Super (a, d)-star-antimagic graphs

Pothukutti Nadar Selvagopal ${ }^{1}$ (D) , Pon Jeyanthi*2 ${ }^{\text {© }}$, Narayana Perumal
Thillaiammal Muthuraja ${ }^{3}$ (©), Andrea Semaničová-Feňovčíková ${ }^{4}$ (©)
${ }^{1}$ Al Musanna College of Technology, Sultanate of Oman
${ }^{2}$ Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur, Tamilnadu, India
${ }^{3}$ Department of Mathematics, Cape Institute of Technology, Levengipuram, Tamilnadu, India
${ }^{4}$ Department of Applied Mathematics and Informatics, Technical University, Letná 9, Košice, Slovakia

Abstract

A simple graph $G=(V, E)$ admitting an H-covering is said to be (a, d) - H-antimagic if there exists a bijection $f: V \cup E \rightarrow\{1,2, \ldots,|V|+|E|\}$ such that, for all subgraphs H^{\prime} of G isomorphic to $H, w t_{f}\left(H^{\prime}\right)=\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e)$, form an arithmetic progression $a, a+d, \ldots, a+(t-1) d$, where a is the first term, d is the common difference and t is the number of subgraphs in the H-covering. Then f is called an (a, d) - H-antimagic labeling. If $f(V)=\{1,2, \ldots,|V|\}$, then f is called super (a, d)- H-antimagic labeling. In this paper we investigate the existence of super (a,d)-star-antimagic labelings of a particular class of banana trees and construct a star-antimagic graph.

Mathematics Subject Classification (2010). 05C78, 05C70
Keywords. H-covering, (super) (a, d)- H-antimagic labeling, star, banana tree

1. Introduction

Let $G=(V, E)$ be a finite simple graph. A family of subgraphs $H_{1}, H_{2}, \ldots, H_{t}$ of G is called an edge-covering of G if each edge of E belongs to at least one of the subgraphs H_{i}, $i=1,2, \ldots, t$. Then the graph G admitting an H-covering is (a, d) - H-antimagic if there exists a bijection $f: V \cup E \rightarrow\{1,2, \ldots,|V|+|E|\}$ such that, for all subgraphs H^{\prime} of G isomorphic to H, the H^{\prime}-weights,

$$
w t_{f}\left(H^{\prime}\right)=\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e),
$$

form an arithmetic progression $a, a+d, \ldots, a+(t-1) d$, where $a>0$ is the first term, $d \geq 0$ is the common difference and t is the number of subgraphs of G isomorphic to H. Such a labeling is called super if $f(V)=\{1,2, \ldots,|V|\}$. For $d=0$ it is called H-magic and H-supermagic, respectively.

The notion of H-magic graphs was due to Gutiérrez and Lladó [3]. Inayah, Salman and Simanjuntak [4] introduced the concept of (a, d)- H-antimagic labeling. In [5] they proved that there exists a super (a, d) - H-antimagic total labeling for shackles of a connected graph

[^0]H. Semaničová-Feňovčíková, Bača, Lascsáková, Miller and Ryan [8] proved that wheels $W_{n}, n \geq 3$ are super (a, d) - C_{k}-antimagic for every $k=3,4, \ldots, n-1, n+1$ and $d=0,1,2$. For more information see [1,2] and [7].

2. Preliminaries and known results

We use the following notations. For two integers $a, b, a<b$, let $[a, b]$ denote the set of all integers from a to b. For any set \mathbb{S}, subset of integers \mathbb{Z} we write, $\sum \mathbb{S}=\sum_{x \in \mathbb{S}} x$ and for an integer k, let $k+\mathbb{S}=\{k+x: x \in \mathbb{S}\}$. Thus $k+[a, b]$ is the set $\{x \in \mathbb{Z}: k+a \leq x \leq k+b\}$. It can be easily verified that $\sum(k+\mathbb{S})=k|\mathbb{S}|+\sum \mathbb{S}$.

If $\mathbb{P}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is a partition of a set X of integers with the same cardinality then we say \mathbb{P} is an n-equipartition of X. Also we denote the set of subsets sums of the parts of \mathbb{P} by $\sum \mathbb{P}=\left\{\sum X_{1}, \sum X_{2}, \ldots, \sum X_{n}\right\}$.
Lemma 2.1. [3] Let h and k be two positive integers. For each integer $0 \leq t \leq\lfloor h / 2\rfloor$ there is a k-equipartition \mathbb{P} of $[1, h k]$ such that $\sum \mathbb{P}$ is an arithmetic progression of difference $d=h-2 t$.
Lemma 2.2. [6] If h is even, then there exists a k-equipartition $\mathbb{P}=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ of $X=[1, h k]$ such that $\sum X_{r}=h(h k+1) / 2$ for $1 \leq r \leq k$.

Arrange the numbers $X=[1, h k]$ in a matrix $\mathcal{A}=\left(a_{i, j}\right)_{h \times k}$, where $a_{i, j}=(i-1) k+j$ for $1 \leq i \leq h$ and $1 \leq j \leq k$. For $1 \leq r \leq k$, define $X_{r}=\left\{a_{i, r}: 1 \leq i \leq h / 2\right\} \cup\left\{a_{i, k-r+1}\right.$: $h / 2+1 \leq i \leq h\}$. Then,

$$
\begin{aligned}
\sum X_{r} & =\sum_{i=1}^{\frac{h}{2}} a_{i, r}+\sum_{i=\frac{h}{2}+1}^{h} a_{i, k-r+1} \\
& =\sum_{i=1}^{\frac{h}{2}}\{(i-1) k+r\}+\sum_{i=\frac{h}{2}+1}^{h}\{(i-1) k+k-r+1\}=\frac{h(h k+1)}{2} .
\end{aligned}
$$

Lemma 2.3. [6] Let h and k be two positive integers such that h is even and $k \geq 3$ is odd. Then there exists a k-equipartition $\mathbb{P}=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ of $X=[1, h k]$ such that $\sum X_{r}=(h-1)(h k+k+1) / 2+r$ for $1 \leq r \leq k$. Thus, $\sum \mathbb{P}$ is a set of consecutive integers given by $\sum \mathbb{P}=(h-1)(h k+k+1) / 2+[1, k]$.

