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Abstract
Muhammad Shabir and Munazza Naz have shown that every soft topology gives a
parametrized family of topologies on a set X. In this paper such a link between topol-
ogy and soft topology is further discussed.
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1. Introduction
The theory of soft sets gives a vital mathematical tool for handling uncertainties and

vague concepts. In the year 1999, Molodtsov [15] initiated the study of soft sets. Soft set
theory has been applied in several directions. Following this Maji, Biswas, and Roy [13,14]
discussed soft set theoretical operations and gave an application of soft set theory to a
decision making problem. Recently Shabir and Naz introduced the notion of soft topology
[16] and established that every soft topology induces a collection of topologies called the
parametrized family of topologies induced by the soft topology. Several mathematicians
published papers on applications of soft sets and soft topology [1–3,8,10]. Soft sets and soft
topology have applications to data mining, image processing, decision making problems,
spatial modeling and neural patterns [4–7, 9, 11–13, 17]. The purpose of this paper is to
study a link between a soft topology and the parametrized family of topologies induced
by the soft topology. In particular, we give conditions on a given parametrized family of
topologies which ensure there exists a soft topology whose induced family of topologies is
the given family.

2. Preliminaries
Throughout this paper X denotes the universal set and E denotes the parameter space.

Definition 2.1. A pair (F,E) is called a soft set over X, where F : E → 2X is a mapping.
We denote (F,E) by F̃ and we write F̃ = {(e, F (e)) : e ∈ E}.

According to Shabir and Naz [16], for each subset A of E (FA, E) is a soft set over the
universal set X, where FA : A → 2X is a mapping. However FA : A → 2X can be extended
to E by setting FA(e) = ϕ for all e ∈ E − A. This motivates us to fix the parameter space.
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In this paper, the definitions and results of Shabir and Naz [16] are taken and the subset
A of E is replaced by the fixed parameter space E. Accordingly the following definitions
and results are due to Shabir and Naz [16].
Definition 2.2. For any two soft sets F̃ and G̃ over a common universe X, F̃ is a soft
subset of G̃ if F (e) ⊂ G(e) for all e∈E. If F̃ is a soft subset of G̃ then we write F̃ ⊂̃G̃

Two soft sets F̃ and G̃ over a common universe X are soft equal if F̃ ⊂̃G̃ and G̃⊂̃F̃ .
That is F̃ = G̃ if and only if F (e) = G(e) for all e ∈ E

Definition 2.3. A soft set Φ̃ over X is said to be the NULL soft set if Φ̃ = {(e, ϕ) : e ∈ E}.
Definition 2.4. A soft set X̃ over X is said to be the absolute soft set if X̃ = {(e, X) :
e ∈ E}
Definition 2.5. The union of two soft sets F̃ and G̃ over X is defined as F̃ ∪̃G̃ = (F ∪̃G, E)
where (F ∪̃G)(e) = F (e) ∪ G(e) for all e ∈ E.
Definition 2.6. The intersection of two soft sets F̃ and G̃ over X is defined as F̃ ∩̃G̃ =
(F ∩̃G, E) where (F ∩̃G)(e) = F (e) ∩ G(e) for all e ∈ E.

The arbitrary union and the arbitrary intersection of soft sets are defined as follows:
∪̃{F̃α : α ∈ ∆} = (∪̃{Fα : α ∈ ∆}, E)

and
∩̃{F̃α : α ∈ ∆} = (∩̃{Fα : α ∈ ∆}, E)

where (∪̃{Fα : α ∈ ∆})(e) = ∪{Fα(e) : α ∈ ∆} and (∩̃{Fα : α ∈ ∆})(e) = ∩{Fα(e) : α ∈ ∆}.

Definition 2.7. The complement of a soft set F̃ is denoted by ˜(F )′ = (F ′, E) whereF ′ :
E → 2X is the mapping given by F ′(e) = X − F (e) for all e ∈ E.
Definition 2.8. If τ̃ is a collection of soft sets over X, then τ̃ is said to be a soft topology
on X if

(i) Φ̃, X̃ belong to τ̃ ,
(ii) arbitrary union of soft sets in τ̃ belongs to τ̃ ,
(iii) the intersection of any two soft sets in τ̃ belongs to τ̃ .

If τ̃ is a soft topology over a universal set X with parameter space E, then (X, τ̃ , E) is
called a soft topological space and the members of τ̃ are called soft open sets over (X, E).

