The Third Isomorphism Theorem on UP-Bialgebras

Daniel A. Romano
International Mathematical Virtual Institute, Banja Luka, Bosnia and Herzegovina

Article Info
Keywords: UP-algebra, UP-ideal, UPhomomorphism, UP-bialgebra, UPbiideal, UP-bihomomorphism, UPbiisomorphism
2010 AMS: 03G25
Received: 11 April 2019
Accepted: 29 May 2019
Available online: 17 June 2019

1. Introduction

The concept of UP-algebras developed by Iampan in [1]. Examining the substructures in this algebra are done for example in articles [2, 3]. This author took part in analyzing the properties of UP-algebras and their substructures, also [4]-[6]. Some forms of the isomorphism theorem between UP-algebras can be found in [2, 3, 5, 6].
The concept of bi-algebraic structures was studied by Vasantha Kandasamy in 2003 [7]. The concept of UP-bialgebras with the associated substructures and their mutual connections can be found in [8]. In the forthcoming article [9], this author offered one form the first theorem of the isomorphism between the UP-bialgebras.
In this article we expose a form of the second isomorphism theorem between UP-bialgebras.

2. Preliminaries

In this section, we will present the necessary previous concepts of UP-algebras, their substructures and UP-homomorphisms taken from texts $[1,2,3,8]$. We will also expose their mutual relationships in the form of proclaims necessary for our intention.

2.1. UP-algebras

In this subsection we will describe some elements of UP-algebras and their substructures necessary for our intentions in this text.
Definition 2.1 ([1]). An algebra $L=(L, \cdot, 0)$ of type $(2,0)$ is called a UP-algebra where L is a nonempty set, ' . ' is a binary operation on L, and 0 is a fixed element of L (i.e. a nullary operation) if it satisfies the following axioms:
$(U P-1) \quad(\forall x, y \in L)((y \cdot z) \cdot((x \cdot y) \cdot(x \cdot z))=0)$,
(UP-2) $(\forall x \in L)(0 \cdot x=x)$,
(UP-3) $\quad(\forall x \in L)(x \cdot 0=0)$, and
$(U P-4) \quad(\forall x, y \in L)((x \cdot y=0 \wedge y \cdot x=0) \Longrightarrow x=y)$.
Definition 2.2 ([1]). A nonempty subset J of a UP-algebra $(L, \cdot, 0)$ is called
(1) a UP-subalgebra of L if $(\forall x, y \in J)(x \cdot y \in J)$.
(2) a UP-ideal of L if
(i) $0 \in J$; and
(ii) $(\forall x, y, z \in L)((x \cdot(y \cdot z) \in J \wedge y \in J) \Longrightarrow x \cdot z \in J)$.

The set $\{0\}$ is a trivial UP-subalgebra (trivial UP-ideal) of L.
In the article [6], Theorem 3.3, it has been shown that the conditions (i) and (ii) in the preceding definition are equivalent to the following conditions
(iii) $(\forall x, y \in L)((x \cdot y \in J \wedge x \in J) \Longrightarrow y \in J)$,
(iv) $(\forall x, y \in L)(y \in J \Longrightarrow x \cdot y \in J)$.

Definition 2.3 ([1]). Let $\left(L, \cdot, 0_{L}\right)$ and $\left(M,{ }^{\prime}, 0_{M}\right)$ be two UP-algebras. A mapping $f: L \longrightarrow M$ is called a UP-homomorphism if

$$
(\forall x, y \in L)\left(f(x \cdot y)=f(x) \cdot{ }^{\prime} f(y)\right) .
$$

A UP-homomorphism $f: L \longrightarrow M$ is called
(3) a UP-epimorphism if f is surjective,
(4) a UP-monomorphism if f is injective, and
(5) a UP-isomorphism if f is bijective.

Let f be a mapping form UP-algebra L to UP-algebra M, and let A and B be nonempty subsets of L and of M, respectively. The set $f(A)=\{f(x) \mid x \in A\}$ is called the image of A under f. In particular, $f(L)$ which denoted by $\operatorname{Im}(f)$ is called the image of f. The dually set $f^{-1}(B)=\{x \in L \mid f(x) \in B\}$ is called the inverse image of B under f. Especially, the set $\operatorname{Ker}(f)=f^{-1}\left(\left\{0_{M}\right\}\right)=\left\{x \in L: f(x)=0_{M}\right\}$ is called the kernel of f.
A relation of congruence on UP-algebras is introduced in [1] by Definition 3.1 and Proposition 3.5 on this way: If J is a UP-ideal of a UP-algebra L, then the relation \sim_{J} defined by

$$
(\forall x, y \in L)\left(x \sim_{J} y \Longleftrightarrow(x \cdot y \in J \wedge y \cdot x \in J)\right)
$$

is a UP-congruence on L. Further on, any relation of congruence on UP-algebras has this form according to the claim (1) of Theorem 3.6 and the claim (1) of Theorem 3.7 in [1]. In particular, if $f: L \longrightarrow M$ is a UP-homomorphism between UP-algebras, then the relation \sim_{f} determined by $\operatorname{Ker}(f)$ is a UP-congruence in L. The factor-set $L / \sim_{J}=\left\{[x]_{\sim_{J}}: x \in L\right\}$ is a UP-algebra according to the claim (4) of Theorem 3.7 in [1]. We also use the following notion $L / J=\left\{[x]_{J}: x \in L\right\}$ to denote this factor algebra.