Let us arrange the set of integers $X=\{1,2,3, \ldots, h k\}$ in a matrix $\mathcal{A}=\left(a_{i, j}\right)_{h \times k}$, where $a_{i, j}=(i-1) k+j$ for $1 \leq i \leq h$ and $1 \leq j \leq k$. We construct a k-equipartition $Y_{1}, Y_{2}, \ldots, Y_{k}$ using the first ($h-1$) rows of the matrix as $Y_{r}=\left\{a_{i, r}: 1 \leq i \leq h / 2\right\} \cup\left\{a_{i, k-r+1}: h / 2+1 \leq\right.$ $i \leq h-1\}$. For $1 \leq r \leq k$, we define $X_{r}=Y_{\sigma(r)} \cup\{(h-1) k+\pi(r)\}$, where σ and π denote the permutations of $\{1,2, \ldots, k\}$ given by

$$
\sigma(r)= \begin{cases}\frac{k-2 r+1}{2} & \text { for } 1 \leq r \leq \frac{k-1}{2} \\ \frac{3 k-2 r+1}{2} & \text { for } \frac{k+1}{2} \leq r \leq k\end{cases}
$$

and

$$
\pi(r)= \begin{cases}2 r & \text { for } 1 \leq r \leq \frac{k-1}{2} \\ 2 r-k & \text { for } \frac{k+1}{2} \leq r \leq k\end{cases}
$$

Then it can be verified that $\sum X_{r}=(h-1)(h k+k+1) / 2+r$ for $1 \leq r \leq k$.
Lemma 2.4. [6] Let h and k be two positive integers and let h be odd. Then there exists a k-equipartition $\mathbb{P}=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ of $X=[1, h k]$ such that $\sum X_{r}=(h-1)(h k+k+1) / 2+$ r for $1 \leq r \leq k$. Thus, $\sum \mathbb{P}$ is a set of consecutive integers given by $\sum \mathbb{P}=(h-1)(h k+k+1) / 2+$ $[1, k]$.

Arrange the numbers $X=[1, h k]$ in a matrix $\mathcal{A}=\left(a_{i, j}\right)_{h \times k}$, where $a_{i, j}=(i-1) k+j$ for $1 \leq i \leq h$ and $1 \leq j \leq k$. For $1 \leq r \leq k$, define $X_{r}=\left\{a_{i, r}: 1 \leq i \leq(h+1) / 2\right\} \cup\left\{a_{i, k-r+1}\right.$: $(h+3) 2 \leq i \leq h\}$. Then $\sum \mathbb{P}=(h-1)(h k+k+1) / 2+[1, k]$.

3. Super star-antimagic graphs

In this section we prove that a particular class of banana trees are super star-antimagic. The star $S_{n}, n \geq 1$ is a graph isomorphic to the complete bipartite graph $K_{1, n}$. A banana tree $B t\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is the tree obtained by joining a vertex v to one leaf vertex of each star in a family of disjoint stars $S_{n_{1}}, S_{n_{2}}, \ldots, S_{n_{k}}$. If $n_{1}=n_{2}=\cdots=n_{k}=n$ we will use the notation $B t_{n}^{k}$ instead of $B t(n, n, \ldots, n)$.
Theorem 3.1. The banana tree $B t_{k}^{k}, k \geq 3$ admits a super (a, d)- S_{k}-antimagic labeling for $d \in\{0,2,4, \ldots, k+1\}$ if k is odd and $d \in\{1,3,5, \ldots, k+1\}$ if k is even.
Proof. Let the vertex set and the edge set of the banana tree $B t_{k}^{k}$ be

$$
\begin{aligned}
& V\left(B t_{k}^{k}\right)=\left\{v, v_{i}, v_{i}^{j}: i=1,2, \ldots, k ; j=1,2, \ldots, k\right\}, \\
& E\left(B t_{k}^{k}\right)=\left\{v_{i} v_{i}^{j}: i=1,2, \ldots, k ; j=1,2, \ldots, k\right\} \cup\left\{v v_{1}^{j}: j=1,2, \ldots, k\right\} .
\end{aligned}
$$

Evidently, the graph $B t_{k}^{k}$ admits a S_{k}-covering consisting of $k+1$ stars isomorphic to S_{k}. We denote the k-stars by the symbols $\left\{S_{k}^{1}, S_{k}^{2}, \ldots, S_{k}^{k}, S_{k}^{k+1}\right\}$ such that the vertex set of $S_{k}^{i}, i=1,2, \ldots, k$, is $V\left(S_{k}^{i}\right)=\left\{v_{i}, v_{j}^{i}: j=1,2, \ldots, k\right\}$ and its edge set is $E\left(S_{k}^{i}\right)=$ $\left\{v_{i} v_{j}^{i}: j=1,2, \ldots, k\right\}$. For the star S_{k}^{k+1} holds $V\left(S_{k}^{k+1}\right)=\left\{v, v_{i}: i=1,2, \ldots, k\right\}$ and $E\left(S_{k}^{k+1}\right)=\left\{v v^{i}: i=1,2, \ldots, k\right\}$.

Let us distinguish two cases.
Case i: k is odd.
Since $k+1$ is even, by Lemma 2.3 then there exists a k-equipartition $\mathbb{P}=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ of $X=[1,(k+1) k]$ such that

$$
\begin{equation*}
\sum X_{i}=\frac{k(k+1)^{2}}{2}+i \text { for } 1 \leq i \leq k . \tag{3.1}
\end{equation*}
$$

It can be easily verified by the definition of X_{i} in Lemma 2.3 that for $1 \leq i \leq k$

$$
\left(\frac{k+1}{2}-1\right) k+\sigma(i) \in X_{i},
$$

where σ is the permutation on $\{1,2, \ldots, k\}$ given by

$$
\sigma(i)= \begin{cases}\frac{k-2 i+1}{2} & \text { for } 1 \leq i \leq \frac{k-1}{2} \\ \frac{3 k-2 i+1}{2} & \text { for } \frac{k+1}{2} \leq i \leq k\end{cases}
$$

