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Abstract

In this work, we present a method to generate probability distributions and
classes of probability distributions, which broadens the process of probability
distribution construction. In this method, distribution classes are built from pre-
defined monotonic functions and from known distributions. With its use, we
can obtain different classes of probability distributions described in literature.
Beside these results, we obtain results on the support and nature of the generated
distributions.
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1. Introduction

The amount of data available for analysis is growing increasingly faster, requiring new proba-
bilistic distributions to better describe each phenomenon or experiment studied. Computer based
tools allow the use of more complex distributions with a larger number of parameters to better study
sizeable masses of data.

The literature in the field describes several generalizations and extensions of symmetric, asym-
metric, discrete and continuous distributions. It is worth quoting Lee et al. (2013) regarding the
main methods of generating distributions and classes of probability distributions:

Generally speaking, the methods developed prior to 1980s may be summarized
into three categories: (1) method of differential equation, (2) method of trans-
formation, and (3) quantile method. Techniques developed since 1980s may be
categorized as methods of combination for the reason that these methods attempt
to combine existing distributions into new distributions or adding new parame-
ters to an existing distribution. (Lee et al., 2013, 219)

The relevance of these new models is that, according to the situation, each one of them can
better fit the mass of data. Table 1 presents several classes of distributions described in literature,
their nomenclature and the title of the work where they have been presented. For a comprehensive
discussion about the classes of probability distributions see three excellent articles written by Lee
et al. (2013), Tahir and Nadarajah (2015) and Tahir and Cordeiro (2016).

Table 1. Some classes of distributions described in literatura

Distribution classes

F(z) =

‘ Nomenclature

G%(x), where a > 0 defined by Mudholkar et al.
(1995)

beta-G type 1 defined by

F( = B(a 5 fG(x) ta— 1 o t)b_ldt,

wherea>0 b>0and0<t<1

Eugene et al. (2002)

F(z) = B(a ) Jo R R A beta-G type 3 defined by
Where a>0,b>0andt >0 Thair and Nadarajah (2015)
F(z) = B( ) fG @) ga=1(1 — )b~ at, Mc-G type 1 defined by
where a > 0,b>0,c>0and0 <t <1 McDonald (1984)
F(x) = B(a. ) fG @) o= 114 t)~(atb) g, Mec-G type 3 defined by

wherea>0,b>0,c>0andt>0

Thair and Nadarajah (2015)

F(z) =1— (1 — G*(x))®, where
a>0andb>0

Kumaraswamy-G defined by
Cordeiro and Castro (2011)

Fz)=1-(1-(1-G()")",
a>0andb >0

where

Kumaraswamy-G type 2
defined by
Thair and Nadarajah (2015)

G(z)

F =1—- —— 2  whereb >0 Marshall-Olkin-G' defined b;
(@) G(x) + b(1 — G(x) Y
Marshall and Olkin (1997)
_ b(1-G(z)) \? .
F(z)=1- (m) , where b > 0 and Marshall-Olkin-G
0>0 defined by Jayakumar
and Mathew (2008)

_ G (x) g
F(z) = <m) ,where b > 0and 0 > 0

Marshall-Olkin-G defined by
Thair and Nadarajah (2015)

gamma-G defined by

Continues on the next page



Table 1. Continued from the previous page

Distribution classes

‘ Nomenclature

F(x): ﬁ/—log[I—G(x)] taflefﬁtdt
(@) Jo ’

Zografos and Balakrishnan

where « > O and 5 > 0 (2009)
e
F(z)=1- / YoperleBtgy, gamma-G defined by
I'(@) Jo

where « > O and 5 > 0

Brito et al. (2017)

a —Tog(G(x))
F(z)=1-— b / o te AL,
I(e) Jo

gamma-G defined by

where « > Oand 5 > 0 Cordeiro et al. (2017)
— at+[1-G(=)] G(z) ;
F(z)=1- Tra) T=G(z)] &P {7(1 =) J° 0Odd Lindley-G defined by
where a > 0 Gomes-Silva et al. (2017)
—aH (D)
Fz)=1- =) wherew > 0,0 > 0 and Extended Weibull distribution

CO) = S5, anb”

1 — exp[—AG(z)]
1—e 2

F(z) =

defined by Silva et al. (2013)

Kumaraswamy-G Poisson defi-

ned by Ramos et al. (2014)

F(z) = {1 - [1 - G*()]°}°, wherea > 0,b > 0
andc >0

exponentiated
Kumaraswamy-G defined by
Silva (2019)

Ae PPN
e — e

beta Weibull Poisson Family
defined by Percontini (2013)

F(z) = fOG(I) Kt*=1(1 — )b~ exp(—ct)dt, where
a>0,b>0andceR

beta Kummer generalized
defined by Pescim et al.
(2012)

—aW(—ae™ ") _ 2 W(¥(x)

_ e
F(x) = e*%VV(*aC’“lLl , where
Wiz)=> 72, %zn and

bla) = —ae et

Weibull Generalized Poisson

distribution defined
by Percontini (2014)

1-8°-{1-B1-G@)]}~*
1-p)r—1
where 8 € (0, 1) and s > 0

F(z) =

B

G-Negative Binomial family
defined by Percontini (2014)

, where

F(z) = C(s)fLi(ss[)lfG(z)]
. oo zk oo
Lis(2) = 302, 2 and ¢(s) = 3202, &

Zeta-G defined by Percontini
(2014)

. W) (q
Flo)=3_ k!C((A)) (A —a)*

Power Series Distributions

Family by Consul and Famoye,

(2006)

Basic Lagrangian defined by

Consul and Famoye (2006)

Fz)=Y m [(C(O))k](k_n)

Lagrangian Delta defined by

Continues on the next page
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Table 1. Continued from the previous page

Distribution classes Nomenclature

Consul and Famoye (2006)

F(x)= (X P(X = k))() , Generalized Lagrangian
P(X = k) w(0), k=0 defined by Consul and
=k)= _ efine onsul an
[(CO @]V, k=1,2,.. Y
Famoye (2006)
Generalized Pearson in
T poeotaythtast? g,
F(z) = / el botbrtF o FbrtT Ty Ordinary Differential
— 00

Equation form defined by
Shakil et al. (2010)
Generalized Pearson in

T agtaqt+---tagt® B8

F(z) = / ol Tormrrem VO g > 0 | Ordinary Differential
—o00

Equation form defined by

Shakil et al. (2010)

Generalized Family in

x Y 2
F(z) = / / (Z a;(t) fP (t)) dt dy Ordinary Differential
oo T \i=1

Equation form defined by
Voda (2009)
WIG(=)]
F(x) = r(t) dt, T-X class
a
where W [G(z)] € [a, b], with by Alzaatreh et al. (2013)

W [G(«)] differentiable and monotonically
non-decreasing

The aim of this work is to propose a method to create distributions and probabilistic distribution
classes that could unify the various methods to generate distribution classes already described in
literature. The idea of this method is to generate classes from already known distributions, using
monotonic functions and a cumulative distribution function.

We show that the proposed method has high power of generality. The well-known T-X class
generalizes most of the classes presented in Table 1. To get an idea of its power we will show that
the T-X class appears as a sub-case of a simple sub-model of the proposed method that we will
denote it by 3S1C1.2 (see Table 2, page 907). In addition to generalizing existing classes, the new
method provides a source of new probability distribution classes.