Shabir and Naz introduced a parametrized family of topologies and established that
every soft topology induces the parametrized family of topologies as shown in the following
lemma.
Lemma 2.9. Let (X, τ̃ , E) be a soft topological space over X. Then the collection τ̃e =
{F (e) : F̃ ∈ τ̃} for each e ∈ E, defines a topology on X.

3. Link
Definition 3.1. Let (X, τ̃ , E) be a soft topological space over X. Then the collection
E(τ̃) = {τ̃e : e ∈ E} denotes the parameterized family of topologies induced by the soft
topology τ̃ .
Proposition 3.2. Let (X, τ̃ , E) be a soft topology over X with parameter space E. Then
|E(τ̃)| ≤ |E| and |τ̃e| ≤ |τ̃ | for every e ∈ E.
Proof. Let τ̃ be a soft topological space over X with parameter space E. Define φ : E →
E(τ̃) by φ(e) = τ̃e. Clearly φ is onto but it need not be one-to-one. This proves that
|E(τ̃)| ≤ |E|. Now define θe : τ̃ → τ̃e by θe(F̃ ) = F (e). θe is onto but need not be
one-to-one. Therefore |τ̃e| ≤ |τ̃ | �
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The above proposition has been illustrated in the following examples.

Example 3.3. Let X = {h1, h2, h3}, E = {e1, e2} and τ̃ = {Φ̃,X̃, F̃1, F̃2, F̃3, F̃4, F̃5, F̃6, F̃7,
F̃8, F̃9} where Φ̃, X̃, F̃1, F̃2, F̃3, F̃4, F̃5, F̃6, F̃7, F̃8 and F̃9 are soft sets over X. The soft sets
are defined as follows:

F̃1 = {(e1, {h2}), (e2, {h1})}
F̃2 = {(e1, {h2, h3}), (e2, {h1, h2})}
F̃3 = {(e1, {h1, h2}), (e2, {h1, h2})}
F̃4 = {(e1, {h1, h2}), (e2, {h1, h3})}
F̃5 = {(e1, X), (e2, {h1, h2})}
F̃6 = {(e1, {h2}), (e2, {h1, h2})}
F̃7 = {(e1, {h2, h3}), (e2, X)}
F̃8 = {(e1, {h1, h2}), (e2, X)}
F̃9 = {(e1, {h2}), (e2, X)}

Then τ̃ defines a soft topology on X and (X, τ̃ , E) is a soft topological space over X. It can
be easily seen that τ̃e1 = {ϕ, X, {h2}, {h2, h3}, {h1, h2}} and τ̃e2 = {ϕ, X, {h1}, {h1, h3}, {h1,
h2}} are topologies on X. Here e1 ̸= e2 and τ̃e1 ̸= τ̃e2 . Since φ(e1) ̸= φ(e2). φ is one-to-
one. Here |E(τ̃)| = 2 , |E| = 2 and |E(τ̃)| = |E|. Also F̃1(e1) = F̃6(e1) but F̃1 ̸= F̃6. Since
θe1(F̃1) = θe1(F̃6), θe1 is not one-to-one. Here |τ̃e1 | = 5 and |τ̃ | = 11. Therefore |τ̃e1 | < |τ̃ |.
Again since θe2(F̃2) = θe2(F̃3) = {h1, h2}. θe2 is not one-to-one. Here |τ̃e2 | = 5 < 11 = |τ̃ |.

Example 3.4. Let X = {h1, h2}, E = {e1, e2} and τ̃ = {Φ̃,X̃, F̃1, F̃2, F̃3, F̃4, F̃5, F̃6} where
Φ̃, X̃, F̃1, F̃2, F̃3, F̃4, F̃5, F̃6 are soft sets over X. The soft sets are defined as follows:

F̃1 = {(e1, {h2}), (e2, {h2})},
F̃2 = {(e1, X), (e2, {h2, h3})}
F̃3 = {(e1, {h2}), (e2, X)}
F̃4 = {(e1, {h2}), (e2, {h2, h3})}
F̃5 = {(e1, {h2, h3}), (e2, X)}
F̃6 = {(e1, {h2, h3}), (e2, {h2, h3})}

Then τ̃ defines a soft topology on X and hence (X,τ̃ ,E) is a soft topological space over X.
It can be easily seen that τ̃e1 = {ϕ, X, {h2}, {h2, h3}} and τ̃e2 = {ϕ, X, {h2}, {h2, h3}} are
topologies on X. Here e1 ̸= e2 but τ̃e1 = τ̃e2 . Since φ(e1) = φ(e2), φ is not one-to-one.
Here |E(τ̃)| = 1 , |E| = 2 and |E(τ̃)| < |E|. Also F̃1(e1) = F̃4(e1) but F̃1 ̸= F̃4. Since
θe1(F̃1) = θe1(F̃4), θe1 is not one-to-one. Here |τ̃e1 | = 4 and |τ̃ | = 8. Therefore |τ̃e1 | < |τ̃ |.
Again since θe2(F̃4) = θe2(F̃6) = {h2, h3}, θe2 is not one-to-one. Here |τ̃e2 | = 4, |τ̃ | = 8.
Therefore |τ̃e2 | < |τ̃ | = 8.