We construct a new set of integers X_{k+1} by choosing one particular element from each $X_{i}, i=1,2, \ldots, k$, together with $k^{2}+k+1$ as follows:

$$
X_{k+1}=\left\{\left(\frac{k+1}{2}-1\right) k+\sigma(i): 1 \leq i \leq k\right\} \cup\left\{k^{2}+k+1\right\} .
$$

Then

$$
\begin{align*}
\sum X_{k+1} & =\sum_{i=1}^{k}\left[\left(\frac{k+1}{2}-1\right) k+\sigma(i)\right]+k^{2}+k+1 \\
& =\frac{k^{2}(k-1)}{2}+\frac{k(k+1)}{2}+k^{2}+k+1=\frac{k(k+1)^{2}}{2}+k+1 . \tag{3.2}
\end{align*}
$$

From (3.1) and (3.2) we have

$$
\sum X_{i}=\frac{k(k+1)^{2}}{2}+i \text { for } 1 \leq i \leq k+1 .
$$

By Lemma 2.1, for each integer $0 \leq t \leq\lfloor k / 2\rfloor$ there is a $(k+1)$-equipartition $\mathbb{R}^{t}=$ $\left\{R_{1}^{t}, R_{2}^{t}, \ldots, R_{k+1}^{t}\right\}$ of $[1, k(k+1)]$ such that for $1 \leq i \leq k+1$ holds $\sum R_{i}^{t}=\Delta_{t}+d i$,
where $d=k-2 t$ and $\Delta_{t}=\sum R_{1}^{t}-d$. Hence we have a $(k+1)$-equipartition $\mathbb{Q}^{t}=$ $\left\{Y_{1}^{t}, Y_{2}^{t}, \ldots, Y_{k+1}^{t}\right\}$ of the set $\left[k^{2}+k+2,2 k^{2}+2 k+1\right]$ such that

$$
\sum Y_{i}^{t}=k\left(k^{2}+k+1\right)+\Delta_{t}+d i \quad \text { for } 1 \leq i \leq k+1
$$

For each $0 \leq t \leq\lfloor k / 2\rfloor$ we define a total labeling $f_{t}, f_{t}: V\left(B t_{k}^{k}\right) \cup E\left(B t_{k}^{k}\right) \rightarrow\left[1,2 k^{2}+2 k+1\right]$ as follows:

$$
\begin{aligned}
f_{t}\left(E\left(S_{k}^{i}\right)\right) & =Y_{i}^{t} & & \text { for } 1 \leq i \leq k+1 \\
f_{t}(v) & =k^{2}+k+1, & & \\
f_{t}\left(V\left(S_{k}^{i}\right)\right) & =X_{i} & & \text { for } 1 \leq i \leq k+1
\end{aligned}
$$

with the restriction that for $i=1,2, \ldots, k$ it holds

$$
f_{t}\left(v_{1}^{i}\right)=\left(\frac{k+1}{2}-1\right) k+\sigma(i)
$$

Then for $1 \leq i \leq k+1$ we get

$$
\begin{aligned}
w t_{f_{t}}\left(S_{k}^{i}\right) & =\sum f_{t}\left(V\left(S_{k}^{i}\right)\right)+\sum f_{t}\left(E\left(S_{k}^{i}\right)\right)=\sum X_{i}+\sum Y_{i}^{t} \\
& =\frac{k(k+1)^{2}}{2}+i+k\left(k^{2}+k+1\right)+\Delta_{t}+d i=a_{t}+(d+1) i
\end{aligned}
$$

where $a_{t}=k(k+1)^{2} / 2+k\left(k^{2}+k+1\right)+\Delta_{t}$.
Since k is odd and $d=k-2 t$ then for $0 \leq t \leq\lfloor k / 2\rfloor$ we have $d \in\{1,3,5, \ldots, k\}$. Hence the banana tree $B t_{k}^{k}$ admits super $\left(a, d^{*}\right)-S_{k}$-antimagic labeling for $d^{*} \in\{2,4,6, \ldots, k+1\}$.

To prove that the banana tree $B t_{k}^{k}$ admits a super S_{k}-magic labeling also, we define a total labeling $g: V\left(B t_{k}^{k}\right) \cup E\left(B t_{k}^{k}\right) \rightarrow\left[1,2 k^{2}+2 k+1\right]$ as follows:

$$
\begin{aligned}
g\left(E\left(S_{k}^{i}\right)\right) & =f_{\left\lfloor\frac{k}{2}\right\rfloor}\left(E\left(S_{k}^{i}\right)\right)=Y_{i}^{\left\lfloor\frac{k}{2}\right\rfloor} & & \text { for } 1 \leq i \leq k+1 \\
g(v) & =k^{2}+k+1, & & \\
g\left(V\left(S_{k}^{i}\right)\right) & =X_{k+2-i} & & \text { for } 1 \leq i \leq k+1
\end{aligned}
$$

with the restriction that for $i=1,2, \ldots, k$

$$
g\left(v_{1}^{i}\right)=\left(\frac{k+1}{2}-1\right) k+\sigma(i)
$$

Then for $1 \leq i \leq k+1$

$$
\begin{aligned}
w t_{g}\left(S_{k}^{i}\right) & =\sum g\left(V\left(S_{k}^{i}\right)\right)+\sum g\left(E\left(S_{k}^{i}\right)\right)=\sum X_{k+2-i}+\sum Y_{i}^{\left\lfloor\frac{k}{2}\right\rfloor} \\
& =\frac{k(k+1)^{2}}{2}+k+2-i+k\left(k^{2}+k+1\right)+\Delta_{\left\lfloor\frac{k}{2}\right\rfloor}+i \\
& =\frac{k(k+1)^{2}}{2}+k+2+k\left(k^{2}+k+1\right)+\Delta_{\left\lfloor\frac{k}{2}\right\rfloor}
\end{aligned}
$$

Case ii: k is even.
Since $k+1$ is odd, by Lemma 2.4 , there exists a k-equipartition $\mathbb{P}=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ of $X=[1,(k+1) k]$ such that

$$
\begin{equation*}
\sum X_{i}=\frac{k(k+1)^{2}}{2}+i \quad \text { for } 1 \leq i \leq k \tag{3.3}
\end{equation*}
$$