This paper is organized in the following way: in Section 2, we describe two methods to generate
probability distributions, establishing the conditions that must be satisfied by the used monotonic
functions and probability distribution to guarantee that the proposed method indeed generates a
probability distribution. In Section 3, we analyze a special case of the methods described in the
previous section for the case where the monotonic functions are compositions of known probability
distribution functions. Still in Section 3 we present several specific cases of these methods that
may be easily used to obtain new probability distributions. At the end of this section, we demons-
trate that all methods presented in Sections 2 and 3 are equivalent. In Section 4, we analyze the
support and nature of the distributions generated by the methods proposed in Section 3. Section 5
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presents our conclusions and directions for further works. As an application of the proposed meth-
ods, the appendix A to the article contains a table (Table 4) showing how to obtain several classes
of probability distributions described in the literature using our proposed methods.

2. The method

The method we suggest to create distribution classes uses monotonic functions, U : R — R,
V:R=>RU; : R = RU{xoo}, Lj : R = RU{£o0}, M; : R - RU {%oo} and
Vi : R — R U {%o0}, and a cumulative distribution function (cdf) F'. The idea of this method is
to generate a probability distribution integrating F' from L;(x) to U;(x) and from M;(z) to V;(z)
forany x € Rand j = 1,2,3,...,n. Theorem 1 that follows shows sufficient conditions that the
functions U(z), v/(z), L;(x), U;(z), M;(z) and V;(x) must satisfy to guarantee that the method
generates a probability distribution function.

1. Theorem (T1). Method to generate distributions and classes of probability distributions.

Lt F :R>RU:R—->R :R>RU; :R— RU{toc}, L; : R = RU {£o0},
M; :R— RU{too}and V; : R — RU {%o0}, for j = 1,2,3,...,n, be monotonic and right
continuous functions such that:

[c1] F is a cdf and U and +/ are non-negative;

[c2] U(z), Uj(z ) and M;(x) are non-decreasing and \/(x), Vj(z) and L;(x) are non-increasing
Vi=1,2,3...

[e3]If lim U(z) # lm +/(z), then lim U(x) =0or lim Uj(z) = lim L;(z)V

——o00 ——00
j=1,2,3,...,nand lim /(x)=0o0r lim M;(z)= lim V;(z),Vj=1,23,...,n;
xTr—r—0oQ Tr—r—00 Tr—r— 00

[cd]If lim U(z) = lm +/(z) #0,then lim U;(z) = lim Vj(z)and lim M;(z) =

T—r—00 xT—r—00 T —r—00 T—r—00 T—r—00

lim L;(z),Vji=1,23,...,n
Tr—r—00

[¢3] lim Lj(x) < lim Uj(x)andif lim_/(z) # 0, then Tim M() < Tim V()
Vi=1,2,3,...,n

[c6] lim U,(z) >sup{z €R: F( )<1}and hm Li(z) <inf{z € R: F(z) > 0},

T — 400

7] lim U(z) =

[c7] lim V(z)

[c8] lm +/(z)=0o0r hm M;(z) = lim Vj(z),Vj=1,2,3,...,nandn > 1;
z—+00 z—+00 r——+00

[€9] lim Uj(z)= lim L;j+1(z),Vj=1,23,...,n—1landn>2;

r—+oo T—+o00o

[c10] F is a cdf without points of discontinuity or all functions L;j(x) and V;(x) are constant

at the right of the vicinity of points whose image are points of discontinuity of F, being also contin-

uous in that points. Moreover, F does not have any point of discontinuity in the set { lirjrzl L;(x),
xTr—r o0

IEIEOO Uj(x), zgrinoo M;(x), zkrflcloo V;(x), for some j = 1,2, ...,n}. Then,

@ Z/LU (I) Z/V (z)

M;(z)
is a cdf.



Proof. (i) lim H(x)=0.

T—r—00

lim H(z)

n Uj(z)
i x lim | U(z) / dF(t))
n Vj(z)
> / dF(t)
M ()

j=1

( lim v(x))i/”gm ne dF(t)

T =00 j=1 lim  Lj(x)

lim Vj (z)
- lim ) / T dF (),
<:c—> T Z hm M (x)

where the last equality holds because F' is continuous in

lim <\/(:E)

&Tr—r— 00

{Lm v lim 2,0, lim_ V(o). tim Mo}

Tr—r— 00

Conditions [c3] and [c4] guarantee that:

n lim  Uj;(x)
lim H(z) = ( lim 'U(.r)) Z/‘Llﬁi Lo dF(t)
m J x

T—r—00 T —r—00 -
j=1

hm Vi (2)
— lim ) / dF(t) = 0.
(x—)—oo Z hm M;(z)

(41) lim H(z) =

r—+00
n Uj (=)
lim H(z) = lim <'U(x)z /L dF(t)>

x—+o00 xr— 400 = ](I>

n Vi)
~ dim (mm)jz_j /Mm dF(t))
= (th )Z/J‘HU(I) F(t)
z—+oo lim L;(x)
_ <1im )Z:/IET V(I) dF(t),
”—*‘*“X’ lim M, (z)

where the last equality holds because F' is continuous in

{ lim Uj(z), lim Ly(z), lim Vj(x), lim M )}

T— 400 T— 400 T —4o00 —+oo
Thus, conditions [c1], [c6], [c7], [c8] and [c9] guarantee that
lim H(z)=1.

r—+o0
(ii4) If 21 < @2, then H(z1) < H(x2).
Let z1 < z2, then [c2] implies that: U;(z1) < Uj(z2), Lj(x1) > Lj(x2
M;(x2), Vi(z1) > Vj(z2), U(z1) < U(xz2) and /(21) >
imply, 7, [0 dF () > 0. 350, o () dFw) > 0, S, [0 dr

Jj=1
n Vj (1‘ )
A, (agy AF(8) > 0.

), Mj(z1) <
v/(x2). Beside this, [c2] and [c5]
(t) > 0 and
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Thus, since, by [c1], U and 4/ are non-negative, we have
n Uj(z1) n Vj(z1)
H(z1) =V(z1) j=1 ijJ(ail) dF(t) — v/(z1) j=1 IMJJ-(jcll) dF(t)

n o [Uj(@2) " pVi(e2)
< V(as) Z/ AF () — /() Z/ AF(t) = H(z2).

j=17Lj(z2) j=17M;(z2)

(i) lim H(x) = H(xo).

IE*)IE)F
n, U@ n. Vi@
1m1H@y:hmixm§:/ dﬂﬂ—lh«ﬂ@E:/ dF(t)
ac—>x0+ :c—mcg' =1 Lj(z) ac—mcg' j=1 M ()
n lim+ Uj(z) n limJr V()
= [ mv@) | / o are) - (i @) | S0 / e R
mﬁxar j=1 1im+ L;(x) acaa;ar j=1 limJr M (x)

n Uj(z0) n Vj(zo)
V(o) Y / AF () — /(@) S / dF(t) = H(zo).
j=1"Lj(@0) j=1 M;(zo)
The above equalities hold due to [c10] and because U(z), U;(z), M;(z), v/(z), V;(z) and
L;(z) are right continuous.

From the facts (), (i), (4i7) and (7v), we may conclude that (2.1) is a cdf. O

Corollary 1.1 presents an alternative method to generate distributions and classes of probability
distributions.

