ 00
0 "2 0 0 1
0 63 0 10
II, = )
0 ¢ 1 0 0

(]
—
[a)
[a)
[a)
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be two n X n matrices. Then we have

T g T T, T T @
0 g2 ¢3 ¢4 T ¢n—2 ¢n—1 ¢n
0 o3 ¢ wT,ECi):,) e wT3(a) wT2(a) le(a)
0 0 q T
'R II = 0 0 p ¢ ,
0 0 q T
0 0 P q r
where
S =T g =T, (k=3,4,-- ,n), (2.2)
n—1
(b:T()—uT()—’UT), ZTk+16nk1 (23)
k=1
oy =T\ — uT(® + Z (T, — w51, (2.4)
03 = —vT( + (T{" T(L-i-)l d+wy Tan ke (2.5)
k=1
Let
¢ wil wTi®” Wi wr®
q T
0= p ‘q
q r
p q r
and

be two (n — 2) x (n — 2) matrices. According to Lemma 1.4, we obtain

n—2
detQ = r"_2+wZ(— Yt lpn—k= 2T( )k; | -det Ap_1 = K1,

n—2

det¥ = Z( 1)k+1 n—k— Z(Trga)k—i-l _ UTrE(i)k) -det Arp_1 = Ko.
k=1
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Hence
detTydet Ry detTl; = T\ (05 det Q — o5 det )
= KTIG —uT® +Z k+2 —u kH)é" k= 1)51
- ( — T (T — T )6 + w Z T,ﬁ‘”&”“) Kg] ,
k=1
while det 'y = det 11} = (-1 ) . Thus, the proof is completed. O

Theorem 2.2. Let R, = Circ(Tl(a),T(a) : T(a))(n > 2) be a genemlized Tribonacci

circulant matriz. If X} # 1(j =1,2,3), ¢ #p+r and J4pr — ¢2/q # +tan 2E7 & for any
integer k € (%,22), then Ry, is an invertible matriz.

Proof. Since \} # 1(j = 1,2,3), 1 — MwP #£ 0,1 — Xow® # 0 and 1 — A\3w® # 0 for any
ke {1,2,--- ,n— 1}, then applying the Binet formula (1.2), we obtain

FR) = STV = ST (00X + baAg + b3AL) (W) !
j=1

Jj=1
_ ML= AT) | bada(L—A5) | bsAs(L—AR)
1-— )\1wk 1-— )\ka 1-— )\3wk

Tl(a) - T(i)l + (—vTéa) — wTé‘i)l)wk - wTT(La)ka

n

1 — uwh — vw?k — ww3k

By a way of contradiction, if there exists I € {1,2,---,n — 1} such that f(w') = 0, then
we have Tl(a) - T(i)l + (—vT,ga) - wTT(L(i)l)wl — WP = 0, hence

n

Lo 4T (T — T )2 4 4T (1 - 1))
—2wT\"

—q++/q* — 4pr

2p

From q # p + 7, we can deduce that ¢®> — 4pr < 0, this implies that w' is an imaginary

number. While
! (2l7ri> 200 . . 2w
w =exp|——) =cos— + 181 —,
n n n

so we have
008(217”) = —% <0,
Sln(2l7r) — :|:V 41”"*(12.

2p

It follows that /4pr — ¢?/q = £tan =L 21” is valid for 1nteger le (%, 32) which is a contra-
diction. Hence, we obtain f(w*) # 0 for any k € {1,2,- — 1}, while it is obvious that
f() =374 Tj(a) # 0. Thus, according to Lemma 1.1, the proof is completed. O
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Lemma 2.3. Let § = [g; ] be an (n —3) x (n — 3) matriz given by

-1, =k

T — T if =kt 1,
gjk =

T, ifj=k+2,

0, otherwise.

Then the inverse G~ = [9;‘,k] of the matriz G is equal to

Bi—k+1_qi—k+1

’ ( ﬁ_a )7 Zf.] Z k7
ik =
0, if § < k.

g g/ —4pr
where @ = ———5 ——, =" 5 ——

3=

n—3 ,
Proof. Let cji, = > gj19;- It is clear that ¢; 3, = 0 for j < k. In the case j = k, we have
=1 '

/ 1 1
Cij = 95,5945 = (T1(a) - TT(L?O T = (Tfa) - Téi)l) @) e L.
7 =T,
For j > k + 1, we obtain
n-3 / ’ ’ /
Cik = Z 95,191k = 95.5—29j—2k + 95,5191k T 95,59 k
=1
1/ pi—k=1 — ikl 1/pi~* — ik

= —wTé‘”r< s )+ (—oT" WTngi)l)r<l3_a)

gi—k+1 _ aj—k+1>

a a 1
L

= 0.