It can be easily verified by the definition of X_{i} in Lemma 2.4 that for $1 \leq i \leq k / 2$

$$
\left(\frac{k+2}{2}-1\right) k+i \in X_{i}
$$

and for $k / 2+1 \leq i \leq k$

$$
\left(\frac{k}{2}-1\right) k+i \in X_{i}
$$

We construct a new set of integers X_{k+1} by choosing one particular element from each X_{i} for $i=1,2, \ldots, k$ together with $k^{2}+k+1$ as follows:

$$
\begin{aligned}
X_{k+1}= & \left\{\left(\frac{k+2}{2}-1\right) k+j: 1 \leq j \leq \frac{k}{2}\right\} \cup\left\{\left(\frac{k}{2}-1\right) k+j: \frac{k}{2}+1 \leq j \leq k\right\} \\
& \cup\left\{k^{2}+k+1\right\} .
\end{aligned}
$$

Then

$$
\begin{align*}
\sum X_{k+1} & =\sum_{j=1}^{\frac{k}{2}}\left[\left(\frac{k+2}{2}-1\right) k+j\right]+\sum_{j=\frac{k}{2}+1}^{k}\left[\left(\frac{k}{2}-1\right) k+j\right]+k^{2}+k+1 \\
& =\frac{k^{2}(k-1)}{2}+\frac{k(k+1)}{2}+k^{2}+k+1=\frac{k(k+1)^{2}}{2}+k+1 . \tag{3.4}
\end{align*}
$$

From (3.3) and (3.4) we have

$$
\sum X_{i}=\frac{k(k+1)^{2}}{2}+i \quad \text { for } 1 \leq i \leq k+1
$$

By Lemma 2.1, for each integer $0 \leq t \leq\lfloor k / 2\rfloor$ there is a $(k+1)$-equipartition $\mathbb{R}^{t}=$ $\left\{R_{1}^{t}, R_{2}^{t}, \ldots, R_{k+1}^{t}\right\}$ of $[1, k(k+1)]$ such that for $1 \leq i \leq k+1$ holds $\sum R_{i}^{t}=\Delta_{t}+d i$, where $d=k-2 t$ and $\Delta_{t}=\sum R_{1}^{t}-d$. Hence we have a $(k+1)$-equipartition $\mathbb{Q}^{t}=$ $\left\{Y_{1}^{t}, Y_{2}^{t}, \ldots, Y_{k+1}^{t}\right\}$ of the set $\left[k^{2}+k+2,2 k^{2}+2 k+1\right]$ such that

$$
\sum Y_{i}^{t}=k\left(k^{2}+k+1\right)+\Delta_{t}+d i \quad \text { for } 1 \leq i \leq k+1
$$

For each $0 \leq t \leq k / 2$ we define a total labeling $f_{t}: V\left(B t_{k}^{k}\right) \cup E\left(B t_{k}^{k}\right) \rightarrow\left[1,2 k^{2}+2 k+1\right]$ as follows:

$$
\begin{aligned}
f_{t}\left(E\left(S_{k}^{i}\right)\right) & =Y_{i}^{t} & & \text { for } 1 \leq i \leq k+1 \\
f_{t}(v) & =k^{2}+k+1, & & \\
f_{t}\left(V\left(S_{k}^{i}\right)\right) & =X_{i} & & \text { for } 1 \leq i \leq k+1
\end{aligned}
$$

with the restriction that

$$
f_{t}\left(v_{1}^{i}\right)= \begin{cases}\left(\frac{k+2}{2}-1\right) k+i & \text { for } 1 \leq i \leq \frac{k}{2} \\ \left(\frac{k}{2}-1\right) k+i & \text { for } \frac{k}{2}+1 \leq i \leq k\end{cases}
$$

Then for $1 \leq i \leq k+1$ we get

$$
\begin{aligned}
w t_{f_{t}}\left(S_{k}^{i}\right) & =\sum f_{t}\left(V\left(S_{k}^{i}\right)\right)+\sum f_{t}\left(E\left(S_{k}^{i}\right)\right)=\sum X_{i}+\sum Y_{i}^{t} \\
& =\frac{k(k+1)^{2}}{2}+i+k\left(k^{2}+k+1\right)+\Delta_{t}+d i=a_{t}+(d+1) i,
\end{aligned}
$$

where $a_{t}=k(k+1)^{2} / 2+k\left(k^{2}+k+1\right)+\Delta_{t}$.
Since k is even and $d=k-2 t$ for $0 \leq t \leq k / 2$ we have $d \in\{0,2,4,6, \ldots, k\}$. Hence the banana tree $B t_{k}^{k}$ admits a super $\left(a, d^{*}\right)-S_{k}$-antimagic labeling for $d^{*} \in\{1,3,5, \ldots, k+$ $1\}$.

Figure 1 illustrates a super $(a, 6)-S_{5}$-antimagic labeling of the banana tree $B t_{5}^{5}$ and a super ($a, 3$)- S_{6}-antimagic labeling of the banana tree $B t_{6}^{6}$.

By the symbol $S t_{n}^{p}, n \geq 1, p \geq 0$, we denote the graph obtained from the star S_{n} by attaching p pendant edges to every vertex of degree 1 in S_{n}. Let us denote the vertices and edges in $S t_{n}^{p}$ such that

$$
\begin{aligned}
& V\left(S t_{n}^{p}\right)=\left\{v, v_{i}, v_{i}^{j}: i=1,2, \ldots, n ; j=1,2, \ldots, p\right\}, \\
& E\left(S t_{n}^{p}\right)=\left\{v_{i} v_{i}^{j}: i=1,2, \ldots, n ; j=1,2, \ldots, p\right\} \cup\left\{v v_{i}: i=1,2, \ldots, n\right\} .
\end{aligned}
$$

Figure 1. A super $(a, 6)-S_{5}$-antimagic labeling of the banana tree $B t_{5}^{5}$ and a super $(a, 3)-S_{6}$-antimagic labeling of the banana tree $B t_{6}^{6}$.