1.1. Corollary (C1.1). Complementary method to generate distributions and classes of probability
distributions.

Letop: R>RU:R>RW:R-5>RU:R—RU{£too}, M;: R — RU{£oo} and
V; : R = RU{xoo}, Vj = 1,2,3,...,n, be monotonic and right continuous functions such
that:

[ccl] Fis a cdf and G and W are non-negative;

[cc2] O(z), U (x) and M;(z) are non-decreasing and W (x), V;(x) and L;(x) are non-increasing
Vi=1,23,...,n

[ce3] If lim W(z)# lim U(z), then lim U(z)=0o0r lim L;(z)= lim
T —+00 T—+00 T —>+00

x—+o0 Tr—+4o00

Uj(z), Vi =1,2,3,...,n, and zggloo W(z) = 0 or zEToo M;(z) = zEToo V;(z), vV
7=12,3,...,n;

[ccd] If lirf W(z) = lim U(x) # 0, then lir_‘r_l Uj(z) = lim Vj(z) and lim
T—r1+00 r—r+oo

r—+400 r—+4o0 r— 400

M](‘r) = (EETOO I[‘](x)’vj = 172737""77’;

[cch] IETOO M (z) < zBToo V;(z) and UCIETOO U(x) # 0, then ZLHPOO L;(z) < Ikrpoo U, (z),
Vji=1,23,...n

[ce6] lim Vy(z) >sup{z € R:p(z) <1} and lim Li(z) <inf{z €R:p(z) > 0},
T——00 r——00

[cc?] lim W(z)=1;
T——o00

[ce8] Tgr_noo U(z) =0or Tl}lzloo Lj(z) = lim U;(z),Vj=1,2,3,...,nandn > 1;

T—r— 00



[cc9] gcli)r_noo Vj(z) = xgrzloo M; +1(z),Vj=1,2,3,...,n—1landn > 2;

[ccl0] @ is a cdf without points of discontinuity or all functions IL;(z) and V;(x) are constant at

the right of the vicinity of points whose image are points of discontinuity of p, being also continuous

in that points. Moreover, @ does not have any point of discontinuity in the set { liIf L;(z)(z),
xr—r oo

xhrinoo U; (), achrin(><> M (z), xhrjrtloo V;(x), for some j =1,2,...,n}.
Then,
n Vi (x) n Uj (z)
H@) =1-W@ Y [ dp+ 6@y [ dett
j=17M; (=) j=1"7L;j(=)

is a cdf.

Proof. In Theorem 1, consider n = 1, U(z) = 1, /(z) = 0, Ur(z) = 1 and Li(z) =
V(@) Uj (ac) .

W(z)>", fM (o dp(t) = V() 327, L)) dp(t), Vo € R, and F a cdf of the uni-

forml[0,1] distribution. Note that Ui(z) and L1(3:) satisfy the hypotheses of Theorem 1, since

[ccl], [cc2] and [cc5] guarantee that Ly (z) = ., fI\X ((;c; de(t) - ]iu ((:c>
is non-increasing and U (z) = 1 is non-decreasmg Thus condltlons [ch] and [CCS] are satlsﬁed

Moreover, conditions [cc3] and [cc4] guarantee that:

lim Ui(z)= lim Li(z)=1, lirJh Ui(z) =sup{z €R: F(z) < 1} =1, lirf Li(z) =
Tr—r—00 Tr—r—00 xr—r+o0 xr—r+0o0
inf{z € R: F(z) > 0} = 0, that both L1 (z) and Uy (x) are right continuous and that F' is a cdf

without points of discontinuity.
As all conditions of Theorem 1 are satisfied, it follows that

Uy (x) 1
H(m):/ dF(s):/ " L ds
Ly() W (@) 3y ) a0 Sy S deto

=1-W() Z/ t) + U(x) Z/

isacdf. O

In the next section, we present some corollaries of Theorem 1 where the monotonic functions
V(z), /(z), Uj(x), Lj(x), Mj(x) and V;(z) are compositions of monotonic functions of known
probability distributions.

3. Monotonic functions involving probabilities distributions

In this section, we show how to generate classes of probability distributions using monotonic
functions which are compositions known probability distributions. Formally, consider that U:
0,1]™ = R, 9 : [0,1]™ — R, u; : [0,1]" — RU {£o0}, £ : [0,1]" — R U {£o0},
v; : [0,1]™ — RU {£oo} and m; : [0,1]™ — R U {£o0} are monotonic and right continuous
functions. The results of this section are achieved considering that: U(z) = U(G1,...,Gm)(z),
V() = 9G,...,Gn)(z), Uj(x) = pi(Gr,...,Gm)(x), Lj(z) = €(G1,...,Gn)(z), M;
() =m;(G1,...,Gm)(z) and V;(z) = v;(Gy, . .., Gm) ().

We use the abbreviation (-)(z) = (G1,...,Gm)(z) = (G1(x),...,Gm(x)) to represent the
vector formed by the cdf’s calculated on the same point of the domain .
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1.2. Corollary (C1.2). Method to generate classes of probability distributions.

Let F : R - R pj; ¢ [0,1]" — RU {£o0}, ¢; : [0,1]" — RU {%oo}, u: [0,1]™ — R,
v; 1 [0,1]™ = RU{xo0}, m; : [0,1]™ = RU{Loo}and ¥ : [0,1]" - R Vj=1,2,3,...,n,
be monotonic and right continuous functions such that:

[d1] F'is a cdf and U and 9 are non-negative;

[d2] wj, m; and U are non-decreasing and {;, v; and 9 are non-increasing, ¥ j = 1,2,3,...,n,
in all of its variables;

[d3] If w(0,...,0) # 9(0,...,0), then U(0,...,0) = 0 or p;(0,...,0) = £;(0,...,0), V
i=1,2,3,...,n and ¥(0,...,0) = 00rm;(0,...,0) = v;(0,...,0),Vj=1,2,3,...,n;

[d4] If U(0,...,0) = 9(0,...,0) # 0, then 1;(0,...,0) = v;(0,...,0) and m;(0,...,0)
=0;(0,...,0),¥j=1,2,3,...,n

[d5] €;(0,...,0) < p;(0,...,0) and if 9(0,...,0) # O, then m;(1,...,1) < v;(1,...,1),
Vi=1,2,3,...,n

[d6] pn(1,...,1) >sup{z € R: F(z) < 1} and £1(1,...,1) <inf{z € R: F(z) > 0},
[dnu@,...,1)=1;

[d8] ¥(1,...,1)=00rv;(1,...,1)=m;(1,...,1),V5j=1,2,3,...,n—landn > 2;
[d9I] p;(1,...,1) =4€+1(1,...,1),V5j=1,2,3,...,n—Llandn > 2;

[d10] F is a cdf without points of discontinuity or the functions £;(-)(x) and v;(-)(z) are constant
at the right of the vicinity of points whose image are points of discontinuity of F, being also contin-
uous in that points. Moreover, F' does not have any point of discontinuity in the set {£;(0,...,0),
,LL]'(O, . .,0), mj(O, e ,O), vj(O, e ,O), Ej(l, ey 1), ,LLj(l, ey 1), m]-(l, ceey 1), ’U]'(l, ceey 1),
forsomej =1,2,...,n}.

Then,

n i ()(z) vj(-)(x)
He, .. Gm(x):u(-)(x)zg/elwz) dF(t)—ﬂ(‘)(a:)/m.(‘)(z) dF (1)

is a functional generator of classes of probability distributions where (-)(z) = (G, ...,

Gm) ().

Proof. In Theorem 1, set U(z) = U(-)(z), /(z) = 9()(z), Uj(z) = p;(-)(z), Lj(z) =
£;()(z), Mj(xz) = m;(-)(z) and V;(z) = v;(-)(z), and observe that condition [di] implies con-
dition [¢7] of Theorem 1, fori = 1,2, ..., 10. O

Let us now consider a special case of Corollary 1.2 that is a functional constructor of classes of
probability distributions that can be easily used.