Hence, we verify GG=! = I,,_3, where I,,_3 is the (n—3) x (n—3) identity matrix. Similarly,
we can verify G$71G = I,,_3. Thus, the proof is completed. ]

Theorem 2.4. Let R, = Circ(Tl(a),TQ(a),--- ,Téa))(n > 4) be an invertible generalized
Tribonacci circulant matriz. If oo # 0, then we have

-1 . / 03 ’ ’ ’ / o3 / /
R, = Czrc(xz —(u+ =)z — vy — WLy, —UTH + (—V + u—)T5 — Wy,
o2 o2
! I / i ! ! ! / ! /
ZL‘TL, ‘/En—l — U:L‘n, ZEn_Q — Ufl:n_l — Ul'n, cee ,CU:)) — 'U/.'L‘4 — U.’L‘5 — 'U].'L‘G s
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where
/ 1+ —rgs+o
Tyg = —, Xg= ————
2 gy 3 brog
S 7“(153—0"51/) ,6’9—049
- k—1
g (r2oy LN

nk+1 o
_ Z ke 1(5 O‘) (k=4,5,-,n),

ro B8 —
o BB o2z
L = ZPJ+3<ﬁ]a]) ZPJ+4(BJQJ>

p3 = ¢—¢3;2, _U}Tn G+l ¢] (j:4,5,...7n),
and o2, 03, ¢, ¢j(j =3,4,---,n) are given by (2.2), (25’), (2.4) and (2.5).
Proof. Let

1 0 O 0
0o 1 0 0
Ty = 0 —g—g 0
0O 0 O 1
and
Lo—o Y o e o o
0 a —ags —aén
o2 g2
IIb=10 0 a 0
0 O 0 a

be two n X n matrices. Then we have
oI R, I, = a(D D EF),
where D @ F is the direct sum of D and F, D = diag(1,02) is a diagonal matrix and

pP3 P4 P5 - Pn—2 Pn—1 Pn
q T
p q r
F = p g
q T
p q r

is an (n — 2) X (n — 2) matrix. If we denote I" = I'oT";, IT = II; I, then we obtain
Rl =a (D LTI

Let P = (p4, p5,- -, pn) be a row vector and Q = (¢, p,0,---,0)T be a column vector.
Then F can be rewritten as the following block form

(3 P
(2 7)
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Hence

1 1 -1
Y =579

~15719 g7+ 1g-lapg!
where v = p3 — PG71Q. According to Lemma 2.3, we obtain

Y=p3— ZP;+3(6J_QJ> Zp]+4<ﬁ]_a]>:£.

Since the last row elements of the matrix II are 0, a, —%, - —%, and D! =

diag(1,05 "), the last row of a 'TI(D~! @ F~1) is given by the following equations:

Fl=

_ads

o9 !

0 1 / —rps+o /
’ o9 z lroo 3
TPz — 0 — ﬁj—a] ﬁ]—oﬂ /
Ya 67”2 Z Pji+3 Z ¢j+3 = Ty,
Tqbg—az /Bj—aj Z¢ ,Bj—aj /
-1 2 - — 2 =Ty_
Yn 0r2oy = Pr+j— ros ¢ n+j— 5 n—1>
rgs —o 1 p /
= ——¢p=x
Yn 67’20'2 rog " n
While
1 0
_ a3 a3
vt ug 1 u—
—w 1 —u —v
I'=T.T = 0 1 —u —v —w )
0 1 —u —v —w
0 1 —u —v —w
hence, if we denote R, ! := Circ(xy,z2, -+ ,2y,), then its last row elements are of the
forms:
/ o3 / /
Ty = —uTy+ (—v+u—)r3 — wry,
02
/
xr3 = Ty,
/ /
T4 = T, | — UT,,
/ / /
Ty = Xy, o9 — UT,_; — VUIL,,
/ / / /
T = X3 — UL, g — VT, | — WL,
/ / /
:IJn — .133 _ux4 _'U.TE') w:136,
/ ! !
T = Ty — (u+ —)r3 —vry — WIS
02

Thus, the proof is completed.
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3. Determinant and inverse of generalized Tribonacci left circulant ma-
trix

In this section, let £, = LCirc(Tl(a), 2(a), e ,Téa)) be a generalized Tribonacci left
circulant matrix. By using the obtained conclusions, we give a determinant formula of
the matrix £,,. Furthermore, we discuss the invertibility of the matrix £,, and derive the
inverse of L,,.

According to Lemma 1.2, Theorem 2.1, Theorem 2.2 and Theorem 2.4, we can obtain
the following theorems.

Theorem 3.1. Let £,, = LCiTc(Tl(a),Téa), e ,T7(La)) be a generalized Tribonacci left cir-
culant matriz. Then we have

n—2

.  GAERCARS SCE Rt I
k=1

n—2
—< T+ (T =T )5+ w Y T,E“)én—’“*) @} ,
k=1

where §, k1 and Ko are given by Theorem 2.1.

Theorem 3.2. Let £, = LCirc(Tl(a),TQ(a), e ,Téa))(n > 2) be a generalized Tribonacci
. . S 2%k
left circulant matriz. If N} # 1(j =1,2,3), ¢ # p+r and \/4pr — ¢*/q # £tan =" for

any integer k € (2,22, then £, is an invertible matriz.

Theorem 3.3. Let £,, = LC’irc(Tl(a), 2((1)’ e ,T,ga))(n > 4) be an invertible generalized
Tribonacci left circulant matrix. If oo # 0, then we have

_ . ’ o3 ’ ’ ’ ’ ’ ’ ’
Lt = LC’zrc(a:2 —(u+ U—Q)mg — ULy — WLy, Tz — UTH — VL5 — WTg, " -,
/ / / ! ! / ’ ! /
Ty_g — UL, _g — ULy 1 — Wy, Tp_o — ULy 1 — VT, Tp_q — UL,
’ ’ g3 ’ /
T, —UTy + (—v+u—)rz — Wy |,
02
! . .
where o3, o3 and x;(j =2,3,---,n) are given by Theorem 2.4.
Proof. Since £} = R 1K1 = R 1K, the proof is trivial by Theorem 2.4. O
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