Evidently, the graph $S t_{n}^{p}$ admits a S_{p+1}-covering. If $p \geq n$ then the S_{p+1}-covering of $S t_{n}^{p}$ consists of n stars isomorphic to S_{p+1}. Let us denote the ($p+1$)-stars by the symbols $\left\{S_{p+1}^{1}, S_{p+1}^{2}, \ldots, S_{p+1}^{n}\right\}$ such that the edge set of $S_{p+1}^{i}, i=1,2, \ldots, n$, is

$$
V\left(S_{p+1}^{i}\right)=\left\{v, v_{i}, v_{i}^{j}: j=1,2, \ldots, p\right\}
$$

and its edge set is

$$
E\left(S_{p+1}^{i}\right)=\left\{v v_{i}, v_{i} v_{i}^{j}: j=1,2, \ldots, p\right\} .
$$

If $p=n-1$ then the graph $S t_{n}^{n-1}$ contains $n+1$ subgraphs isomorphic to S_{n}. We denote them $\left\{S_{n}^{1}, S_{n}^{2}, \ldots, S_{n}^{n+1}\right\}$, where for $i=1,2, \ldots, n$, is $V\left(S_{n}^{i}\right)=\left\{v, v_{i}, v_{i}^{j}: j=\right.$ $1,2, \ldots, n-1\}$ and $E\left(S_{n}^{i}\right)=\left\{v v_{i}, v_{i} v_{j}^{i}: j=1,2, \ldots, n-1\right\}$. Moreover, $V\left(S_{n}^{n+1}\right)=\left\{v, v_{i}\right.$: $i=1,2, \ldots, n\}$ and $E\left(S_{n}^{n+1}\right)=\left\{v v_{i}: i=1,2, \ldots, n\right\}$.
Theorem 3.2. Let n, p be positive integers, $p \geq n$. Then the graph $S t_{n}^{p}$ admits a super (a, d)- S_{p+1}-antimagic labeling for $d \in\{0,2, \ldots, 2(p+1)\}$. Moreover, if n and p are odd, $n \geq 3$, then differences $d \in\{1,3, \ldots, p+2\}$ are also feasible.

Proof. The graph $S t_{n}^{p}$ has $(n(p+1)+1)$ vertices and $n(p+1)$ edges. If $p \geq n$ then the graph $S t_{n}^{p}$ contains n subgraphs isomorphic to S_{p+1}.

By Lemma 2.1, for each integer $0 \leq t \leq\lfloor(p+1) / 2\rfloor$ there is a n-equipartition $\mathbb{Q}=$ $\left\{Q_{1}^{t}, Q_{2}^{t}, \ldots, Q_{n}^{t}\right\}$ of $[1, n(p+1)]$ such that $\sum Q_{i}^{t}=\Delta_{t}+d i$, where $d=p+1-2 t$ and $\Delta_{t}=\sum Q_{1}^{t}-d$.
Hence we have a n-equipartition $\mathbb{Y}^{t_{1}}=\left\{Y_{1}^{t_{1}}, Y_{2}^{t_{1}}, \ldots, Y_{n}^{t_{1}}\right\}$ of the set $[2, n(p+1)+1]$ such that

$$
\sum Y_{i}^{t_{1}}=n+\Delta_{t_{1}}+\left(p+1-2 t_{1}\right) i \quad \text { for } 1 \leq i \leq n
$$

where $0 \leq t_{1} \leq\lfloor(p+1) / 2\rfloor$.
Moreover, we have a n-equipartition $\mathbb{Z}^{t_{2}}=\left\{Z_{1}^{t_{2}}, Z_{2}^{t_{2}}, \ldots, Z_{n}^{t_{2}}\right\}$ of the set $[n(p+1)+$ $2,2 n(p+1)+1]$ such that

$$
\sum Z_{i}^{t_{2}}=n(n(p+1)+1)+\Delta_{t_{2}}+\left(p+1-2 t_{2}\right) i \quad \text { for } 1 \leq i \leq n,
$$

where $0 \leq t_{2} \leq\lfloor(p+1) / 2\rfloor$.

We define a total labeling $f: V\left(S t_{n}^{p}\right) \cup E\left(S t_{n}^{p}\right) \rightarrow[1,2 n(p+1)+1]$ such that

$$
\begin{array}{rlrl}
f(v) & =1 \\
f\left(V\left(S_{p+1}^{i}\right)-\{v\}\right) & =Y_{i}^{t_{1}} & & \\
f\left(E\left(S_{p+1}^{i}\right)\right) & =Z_{i}^{t_{2}} & & \text { for } 1 \leq i \leq n \\
\text { for } 1 \leq i \leq n
\end{array}
$$

Then for $1 \leq i \leq n$ we get

$$
\begin{aligned}
w t_{f}\left(S_{p+1}^{i}\right)= & \sum f\left(V\left(S_{p+1}^{i}\right)\right)+\sum f\left(E\left(S_{p+1}^{i}\right)\right) \\
= & f(v)+\sum f\left(V\left(S_{p+1}^{i}\right)-\{v\}\right)+\sum f\left(E\left(S_{p+1}^{i}\right)\right) \\
= & 1+\sum Y_{i}^{t_{1}}+\sum Z_{i}^{t_{2}}=1+\left(n+\Delta_{t_{1}}+\left(p+1-2 t_{1}\right) i\right) \\
& +\left(n(n(p+1)+1)+\Delta_{t_{2}}+\left(p+1-2 t_{2}\right) i\right) \\
= & a+\left(2 p+2-2 t_{1}-2 t_{2}\right) i
\end{aligned}
$$

where $a=n^{2}(p+1)+2 n+1+\Delta_{t_{1}}+\Delta_{t_{2}}$.
Thus, the weights of stars S_{p+1} for arithmetic sequence with difference $d=(2 p+2-$ $\left.2 t_{1}-2 t_{2}\right)$. As $0 \leq t_{1} \leq\lfloor(p+1) / 2\rfloor$ and $0 \leq t_{2} \leq\lfloor(p+1) / 2\rfloor$ we get that for p odd

$$
d \in\{0,2, \ldots, 2(p+1)\}
$$

and for p even

$$
d \in\{2,4, \ldots, 2(p+1)\}
$$

Moreover, for p even we define a total labeling $f_{0}: V\left(S t_{n}^{p}\right) \cup E\left(S t_{n}^{p}\right) \rightarrow[1,2 n(p+1)+1]$ such that

$$
f_{0}(v)=1
$$

$$
f_{0}\left(V\left(S_{p+1}^{i}\right)-\{v\}\right)=Y_{i}^{0} \quad \text { for } 1 \leq i \leq n
$$

$$
f_{0}\left(E\left(S_{p+1}^{i}\right)\right)=Z_{n+1-i}^{0} \quad \text { for } 1 \leq i \leq n
$$