1t special case of Corollary 1.2 (1C1.2). Easy to use method for the construction of classes of
probability distributions.

Let u; : [0,1]™ — [0,1] and v; : [0,1]™ — [0, 1] be monotonic and right continuous func-
tions such that u;’s are non-decreasing and v;’s are non-increasing in each one of its variables,
with u;(0,...,0) = 0, us(1,...,1) = 1, 15(0,...,0) = 1 and v;(1,...,1) = 0, for all
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i =1,....k If in Corollary 1.2, U(-)(z) = []"_, ((z’ — 0)ui() (@) + 91-)(” and 9(-)(z) =
Hle (Oivi(-) (), with a; > 0and 0 < 0; < 1, then

k (1)

Heyoom@) = [[(0 - 0:)us Z / Ft)

i=1 j=174;() (@)
k v ()(1)
J
(3.1 = § 2ZC Z/ F(t),
i=1 j=1 ()(1)

is a functional generator of classes of probability distributions, where (-)(z) = (G1, . .

Gn)(z).

°

Table 2 shows some particular cases of the functional constructor of classes of probability dis-
tributions, given by Equation (3.1), that may be more easily used for the generation of classes
of distribution. Consider the following functions in the expressions from 15S1C1.2 to 20S1C1.2:
w:[0,1] = RU{£o0},£:[0,1] = RU{xoo},v:[0,1] = RU{£o0},m: [0,1] = RU{to0}
such that p and m are non-decreasing and right continuous, and v and ¢ are non-increasing and right
continuous.
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Corollary 1.3 shows an alternative method to obtain classes of probability distributions from
Corollary 1.1. It shows what hypotheses U, ¥, 15, £, v; and m; must satisfy so that the functions
U(z), W(z), U;j(z), L;j(x), M,;(z) and V;(z) satisfy the conditions of Corollary 1.1 and classes
of probability distributions can be obtained.

1.3. Corollary (C1.3). Complementary method to generate classes of probability distributions.
Let o : R = R, p; : [0,1]™ — RU{xoo}, £; : [0,1]" — RU {£oo}, U: [0,1]™ — R,
v; 1 [0,1]™ = RU{xo0}, m; : [0,1]™ — RU{xoo}and ¥ : [0,1]" - R Vj=1,2,3,...,n
be monotonic and right continuous functions such that:

[cd1] @ is a cdf and U and ¥ are non-negative;

[cd2] pj, my; and U are non-decreasing and £;, v; and ¥ are non-increasing, ¥ j = 1,2,3,...,n,
in all of its variables;

[ed3] IF U, ..., 1) #9(1,...,1), then ¥(1,...,1) = 0 or m;(1,...,1) = v;(1,...,1), V
i=1,23,...,nandu(l,...,1)=00rf;(1,...,1) = p;(1,...,1),Vj=1,2,3,...,n;

edd]

1) = ( )#OZhen,u]( S =v;(1,...,1),Vji=1,23,...,n
andmj(1,...,1) =4

5(1, )V]—123 N/R

[ed5] £;(0,...,0) < p;(0,...,0) and if 9(1,...,1) # 0, then m;(1,...,1) < w;(1,...,
1),Vji=1,23,...,n

[cd6] vn(0,...,0) > sup{z € R : F(x) < 1} and m1(0,...,0) < inf{z e R: F(z) > 0};
[ed7] 9(0,...,0) = 1;

[ed8] U(O,...,0) =00r£;(0,...,0) = u;(0,...,0),Vj=1,2,3,....n—landn > 1;
[cd9] v;(0,...,0) =m;4+1(0,...,0),Vj=1,2,3,....,n—landn > 2;

[cd10] @ is a cdf without points of discontinuity or the functions £;(-)(x) and v;(-)(x) are constant
at the right of the vicinity of points whose image are points of discontinuity of p, being also contin-
uous in that points. Moreover, @ does not have any point of discontinuity in the set {£;(0,...,0),
,LL]'(O, .. .,0), mj(O, ce ,O), ’U]'(O, ce ,O), éj(l, ey 1), ,U,j(l, ey 1), ’I’)’L]’(l, ey 1), U]'(l, ey 1),
forsomej =1,2,...,n}

Then,

n v (- )(a:) n ni()(x)
He,n () = 10 [ e+t D> [0 et
j:l my (- )(96) £ () ()
is a functional generator of classes of probability distributions, where (-)(z) = (G1, ...,

Gm) ().

Proof. In Corollary 1.1, set O(z) = U(-)(z), W(x) = 9(-)(z), Uj(z) = p;(-)(z), Lj(z) =
2;()(z), Mj(z) = m;(-)(x) and V;(z) = v;(-)(x) and observe that condition [cdi] implies
condition [cci] of Corollary 1.1, fori = 1,2, ..., 10. O

Let us now consider a special case of Corollary 1.3 that is a functional constructor of classes of
probability distributions that can be easily used.
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1°* special case of Corollary 1.3 (1C1.3). Easy to use complementary method for the construction
of classes of probability distributions.

Let u; : [0,1]™ — [0,1] and v; : [0,1]™ — [0, 1] be monotonic and right continuous func-
tions such that u;’s are non-decreasing and v;’s are non-increasing in each one of its variables,
with u;(0,...,0) = 0, u;(1,...,1) = 1, 15(0,...,0) = 1 and v;(1,...,1) = 0, for all
i =1,... k. If in Corollary 1.3, 9(-)(z) = [I"_, ((i — 0 i) () + oi)”" and U(-)(z) =

15, (Biws(-) ()™, with a; > 0and 0 < 6; < 1, then

k n () (@)
Hey.cn (@) = 171‘[((1fei)m(.)(m)wi)aiz/ do(t)
=1 HImiO@)
k eI
(32) T § (THOICIRD DY A =TC)
i=1 j=174; () (=)

is a functional generator of classes of probability distributions, where (-)(z) = (G1, .. .,

Gm) ().

Table 3 shows how to obtain some special cases of the function given by Equation (3.2), that
may be more easily used to generate classes of distributions. It is important to emphasize that we
can obtain the same constructors from 1S1C1.2 to 12S1C1.2 using 1C1.3, we omit the details here
showing only how to obtain different constructors from those of Table 2. Consider the following
functions in the expressions from 1581C1.3 to 20S1C1.3: y : [0,1] — R U {%o0}, £ : [0,1] —
RU{£o0}, v : [0,1] = RU{%o0}, m : [0,1] — RU{£o00} such that ;2 and m are non-decreasing
and right continuous, and v and £ are non-increasing and right continuous.
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The following theorem shows that Theorem 1 and of its corollaries are equivalent. In other
words, Theorem 1 and all of its corollaries generate the same probabilistic distributions.

2. Theorem (T2). Equivalence among Theorem 1 and its corollaries.
Theorem 1 and all of its corollaries generate exactly the same probabilistic distributions

Proof. To demonstrate Theorem 2 we show that C1.1 is a corollary of T1, that C1.2 is a corollary
of C1.1, that C1.3 is a corollary of C1.2, and finally that T1 is a corollary of C1.3.

(1) Cl.1is acorollary of T1: it is obvious, as it has been already demonstrated.

(2) Cl1.2 is a corollary of C1.1: In Corollary 1.1, W(z) = 1,n = 1, V1(z) = 1, My(z) =
UC)(@) Sy S50 dF (1) = 0() (@) iy [0 dF (1), B(w) = 0, Vo € Rand ()
the cdf of the umform[O,l].