Example 3.5. Let X = {h1, h2}, E = {e1, e2} and τ̃ = {Φ̃, X̃, F̃1, F̃2} where Φ̃, X̃, F̃1, F̃2
are soft sets over X. The soft sets are defined as follows :

F̃1 = {(e1, {h2, h3})}, (e2, {h2, h3})}
F̃2 = {(e1, {h2}), (e2, {h2})}

Then τ̃ defines a soft topology on X and hence (X,τ̃ ,E) is a soft topological space over X.
It can be easily seen that here τ̃e1 = {ϕ, X, {h2}, {h2, h3}} and τ̃e2 = {ϕ, X, {h2}, {h2, h3}}
are topologies on X. Here e1 ̸= e2 and τ̃e1 = τ̃e2 . Since φ(e1) = φ(e2), φ is not one-to-one.
Here |E(τ̃)| = 1 and |E| = 2. Therefore |E(τ̃)| < |E|. Also F̃1(e1) ̸= F̃2(e1) and F̃1 ̸= F̃2.
Since θe1(F̃1) ̸= θe1(F̃2), θe1 is one-to-one and onto. Here |τ̃e1 | = 4 and |τ̃ | = 4. Therefore
|τ̃e1 | = |τ̃ |. Again since θe2(F̃1) ̸= θe2(F̃2), θe2 is one-to-one. Here |τ̃e2 | = 4, |τ̃ | = 4.
Therefore |τ̃e2 | = |τ̃ | = 4
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Shabir and Naz established that every soft topology induces a parameterized family of
topologies and further gave an example (Example 2, page 1790 of [16]) to show that the
converse is not true. Then the following question will arise.

Given a collection {τe : e ∈ E} of topologies on X, are there conditions under which
there exists a soft topology τ̃ over X with parameter space E such that τe = τ̃e , for all
e ∈ E?

The following theorem gives an answer to the above question.

Theorem 3.6. Let X be a universal set and E be a parameter space. Let {τα : α ∈ E} be
a family of topologies on X satisfying the following conditions.

(i) There is an index set J such that for each α ∈ E, τα = {Gαj : j ∈ J}
(ii) If ∆ ⊆ J , then ∃ r, s ∈ J such that ∩{Gαj : j ∈ ∆} = Gαr for finite ∆ and

∪{Gαj : j ∈ ∆} = Gαs for each α ∈ E.
(iii) There exist j0, j1 ∈ J such that Gαj0 = ϕ and Gαj1 = X for all α ∈ E.
Then τ̃ = {F̃j : j ∈ J} where F̃j(α) = Gαj for each α ∈ E is a soft topology on X with

parameter space E satisfying τ̃α = τα for all α ∈ E.

Proof. For each j ∈ J define F̃j : E → 2X by F̃j(α) = Gαj for all α ∈ E. Then
{F̃j : j ∈ J} is a collection of soft sets over X with parameter space E.

Claim: τ̃ = {F̃j : j ∈ J} is a soft topology on X.
Let ∆ be a non-empty subset of J and let α ∈ E.

(∪̃{F̃j : j ∈ ∆})(α) = ∪{F̃j(α) : j ∈ ∆}
= ∪{Gαj : j ∈ ∆}
= Gαs for some s ∈ J

Since this is true for every α ∈ E, (∪̃{F̃j : j ∈ ∆})(α) = F̃s(α). Therefore τ̃ is closed
under arbitrary union.

(F̃j∩̃F̃k)(α) = Fj(α) ∩ Fk(α)
= Gαj ∩ Gαk = Gαr

= Fr(α)

That is F̃j∩̃F̃k = F̃r ∈ τ̃ . To prove that τ̃α = τα for all α ∈ E

τ̃α = {F̃j(α) : F̃j ∈ τ̃}
= {Gαj : j ∈ J}
= τα for all α ∈ E.

�

Remark 3.7. Obtaining the necessary and sufficient conditions for theorem 3.6 is an open
problem for researchers in soft topology.

4. Conclusion
In this paper, a link between a soft topology and the parametrized family of topologies

induced by the soft topology is identified and characterized.
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