For $1 \leq i \leq n$ we get

$$
\begin{aligned}
w t_{f_{0}}\left(S_{p+1}^{i}\right)= & \sum f_{0}\left(V\left(S_{p+1}^{i}\right)\right)+\sum f_{0}\left(E\left(S_{p+1}^{i}\right)\right) \\
= & f_{0}(v)+\sum f_{0}\left(V\left(S_{p+1}^{i}\right)-\{v\}\right)+\sum f_{0}\left(E\left(S_{p+1}^{i}\right)\right) \\
= & 1+\sum Y_{i}^{0}+\sum Z_{n+1-i}^{0}=1+\left(n+\Delta_{0}+2(p+1) i\right) \\
& +\left(n(n(p+1)+1)+\Delta_{0}+2(p+1)(n+1-i)\right) \\
= & n^{2}(p+1)+2 n+1+2(p+1)(n+1)
\end{aligned}
$$

Thus also for p even we have a S_{p+1}-supermagic labeling of $S t_{n}^{p}$.
Let n and p are odd, $n \geq 3$. Then according to Lemma 2.3 there exists a n-equipartition $\mathbb{P}=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ of $X=[1, n(p+1)]$ such that $\sum P_{i}=p((p+1) n+n+1) / 2+i$ for $1 \leq i \leq n$.

Hence we have a n-equipartition $\mathbb{T}=\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ of the set $[2, n(p+1)+1]$ such that

$$
\sum T_{i}=n+\frac{p((p+1) n+n+1)}{2}+i \quad \text { for } 1 \leq i \leq n
$$

We define a total labeling $g: V\left(S t_{n}^{p}\right) \cup E\left(S t_{n}^{p}\right) \rightarrow[1,2 n(p+1)+1]$ such that

$$
\begin{aligned}
g(v) & =1 & & \\
g\left(V\left(S_{p+1}^{i}\right)-\{v\}\right) & =Y_{i}^{t_{1}} & & \text { for } 1 \leq i \leq n \\
g\left(E\left(S_{p+1}^{i}\right)\right) & =T_{i} & & \text { for } 1 \leq i \leq n
\end{aligned}
$$

The star weights of $S_{p+1}^{i}, 1 \leq i \leq n$, are

$$
\begin{aligned}
w t_{g}\left(S_{p+1}^{i}\right)= & \sum g\left(V\left(S_{p+1}^{i}\right)\right)+\sum g\left(E\left(S_{p+1}^{i}\right)\right) \\
= & g(v)+\sum g\left(V\left(S_{p+1}^{i}\right)-\{v\}\right)+\sum g\left(E\left(S_{p+1}^{i}\right)\right) \\
= & 1+\sum Y_{i}^{t_{1}}+\sum T_{i}=1+\left(n+\Delta_{t_{1}}+\left(p+1-2 t_{1}\right) i\right) \\
& +\left(n+\frac{p((p+1) n+n+1)}{2}+i\right) \\
= & \left(2 n+\frac{p((p+1) n+n+1)}{2}+\Delta_{t_{1}}+1\right)+\left(p+2-2 t_{1}\right) i .
\end{aligned}
$$

As $0 \leq t_{1} \leq(p+1) / 2$ we get that

$$
p+2-2 t_{1} \in\{1,3, \ldots, p+2\} .
$$

This concludes the proof.
Theorem 3.3. The graph $S t_{n}^{n-1}$ admits a super (a,d)-S S_{n}-antimagic labeling for $d \in$ $\{0,2(n-2)\}$.
Proof. The graph $S t_{n}^{n-1}$ has $\left(n^{2}+1\right)$ vertices and n^{2} edges and contains $n+1$ subgraphs isomorphic to S_{n}.

We define a total labeling $h, f: V\left(S t_{n}^{n-1}\right) \cup E\left(S t_{n}^{n-1}\right) \rightarrow\left\{1,2, \ldots, 2 n^{2}+1\right\}$ such that

$$
\begin{aligned}
h(v) & =1, \\
\left\{h(u): u \in V\left(S t_{n}^{n-1}\right)-\{v\}\right\} & =\left\{2,3, \ldots, n^{2}+1\right\}, \\
h\left(v v_{i}\right) & =2 n^{2}+3-h\left(v_{i}\right) \quad \text { for } 1 \leq i \leq n, \\
h\left(v_{i} v_{i}^{j}\right) & =2 n^{2}+3-h\left(v_{i}^{j}\right) \quad \text { for } 1 \leq i \leq n, 1 \leq j \leq n-1 .
\end{aligned}
$$

For the weights of the stars $S_{n}^{i}, 1 \leq i \leq n$ we get

$$
\begin{align*}
w t_{h}\left(S_{n}^{i}\right)= & h\left(v_{i}\right)+h(v)+\sum_{j=1}^{n-1} h\left(v_{i}^{j}\right)+\sum_{j=1}^{n-1} h\left(v_{i} v_{i}^{j}\right)+h\left(v v_{i}\right) \\
= & h\left(v_{i}\right)+1+\sum_{j=1}^{n-1} h\left(v_{i}^{j}\right)+\sum_{j=1}^{n-1}\left(2 n^{2}+3-h\left(v_{i}^{j}\right)\right) \\
& +\left(2 n^{2}+3-h\left(v_{i}\right)\right)=n\left(2 n^{2}+3\right)+1 . \tag{3.5}
\end{align*}
$$