(3) C1.3 is a corollary of C1.2: In Corollary 1.2, set n = 1, U(-)(z) = 1, w(-)(z) = 1,
GO)E) = 0,90)(@) = 1 m()(@) = 0, vi()x) = IC) @) Sy [0 de(t) -
U (@) S0y L1505 dip(t), Vo € Rand F(t) as the cdf of the uni forml0,1],

(4) Tlisacorollary of C1.3: In Corollary 1.3, setn = 1, U()(:r) =1,9( )( ) =1, vl( )(z) =1,

Uj(z Vi(z
mi () (@) = 0,41()(x) = 0. (-)(x) = V() L dF(t)— A
Vz € R, and (t) cdf of the uni form[0,1].
From (1) to (4), we conclude Theorem 2. O

Several classes of probability distributions existing in the literature can be obtained as special
cases of the functional constructors of classes of probability distributions proposed here. Table 4,
in the Appendix A, shows how to obtain such classes using some corollaries of Theorem 1.

4. Support of the classes of probability distributions

In this section, we provide an analysis about the support and nature of the probability distributions
generated through the methods described in Corollaries 1.2 and 1.3. These results are important to
gain a deeper understanding about the proposed method, especially considering the fact that there
is little work on this theme in the literature.

In order to state the results, we remind the reader that, by the definition, the support of a cumula-
tive distribution function F'is given by Sr = {z € R : (x) — F(z —¢) > 0, Ve > 0}. Theorem 3
shows that the support of the generated distribution is contained in the union of the supports of the
baseline distributions G;’s.

3. Theorem (T3). General theorem of the supports.
Gm (2) be a cumulative distribution function generated from Corollary 1.2 (respectively,

,,,,,

i
Proof. Consider that Hg, ..., (z) has the functional form of Corollary 1.2:

€ (a:) n vi(-)(x)
Ho,,. .. () = UC) (@) S5y [1455 dF (1) —9()(2) S, 1200 dF (1),
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Thus, it follows that

Ha,y,....Go (%) — Hay,....G (T — €)

wg (- )(I)
03[

()(z)
n v (+) ()
- @Y [ R

j=17m; () (=)
n wj () (z—e)
- U(~)(x—5)Z/e dF (1)

5 () (z—e)
)(z— E)

+ (r—e Z/m F(t).

Suppose that = ¢ UjL; Sg,. Then, there exists ¢ > 0 such that G (x) — Gj(x —¢) =0, for
allj=1,2,...,m. Let us show that Hg, ... .a.m () — Hay,....am (. —€) =0

First, note that

g () ()
Ha,,...cm(®) — Ha,., Gm(r—E)I(U(')(fv)—u(-)(w—a))Z/é dF(t)

5 ()(@)
v (-)(x)
- (W) (@) =I9()(x — 5))/ dF(t)
m;() (@)
n 15 ()(2) £ ()()
U (z — dF(t) — dF
i =2 j=1 {/ujﬂ)(x—E) “ /‘j(')(ﬁ—f) (t)}

n v (-)(w) m;(-)(z)
— () (x — dF(t) — dF .
(=) { /U].(.W,s) ® /mj(.)(l.,e) (t)}
Since U()(x) = U@ — £), V() (@) = V()@ — 2), (@) = () = 2). L)) =
£,z = £).my ()(z) = my () — £), v,() (@) = () — &), it ollows that

Hec,,...Gp () — Ha,y,....am(x —€) = 0.

Thus, we have © ¢ Su,, o, . Therefore, Sug o C UjLiSc, . A similar argument
G.m () has the functional form of Corollary 1.3. O

.....

Corollary 3.1 shows a special case where the distribution Hg, .....c,, () is discrete.

3.1. Corollary (C3.1). Discrete baselines generate discrete distributions.
If all G;’s are discrete in Corollary 1.2 (respectively, 1.3), then He, ... ¢, () is discrete.

Proof. Being all G;’s discrete, then U7Z; S, has a countable number of values. Since, by Theo-
rem3, Sue, . q, CUj=1Sc;, then Sue o, hasa countable number of values and, for this
reason, Ha, ..., (z) is acdf of a discrete random variable. O

Theorem 4 shows conditions when S,

,,,,,

4. Theorem (T4). The support of distribution is a union of the supports of the baselines.
Assume, in Corollary 1.2, (respectively, 1.3) that:
[f1] SF is a convex set;

f2) pn(1,...,1) =sup{z e R: p(x) < 1}, 61(1,...,1) =inf{z e R: p(z) < 1}, U(-)(z) >

0, Vx € R, and that p;(-)(z) or £;(-)(x), for some j = 1,2,...,n, are strictly monotonic or
vp(0,...,0) =sup{z € R: p(z) < 1}, m1(0,...,0) =inf{z € R: p(z) > 0}, ¥(-)(z) > 0,
V2 € R, and that v;(-)(z) or m;(-)(z), for some j = 1,2, ..., n, are strictly monotonic.
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Then,

m C UT:ISGJ .

Consider that Hg, ,...,G,, () has the functional form of Corollary 1.2:
Hoy,c (8) = UWC) @) Sy JL50 AR () = 0() (@) Sy [0 dF (1),
Thus, using an argument identical to that of the proof of Theorem 3, we have
15 () ()

Horoon(@) = Hopen(@=9) = @O ~uO@-) Y [ are)

v; () ()

— () @) — () — ) / dF(t)

m;(-)(z)

n wj () (@) 25 () (=)
+ UG- / dF(t) — / dF(t)
= Umoe-9 () (@—e)
n vi()(2) m;(-)(z)
- I -2 / dF(t) — / dF(t) p .
=1 vi(-)(z—¢) m;()(z—e)
Suppose that 2 € U}, Sg;. Then, there exists € > 0 such that Gj(z) — G;(x —¢) > 0 for
some j = 1,2,...,m. Conditions [f1] and [f2] imply that at least one of the integrals of the
form fh( (@) dF(t) is different from zero for h = pj, h = £;, h = vj or h = my, for some

h(-)(z—¢)
j =1,2,...,n. This fact together with the fact that U or ¥ are strictly monotonic imply that:

Hg,,...c () — Hey,...g (x —€) > 0. Thus, x € Sng, ¢, - as desired. A similar argu-
ment works for the case where He, ... ¢, (z) has the functional form of Corollary 1.3. O

Theorem 5 shows some conditions that guarantee that Hg, ,....a,, () is a continuous cdf .

,,,,,

5. Theorem (T5). Generating continuous cumulative distribution functions.
Suppose that F(z), G1,...,Gn are continuous cdf's and that i, £j, W, vj, m; and 9 are con-
tinuous functions in Corollary 1.2 (respectively, 1.3). Then, Ha, ,...,c,,. (z) is a continuous cdf.

Proof. Consider that He, ,...,,, () has the functional form of Corollary 1.2
H 7u . n NJ()(x)dF 19 . n UJ()((‘C) dF(t
G (1) = U (@) 0, 14505 AR (1) = 9() (@) S0, 120 (1),

Thus, it follows that

wy () ()
How 00 (@)~ Heron@) = UO@Y [ ar

n (@)
— @Y / dF (1)

j=1 mj(»)(a:)
n pi()(x7)
— U E) / dF (1)
Z £5() ")
vi()(z™ )

+ Z dF (t).

= miOE)
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Using a similar approach as that used in the proof of Theorem 3, we obtain:

)(I)
Heg,,...cm(@)—Hay,....ap(x7) = (U( )(z) —u(-)(z Z/ e

n v () (z)
- @O@ -0 )Y [ arw

j=1 mj(‘)(z)

n g ()(x) €5 () (x)
FUOET) / dF(t)—/ dF(t)
=1 pi()(z) L5 () (z™)
n v ()(x) mj(-)(x)
—19(-)(m_){2/ dF(t)—/ dF(t)}.
j=17vi()(=7) mj()(z7)

Since all functions included in the previous expression are continuous, we have:

He,,....c¢,(x) — Hay,....am (7)) = 0.

Therefore, we shall conclude that Hg, ,....c,, (z) is a continuous function. A similar argument
works for the case where Hg, .....c,, () has the functional form of Corollary 1.3. ]

Theorem 6 shows conditions where distribution Hg,
dom variables.

G (x) will be a continuous cdf of ran-

.....

6. Theorem (T6). Generating cumulative distribution functions of continuous random variables.
Suppose that F(x),G1,...,Gm are cdf’s of continuous random variables and that i, £;, U, vy,
myj and ¥ are continuous and differentiable functions in Corollary 1.2 (respectively, 1.3). Then,
Hg,,....c,, (x) is a cdf of a continuous random variable.

Proof. Consider that H(;1 em ( ) has the functional form of Corollary 1.2

¢ )(93) n v (-)(x)
Ha,...c,,(x) = U(: S0y AF ) =90 (@) Ty [ (i AF (2)-
Since F(z),G1,. .., Gm are cdf’s of continuous random variables and p;, £;, U, v;, m; and

¥ are continuous and dlfferentlable functions , then Hg,
variable with density given by:

m N N i ()(@)
He,...c () = ( mg(G)z()gz(mO (Z/M)( ) dF(t))

FUO@ Y {ij(-)(:c) 3 2O (o)

z=1

G.m () is a cdf of a continuous random

,,,,,

j=1

" 99 (@) :
(Be) (5

90 Y {F 0@ Y 22 @)

v (1)(z)
dF(t)

3 () (@)

T
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where (-)(z) = (G4, ...,Gm)(z). A similar argument works for the case where
Hg,,...,G,, (x) has the functional form of Corollary 1.3. O

The next theorem shows an alternative way of generating discrete distributions.

7. Theorem (T7). Integrals with respect to discrete distributions generate discrete distributions.
Suppose that the probability distribution F(x) is discrete and that U(-)(z) = 9(:)(z) = 1, in
Corollary 1.2 (respectively, 1.3). Then, Ha,,...,c,, (z) is discrete independent from the monotonic
functions that are used as limits of the integration.

Proof. We can write the following
w(-)(% vJ()u)

Hoponle) = 3 / - Pt

) (=) j=17m;( )(92)

~

— F(4;(-)())]

n
Z — F(m; () (2))].
Since F'(z) is a cdf of a discrete random variable, then F'(x) assumes a countable number of
different values. Thus, as Hq,,....c,, () is given by the sum of differences of F(z) evaluated
in at most 4n distinct points, it also can only assume a countable number of different values and,
therefore, it is a cdf of a discrete random variable. O

5. Conclusions

The method to generate distributions and classes of probability distributions that we presented in this
paper combines several methods to generate classes of distribution that have already been described
in the literature. By this unification, we could draw conclusions on the supports of generated classes.
Using the proposed method, we can generate any probability distribution in different ways. The only
necessity is to modify the monotonic functions involved in the method.

As a further step, we aim to explore several classes of distribution which may be generated using
this method, developing their properties and applying them to model several datasets. In a parallel
work, we are proposing a method for generating multivariate distributions.

It is important to stress that a model can better describe a phenomenon by increasing its number
of parameters, providing higher flexibility. On the other hand, we should not forget that increasing
the number of parameters may cause identifiability and computational problems in the estimation of
the parameters. Moreover, a large number of parameters increase the chance of overfitting, which is
a problem particularly in forecasting and prediction studies. Thus, the best approach is to choose a
method that best describes the analyzed phenomenon or experiment with the lowest possible number
of parameters.

Appendix A. how to obtain generalizations of already existing class models

In this appendix we will show some applications to obtain some very special examples of functions
generating classes of probabilistic distributions by finding probability distribution classes that have
already been described in literature.

Table 4 shows how to obtain classes of probability distributions already existing in the literature
by the use of some corollaries of Theorem 1.



921

a3ed jxou 2y uo sanuUNUO)

(S661)

e 19 Jexjoypn

Kq paugep pazierouad

pajenuauodxo

r="1d

pue T = w ‘g = g

=1

0+ (@ o) [TG—1 =@

=
@ o I1o= @0

1—q#

TIDIS6

(S661)
‘e 39 TejoypnA
Kq pauygoep pazijerouad

parenuauodx?

preT =wo=9¢

=F
o+ @ o[l-1=@0m

=12

W@ -1 Ilo=@=01

w

1—q#

TIDISE

#861)
PIRUOCIOIN Aq PAUYop

[ odK) H-oIN

T = w pue g

Il
RS

(z002) T8

12 2uagdnyg Aq pauyep

[ 2dK) H-e19q

pue | = w ‘) = g

=1
0+ (@ o -1 ][ o6—1 = (@) ()

={
@) o [T 6= (@)

G- :T&E

TIDIS6

(¥861)
PIeuogoN £q pauyop

1 2dKy H-oIN

T = wpueQ

Il
RS

(z002) T8

10 ouaSnyg £q pauyep

1 2dK) H-e10q

T=1g

pue [ =w Q=g

1=¢
o+ (@) o : (6—1) = (@)()ml

1=

)To=@0u

w

G- D,

TIDISE

sse[d paurelqQ |

s1)ourered oy 10j sonfeA

SUOTIOUNJ JTUOJOUOIA!

(2) f suonnquusip pasn

aseo-qng

suonnquusip Aiqeqoid Jo sasse[d Funsixae Apeaife Jo SUOIIBZI[BIUAL)

‘v IqBL



922

a3ed jxau Yy uo sanuUNUO)

($10?) yelerepeN
pue ey, £q pauyop

¢ adf) H-ON

I =wpueg=g

=£
o+ @ o[l-1=@0m

=2
. »(1+ 1) D)g
[zz] ($102) yefexepeN T="Tg W@ o -1 JTo=@®0m0 2020+ D@ D) TIOISE
m 1=t =Dt
pue arey], £q pauyep pue ] = w Q=g
¢ odK) H-vraq
(1102
oxnse) pue oIpIo) 0 = Topueg = Ig
N
£q pauyap I=197T=w (@) i =) [T = @) TIO1S9
H-Auremserewnyy
(1100
=0
0I)SE)) pue 0I10pI0)) T=1¢g 9 : (6 —1)=(x)(-)
wL
=2
Kqpouyop | puey = wpueg =g W@ o -1 o= @00 1q(p? = T) 10 TIDISE
H-Kwremserewnyy
(661)
T 32 Tey[oypnIA
=1
£q pauyap pazieiouss IT=¢gpwep=9¢g 1 ((2) 00 + 1) I =@ TIDISS
pajenuauodxo
(5661)
1=r
. r
e 10 Jexjoupniy o+ @D [Two-1 =@
L
=2
£q pauyep pazi[eious T=wpueQ=g (@) 20 — 1) [To=@0mw 1—q TIOISE
pajenuauodxo
SSB[O pauIelqO 7 s1ojowrered ay) J0j sonjep 7 SUOIIOUNJ JTUOJOUOIA (2) f suonnquusip pasn ased-qng

a3ed snoraaid o) woiy panunuo)) *§ Aqe,



923

a3ed jxau oY) uo soNUNUO))