Moreover,

$$
\begin{align*}
w t_{h}\left(S_{n}^{n+1}\right) & =h(v)+\sum_{i=1}^{n} h\left(v_{i}\right)+\sum_{i=1}^{n} h\left(v v_{i}\right) \\
& =1+\sum_{i=1}^{n} h\left(v_{i}\right)+\sum_{i=1}^{n}\left(2 n^{2}+3-h\left(v_{i}\right)\right)=n\left(2 n^{2}+3\right)+1 . \tag{3.6}
\end{align*}
$$

Using (3.5) and (3.6) we proved that h is a S_{n}-supermagic labeling of $S t_{n}^{n-1}$.
We distinguish two cases to obtain the difference $2(n-2)$.
Case i: n is odd.
We define a total labeling f of $S t_{n}^{n-1}$ as follows:

$$
\begin{aligned}
f(v) & =1 \\
f\left(v_{i}\right) & =i+1 \text { for } 1 \leq i \leq n \\
f\left(v_{i}^{j}\right) & = \begin{cases}n j+1+i & \text { for } 1 \leq i \leq n, 1 \leq j \leq n-2 \\
n^{2}+2-i & \text { for } 1 \leq i \leq n, j=n-1\end{cases}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
f\left(v_{i} v_{i}^{j}\right) & =\left\{\begin{array}{lr}
n(n-1)+n j+1+i & \text { for } 1 \leq i \leq n, \\
i \neq \frac{n+3}{2}, 2 \leq j \leq n-1,
\end{array}\right. \\
2 n^{2}-\frac{n-1}{2} & \text { for } i=\frac{n+3}{2}, j=1,
\end{array}\right\} \begin{array}{lr}
2 n^{2}+2-i & \text { for } 1 \leq i \leq n, i \neq \frac{n+3}{2}, \\
n^{2}+\frac{n-1}{2}+3 & \text { for } i=\frac{n+3}{2} .
\end{array}
$$

We find the S_{n}-weights of the stars in the covering.

$$
\begin{align*}
w t_{f}\left(S_{n}^{n+1}\right) & =f(v)+\sum_{i=1}^{n} f\left(v_{i}\right)+\sum_{i=1}^{n} f\left(v v_{i}\right) \\
& =1+\sum_{i=1}^{n}[i+1]+\sum_{\substack{i=1 \\
i \neq \frac{n+3}{2}}}^{n}\left[2 n^{2}+2-i\right]+n^{2}+\frac{n-1}{2}+3 \\
& =2 n^{3}-n^{2}+4 n+3 . \tag{3.7}
\end{align*}
$$

For $1 \leq i \leq n, i \neq(n+3) / 2+2$ is

$$
\begin{align*}
w t_{f}\left(S_{n}^{i}\right)= & f\left(v_{i}\right)+f(v)+\sum_{j=1}^{n-1} f\left(v_{i}^{j}\right)+\sum_{j=1}^{n-1} f\left(v_{i} v_{i}^{j}\right)+f\left(v v_{i}\right) \\
= & (i+1)+1+\left(\sum_{j=1}^{n-2}[n j+1+i]+n^{2}+2-i\right) \\
& +\left(\sum_{j=1}^{n-1}[n(n-1)+n j+1+i]\right)+\left(2 n^{2}+2-i\right) \\
= & 2 n^{3}-n^{2}+4 n+3+2(n-2) i \tag{3.8}
\end{align*}
$$

and

$$
\begin{align*}
w t_{f}\left(S_{n}^{\frac{n+3}{2}}\right)= & f\left(v_{\frac{n+3}{2}}\right)+f(v)+\sum_{j=1}^{n-1} f\left(v_{\frac{n+3}{j}}^{j}\right)+\sum_{j=1}^{n-1} f\left(v_{\frac{n+3}{2}} v_{\frac{n+3}{2}}^{j}\right) \\
& +f\left(v v_{\frac{n+3}{2}}\right)=\left(\frac{n-1}{2}+2+1\right)+1 \\
& +\left(\sum_{j=1}^{n-2}\left[n j+1+\frac{n-1}{2}+2\right]+n^{2}+2-\frac{n-1}{2}-2\right) \\
& +\left(\sum_{j=2}^{n-1}\left[n(n-1)+n j+1+\frac{n-1}{2}+2\right]+2 n^{2}-\frac{n-1}{2}\right) \\
& +\left(n^{2}+\frac{n-1}{2}+3\right)=2 n^{3}-n^{2}+4 n+3+2(n-2) \frac{n+3}{2} \tag{3.9}
\end{align*}
$$

From (3.7), (3.8) and (3.9) we proved that the graph $S t_{n}^{n-1}$ admits a super $(a, 2(n-2))$ -S_{n}-antimagic labeling when n is odd.
Case ii: n is even.
We define a total labeling g of $S t_{n}^{n-1}$ as follows:

$$
\begin{aligned}
g(v) & =1, \\
g\left(v_{i}\right) & =i+1 \text { for } 1 \leq i \leq n, \\
g\left(v_{i}^{j}\right) & = \begin{cases}n j+1+i & \text { for } 1 \leq i \leq n, 1 \leq j \leq n-2, \\
n^{2}+2-i & \text { for } 1 \leq i \leq n, j=n-1,\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
g\left(v_{i} v_{i}^{j}\right) & =n(n-1)+n j+1+i \quad \text { for } 1 \leq i \leq n, 1 \leq j \leq n-2, \\
g\left(v \frac{n}{2} v_{\frac{n}{2}}^{n-1}\right) & =2 n(n-1)+1+\frac{n}{2} \\
g\left(v_{n} v_{n}^{n-1}\right) & =(2 n-1) n+1, \\
g\left(v_{i} v_{i}^{n-1}\right) & =n(n-1)+n j+1+i \quad \text { for } 1 \leq i \leq n-1, i \neq \frac{n}{2}, \\
g\left(v v_{\frac{n}{2}}\right) & =2 n^{2}+2-\frac{n}{2} \\
g\left(v v_{n}\right) & =2 n^{2}+2-n, \\
g\left(v v_{i}\right) & =2 n(n-1)+1+i \quad \text { for } 1 \leq i \leq n-1, i \neq \frac{n}{2} .
\end{aligned}
$$