1=2
(6002) ueuysty 1= Topue (@) o =D ) 31— | + 6= (@)
PN w = As:
-e[eq pue sojei3oz 4T =Y‘T=To ?AAHV .qMU — Hv : 9= (x)()1y 1q-21_o? p TIOISE
w D
£q pauyep H-ewwes T=wQ9=¢9
1=1
(T102) Te 10 wd I=1g 0+ (@ o -1 ][ o—1) = (@) ()
1={ “ AQ ,dvm
r
-s2d Aq pauyop pazil prel =wT =9 ) o]]o=(@()w TIOIS6
(®) ¢, : (@)(-) (o )0, (1 - 1)
-e1oudd B)aq Jowuny
1=£
(T107) T2 30 Wi o+ @ o[l-1=@0m
- (a'v)g
-sod Aq pauyep pazi| T=1¢g TIDISE
(0—)dxo Hla@ — Calcw
=2
-210u3 £}oq JowWNYy pue ] = w0 =g W@ -1 lo=@0m0
w
(5102) yeferepeN
pue Jrey [, £q pauyop I =wpuep=g
1=1
¢ 2dfy 9o 0+ (@ o -1 [T-1) =@
v +o(+ D@ v)g
o s = TTIOTS6
1=t = Dy_w?
={
(000) e T=1¢ @ o [Lo= @)
w
19 ouadng £q pauyop pue T = w ‘g = @
1 2dKy H-erq
sse[o pourelqQ | s1orowered ayy Joj sonfep | SUONOUN JIUOJOUOA] (2) £ suonnqusip posn aseo-qng

a3ed snoraaid o) woiy panunuo)) *§ Aqe,



924

a3ed jxau 2y uo sanUNUO)

=1
(600¢) uruysLy (@ o —1) [T ) 81— ) +d = (@)()1a
" w
¢ (®)a
-e[eq pue sojeisoz I1=Tgpueg=d 2q=21—o? p TIDIS6
Kq paugep H-ewiwres V=TT =w
(6007) ueuysLy|
(®)a
-e[eg pue soje1soz 1=1T¢ 2q="1—o? p TIDIS6
=1 ”
£q pauyep H-ewured pue | = w g =d .:,Qé o - L I11¢= @)
=1
(6007) ueuysLxy 1= upue (@)oo —1) ] ) Sot— | + = (2)() 1
" u
- ) (v)1
-e[eg pue soje1soz IT=X‘T=TImg=d 2q=21—o? 2 TIDISE
=2 ”
£q pauyop o-vunues T=To T =w L@ lo=1) 1 =@0n
=12
(6007) upuysLey (@), o [ — 1) 8010 = (@)()m
uL
. (®)a
-e[eg pue sojer3oz T=1I¢pueg=mn 1q=21—o? p TIDISE
=12 i
£q pauyep H-ewwes T=wg=d .JAA& N‘MU — Hv : d=(x)(-)y
sse[o pourelqQ | s1orowered ayy Joj sonfep | SUOTIOUNY JTUOJOUOTA! (2) f suonnquisip pasn | oseo-qng

a3ed snoraaid o) woiy panunuo)) *§ Aqe,



925

a5ed jxou oY) uo senunuo)
(L100)
=1
‘[e 10 o1rop1o)) £q T=TI¢puepg=mn (x) N/NU : 8ol —d = (z)(-)Ta
1T (v)a
pauyep H-ewwed T=wg=d Q&.ﬁ@ : d = (z)(-)Tw 1q=21—o? 7 ZID1S6
e D
(L10D) IT=d4pue] =YX
=2
‘e 30 ox1ap10)) £q T=To‘T=To 10 (@) 2D = 1) : — 1) 80— | +d=(z)(-)1r
“ w
e TT (v)a
pauysp H-ewrwes ‘0=d‘7T=w (z) N : d=(x)(-)1y L P TIDISE
m 0
(L10D)
=1
‘Te 30 oxepI0)) £q T = TY pue z), o) : 8oy —d = (z)(-)
= L a
g o TT ()1 .
pauyap H-ewures IT=wo=d @), o[]d=@=0mn ra=21—ot TIDISE
uL k4
(L1020 T =spue
=2
TeRonepio) Aq | T =7 =TT =1g ;Qé D= & II-t)80—)+6=(@)()m
s L L
‘ ¢ 3 = ()1
pauyap H-eurures T=wo=9 @ oll-1]0= @)1 ra—Pr-od g T1J1S6
X “ °
(L1020)
1=2
‘[e 30 o119pI0)) Aq T=¢puey = To ?&fm@ : So[— | +9=(x)(")ta
9 w :
, ¢ T ()1
pauyep H-ewwes IT=wQ9=9 ;AARV QU — Hv : 9= (z)(-)Tw 1q—21—o? 7 T1D1S6
: w D
sse[o pourelqQ | s1orowered ayy Joj sonfep | SUONOUNJ JIUOIOUOIN | (2) 4 suonnqusip pasn | oseo-qng
a3ed snoraaid o) woiy panunuo)) *§ Aqe,




926

a3ed jxau oY) uo soNUNUO))

#102)
.Tm 19 sowrey

£q pauyop uossioq

H-Auremserewnyy

IT=Topue] =w

TIDISTI

(S102) yelerepeN
pue ey, Aq pauyop
D-UN[O-[[eYsIEA

I=gpwl=mo
(=)o = (2)1H

(L66T) UDYIO pue
TeUsIeI £Q pauyap
D-U[O-[eYSIeIN

(@i -1)a+ @i

@10 = @O

TIOISS

(8000

MIYIRIA pue
TewnyeAe[ £q pauyop
D" UN[O-[[BYSTEN

IT=¢gpuel =0
(2)en = ()1D

(L66T) UTYIO pue
TeUsIeI £Q paUyap
D-U[O-[eYSIRIN

(@io-1)a+@in

?Qimb - Q q - mome

]

TIDISTI

(L102)

‘Te 39 o1opI0)) Aq

pauyep H-ewwres

IT=d4pue] =Y

IT=TIm‘T=To

=1

(@) o —1) [ —1) 01— | +d=(2)()1a

2 \x w
=1

@0 [1d= @

?)d
S\QH\%A v
\GQ

TID1S6

sse[o pourelqQ | s1orowered oY) 1oy son[eA

SUOTOUNY JTUOJOUOTA

()4 suonnquusip pasn

| oseo-qng

a3ed snoraaid o) woiy panunuo)) *§ Aqe,



927

a3ed jxau 9y uo sanuUNUOD

(#107) tunuodIsg
£q peugop H-e1RZ

0=gpueQ= 2o
‘0=Tog=1y

(€102) Te 10 TUn

K= (50
£ IR =(2)011
0+ (@s=ata=ms) (0 -1 = @)

-u0d194 £q pauyep IT=¢pueQ=2%o
o o T—s—(d—1) _ .
[erwoutg oANESIN-5 0="Tog=7y AT:EU\%LTTa\: - Hv 0= (x)()% Lot TIOIST
(#102) runuodIdg 0=29 prg—0—0— = (%)
£q pauyap uossIog pue) =g ‘T = o :H&Mwﬁﬁlv =i = (z)m
e—ut—u
PaZI[eI2USD) [[NGIM 0=1og=71
L™ (pov)m¥-°
(€£102) 1unuodig 0=2¢ - 5 = @0)en
(@M=" (p_22—) M-S —
£q pauyop Ajrureg pueQ =g ‘T =%
uossiod [Inqiepm w1og T=Tog=y Pl —(@m
9 — 9
X g —2Y
(¥100)
‘Te 10 sowrey T = Tg pue
=1
£q pauyap uossiod I=Topue] =w @, oI -1)x—x—]dw=(2)(-) 1w TIDISTI
g ™
H-Auremserewnyy
(¥102)
‘Te 19 sowrey 1 = Tg pue
=1
£q pauyop uosstoq T=Topuw]=w 19((@) i = 1) [T v = x— | dxo = (2)(-) 1w TIOISTL
H-Auremserewnyy
Sse[d paurelqQ 7 s1ojowrered ay) J0j sonjep 7 SUOIOUNJ OIUOJOUOIA (2) f suonnquusip pasn 7 aseo-qng

a3ed snoraaid o) woiy panunuo)) *§ Aqe,



928

a3ed jxau oY) uo sonNUNUO)

(9007) okoweg
pue [nsuo)) £q 0=gpueQ = 2o
Aqruey uerdueiSe| ‘o=To‘g=y

Ppazi[eIouan)

(9007) 2Aowre

pue [nsuo)) £q pauyop

T=gpueg=2o

eer=0  [O@nd@0)] 1 2
0= ‘“(0)m
o=~

B)[o uerdueide| ‘o=Tog=y
i !
—_ = )1 .
—p TSVQL 0= (x)() 1—q% TIDIST
(9007) 2howrey 0=29
pue [nsuo)) £q pauyop puE () = ‘T = %o
e 1=0
ueidueide| orseq ‘o=To‘g=y TQOVUL R N = (x)(-)en
’ ’ (=L T3
(9000) 0=2¢
o 0=,
okowre pue [nsuo)) Aq pue( =90 = %o (P =) ()oi! HW = (2)(-)n
. (™) (0 %
pauyap SILIAG Jomod ‘IT=1o‘g=y
SSB[O paurelqQ 7 s1ojowreed ay) J0j sonfep 7 SUOTIOUNY JTUOJOUOTA! (2) f suonnquisip pasn 7 aseo-qng

a3ed snoraaid o) woiy panunuo)) *§ Aqe,



929

(6007) ®POA Aq
pauyep uioj uonenbyg

[enuaIdyiq AreurpiQ

ur A[ure,] pazifeIouan

(0100) Te 10

[PfRYS Aq paugap oy

%% 1w () egd 0 THR) Tl <o) x

(0—1) = @)()m

oo —

%%Gi 1494434+ Tq+0q .\w H\Iﬁ 6=(x)()%7

<ISoF -+ o+ 0p

uonenby [enuayIq 1 = ¢pue
AreutpIQ ut 0=™T=y 1—q* TIOISc
UOSIRI PIZI[BISUID)
(0102) Te 12 T 1 249+ 43+ T+ 0q 2 \H (z)()n
w() S s1°DF 12104 0D J x
-eyg £q wioj uonenbyg 0 = ¢ pue
[eNULIRHI( ATRuIpIQ 0=00=T1T=y
Ul UOSIBOJ PIZI[RIoUD)
sse[o pourelqQ | s1orowered ayy Joj sonfep | SUONOUNJ JTUOJOUOA (2) f suonnquusip pasn | oseo-qng

a3ed snoraaid o) woiy panunuo)) *§ Aqe,



930

References

[1] Alzaatreh, A., Lee, C. and Famoye F. A new method for generating families of continuous distributions,
Metron 71, 63-79, 2013.

[2] Brito, C.R., Gomes-Silva, F., Régo, L.C. and Oliveira, W.R. A new class of gamma distribution, Acta

Sci-Technol 39, 79-89, 2017.

Cordeiro, G.M., Alizadeh, M. and Silva, R.B. A New Wider Family of Continuous Models: The Extended

Cordeiro and de Castro Family, Hacet J Math Stat, 2017, In press.

Cordeiro, G.M. and de Castro, M. A new family of generalized distributions, J Stat Comput Simul 81,

883-898, 2011.

[5] Consul, P.C. and Famoye, F. Lagrangian Probability Distributions, Birkhduser Boston, Boston, 2006.

[6] Eugene, N., Lee, C. and Famoye, F. Beta-normal distribution and its application, Commun Stat Theor
Meth 31, 497-512, 2002.

[7] Gomes-Silva, F., Percontini, A., Brito, E., Ramos, M.W.A., Silva, R.V. and Cordeiro, G.M. The odd
Lindley-G family of distributions, Austrian J Stat 49, 57-79,2017.

[8] Jayakumar, K. and Mathew, T. On a generalization to Marshall-Olkin scheme and its application to Burr
type XII distribution, Stat Pap 49, 421-439, 2008.

[9] Lee, C., Famoye, F. and Alzaatreh, A. Methods for generating families of univariate continuous distribu-
tions in the recent decades, WIREs Comput Stat 5, 219-238, 2013.

[10] Marshall, A.W. and Olkin, I.LA. A new method for adding a parameter to a family of distributions with
application to the exponential and weibull families, Biometrika 84, 641-652, 1997.

[11] McDonald, J.B. Some generalized functions for the size distribution of income, Econometrica 52, 647-663,
1984.

[12] Mudholkar, G.S., Srivastava, D. K. and Freimer, M. The Exponentiated Weibull Family: A Reanalysis of
the Bus-Motor-Failure Data. Technometrics 37, 436-445, 1995.

[13] Percontini, A. New Extended Lifetime Distributions, Ph. D. thesis in Computational mathematics, Federal
University of Pernambuco, Brazil, 2014.

[14] Percontini, A., Cordeiro, G.M. and Bourguignon, M. The G-Negative Binomial Family: General Properties
and Applications, Adv Appl Stat 35, 127-160, 2013.

[15] Percontini, A., Blas, B. and Cordeiro, G.M. The beta weibull poisson distribution, Chil J Stat 4 3-26, 2013.

[16] Pescim, R.R., Cordeiro, G.M., Demétrio, C.G.B. and Nadarajah, S. The new class of Kummer beta gene-
ralized distributions, SORT 36, 153-180, 2012.

[17] Ramos, M.W.A., Marinho, P.R.D., Cordeiro, G.M., Silva, R.V. and Hamedani, G. The kumaraswamy-G
Poisson family of distributions, J Stat Theory Appl 14, 222-239, 2015.

[18] Silva, R.B., Bourguignon, M., Dias, C.R.B. and Cordeiro, G.M. The compound class of extended Weibull
power series distributions, CSDA 58, 352-367, 2013.

[19] Silva, R.V., Gomes-Silva, F., Ramos, M.W.A., Cordeiro, G.M., Marinho, PR.D. and Andrade, T.A.N. The
Exponentiated Kumaraswamy-G Class: General Properties and Application, Rev Colomb Estad 2019,
Forthcoming.

[20] Shakil, M., Kibria, B.M. and Singh, J.N. A new family of distributions based on the generalized Pearson
differential equation with some applications, Aust J Stat 39, 259-258, 2010.

[21] Tahir, M.H. and Cordeiro, G.M. Compounding of distributions: a survey and new generalized classes,
JSDA 3, 1-35, 2016.

[22] Tahir, M. H. and Nadarajah, S. Parameter induction in continuous univariate distributions: Well estab-
lished G families, An Acad Bras Cienc 87, 539-568, 2015.

[23] Voda, V. G. A method constructing density functions: the case of a generalized Rayleigh variable, Appl
Math 54, 417-431, 2009.

[24] Zografos, K. and Balakrishnan, N. On the families of beta-and generalized gamma-generated distribution
and associated inference, Stat Met 6, 344-362, 2009.

[3

—

[4

finary



	Method for generating distributions and classes of probability distributions: the univariate case. By  