We find the S_{n}-weights of the stars in the covering.

$$
\begin{align*}
w t_{g}\left(S_{n}^{n+1}\right)= & g(v)+\sum_{i=1}^{n} g\left(v_{i}\right)+\sum_{i=1}^{n} g\left(v v_{i}\right)=1+\sum_{i=1}^{n}[i+1] \\
& +\sum_{\substack{i=1 \\
i \neq \frac{n}{2}, i \neq n}}^{n}[2 n(n-1)+1+i]+2 n^{2}+2-\frac{n}{2}+2 n^{2}+2-n \\
= & 2 n^{3}-n^{2}+4 n+3 \tag{3.10}
\end{align*}
$$

For $1 \leq i \leq n-1, i \neq n / 2$ we have

$$
\begin{align*}
w t_{g}\left(S_{n}^{i}\right)= & g\left(v_{i}\right)+g(v)+\sum_{j=1}^{n-1} g\left(v_{i}^{j}\right)+\sum_{j=1}^{n-1} g\left(v_{i} v_{i}^{j}\right)+g\left(v v_{i}\right) \\
= & (i+1)+1+\left(\sum_{j=1}^{n-2}[n j+1+i]+n^{2}+2-i\right) \\
& +\left(\sum_{j=1}^{n-2}[n(n-1)+n j+1+i]+2 n^{2}+2-i\right) \\
& +(2 n(n-1)+1+i)=2 n^{3}-n^{2}+4 n+3+2(n-2) i \tag{3.11}
\end{align*}
$$

and

$$
\begin{align*}
w t_{g}\left(S_{n}^{\frac{n}{2}}\right)= & g\left(v_{\frac{n}{2}}\right)+g(v)+\sum_{j=1}^{n-1} g\left(v_{\frac{n}{2}}^{j}\right)+\sum_{j=1}^{n-1} g\left(v_{\frac{n}{2}} v_{\frac{n}{2}}^{j}\right)+g\left(v v_{\frac{n}{2}}\right) \\
= & \left(\frac{n}{2}+1\right)+1+\left(\sum_{j=1}^{n-2}\left[n j+1+\frac{n}{2}\right]+n^{2}+2-\frac{n}{2}\right) \\
& +\left(\sum_{j=1}^{n-2}\left[n(n-1)+n j+1+\frac{n}{2}\right]+2 n(n-1)+1+\frac{n}{2}\right) \\
& +\left(2 n^{2}+2-\frac{n}{2}\right)=2 n^{3}-n^{2}+4 n+3+n(n-2) . \tag{3.12}\\
w t_{g}\left(S_{n}^{n}\right)= & g\left(v_{n}\right)+g(v)+\sum_{j=1}^{n-1} g\left(v_{n}^{j}\right)+\sum_{j=1}^{n-1} g\left(v_{n} v_{n}^{j}\right)+g\left(v v_{n}\right) \\
= & (n+1)+1+\left(\sum_{j=1}^{n-2}[n j+1+n]+n^{2}+2-n+2\right) \\
& +\left(\sum_{j=1}^{n-2}[n(n-1)+n j+1+n]+2 n(n-1)+1+n\right)
\end{align*}
$$

$$
\begin{equation*}
+\left(2 n^{2}+2-n\right)=2 n^{3}-n^{2}+4 n+3+2(n-2) n \tag{3.13}
\end{equation*}
$$

According to (3.10) - (3.13) we have that for n even the graph $S t_{n}^{n-1}$ is super $(a, 2(n-2))$ -S_{n}-antimagic.

Figure 2 illustrates a super $(248,6)-S S_{5}$-antimagic labeling of graph $S t_{5}^{4}$.

Figure 2. A super $(248,6)-S_{5}$-antimagic labeling of graph $S t_{5}^{4}$.
Acknowledgment. This work was supported by the Slovak Science and Technology Assistance Agency under the contract No. APVV-15-0116 and by VEGA 1/0233/18.

References

[1] M. Bača, Z. Kimáková, A. Semaničová-Feňovčíková and M.A. Umar, Treeantimagicness of disconnected graphs, Math. Probl. Eng. 2015, Article ID: 504251, 1-4, 2015.
[2] M. Bača, M. Miller, J. Ryan and A. Semaničová-Feňovčíková, On H-antimagicness of disconnected graphs, Bull. Aust. Math. Soc. 94, 201-207, 2016.
[3] A. Gutiérrez and A. Lladó, Magic coverings, J. Combin. Math. Combin. Comput. 55, 43-56, 2005.
[4] N. Inayah, A.N.M. Salman and R. Simanjuntak, On (a, d)-H-antimagic coverings of graphs, J. Combin. Math. Combin. Comput. 71, 273-281, 2009.
[5] N. Inayah, R. Simanjuntak, A.N.M. Salman and K.I.A. Syuhada, On $(a, d)-H-$ antimagic total labelings for shackles of a connected graph H, Australas. J. Combin. 57, 127-138, 2013.
[6] P. Jeyanthi and P. Selvagopal, Supermagic coverings of some simple graphs, Int. J. Math. Combin. 1, 33-48, 2011.
[7] T.K. Maryati, A.N.M. Salman, E.T. Baskoro, J. Ryan and M. Miller, On Hsupermagic labelings for certain shackles and amalgamations of a connected graph, Utilitas Math. 83, 333-342, 2010.
[8] A. Semaničová-Feňovčíková, M. Bača, M. Lascsáková, M. Miller and J. Ryan, Wheels are cycle-antimagic, Electron. Notes Discrete Math. 48, 11-18, 2015.

[^0]: *Corresponding Author.
 Email addresses: ps_gopaal@yahoo.co.in (P. Selvagopal), jeyajeyanthi@rediffmail.com (P. Jeyanthi), bareeshraja@yahoo.com (N.T. Muthuraja), andrea.fenovcikova@tuke.sk (A. Semaničová-Feňovčíková) Received: 12.01.2017; Accepted: 04.12.2017