2.2. UP-bialgebras

The concept of UP-bialgebras and some their substructures were introduced and analyzed by Mosrijai and Iampan in the recently published work [8]. In this subsection, taking into account their determinations, we describe the concept of UP-bialgebras and some notions connected with them. So, in this subsection, we will repeat the concept of UP-bialgebras and the notions of UP-bisubalgebras and UP-biideals of UP-bialgebras, and will expose some results related to substructures of such algebras.

Definition 2.4 ([8], Definition 3.1). An algebra $L=(L, \cdot, *, 0)$ of type $(2,2,0)$ is called a UP-bialgebra where L is a nonempty set, • and $*$ two are binary internal operations on L, and 0 is a fixed element of L if there exist two distinct proper subsets L_{1} and L_{2} of L with respect to . and $*$, respectively, such that
(UPB-1) $L=L_{1} \cup L_{2}$;
(UPB-2) $\left(L_{1}, \cdot, 0\right)$ is a UP-algebra, and
(UPB-3) $\left(L_{2}, *, 0\right)$ is a UP-algebra.
We will denote the UP-bialgebra by $L=L_{1} \uplus L_{2}$. In case of $L_{1} \cap L_{2}=\{0\}$, we call L zero disjoint.
Definition 2.5 ([8], Definition 3.7). A nonempty subset J of a UP-bialgebra $L=L_{1} \uplus L_{2}$ is called a UP-biideal (UP-bisubalgebra) of L if there exist subsets J_{1} of L_{1} and J_{2} of L_{2} with respect to \cdot and $*$, respectively, such that
(6) $J_{1} \neq J_{2}$ and $J=J_{1} \cup J_{2}$;
(7) $\left(J_{1}, \cdot, 0\right)$ is a UP-ideal (UP-subalebra) of $\left(L_{1}, \cdot, 0\right)$, and
(8) $\left(J_{2}, *, 0\right)$ is a UP-ideal (UP-subalgebra) of $\left(L_{2}, *, 0\right)$.

In case of $J_{1} \cap L_{2}=\{0\}=L_{1} \cap J_{2}$, we call S zero disjoint.
The important relationship between these notions is the following:
Proposition 2.6 ([9]). If $J \supset\{0\}$ is a $U P$-subalgebra (resp., UP-ideal) of UP-algebra L_{1} (of UP-algebra L_{2}, respectively), such $t h a t\{0\} \neq J$, then on J can be seen as a zero disjoint UP-bisubgebra (resp., UP-biideal) of UP-bialgebra $L=L_{1} \uplus L_{2}$.

2.3. UP-bihomomorphisms

Let $f: L \longrightarrow M$ be a function from a set L to a set M and $C \subseteq L$. Then the restriction of f to C is the function $f_{[C]}: C \longrightarrow M$.
Definition 2.7 ([8], Definition 4.1). Let $L=L_{1} \uplus L_{2}$ be a UP-bialgebra with two binary operations • and $*$, and let $M=M_{1} \uplus M_{2}$ be a UP-bialgebra with two binary operations .' and $*^{\prime}$. A mapping form $L=L_{1} \uplus L_{2}$ to $M=M_{1} \uplus M_{2}$ is called a UP-bihomomorphism if it satisfies the following properties:
(9) $f_{\left[L_{1}\right]}: L_{1} \longrightarrow M_{1}$ is a UP-homomorphism, and
(10) $f_{\left[L_{2}\right]}: L_{2} \longrightarrow M_{2}$ is a UP-homomorphism.

We say that these restrictions are natural restrictions. A UP-bihomomorphism $f: L \longrightarrow M$ is called

- a UP-biepimorphism if the natural restriction are UP-epimorphisms,
- a UP-bimonomorphism if the natural restriction are UP-monomorphisms, and
- a UP-biisomorphism if the natural restriction are UP-isomorphisms.

Proposition 2.8 ([8]). let $f: L_{1} \uplus L_{2} \longrightarrow M_{1} \uplus M_{2}$ be a UP-bihomomorphism. Then the following statements hold:
(11) $f\left(0_{L}\right)=0_{M}$, and
(12) $\operatorname{Ker}(f)=\left\{0_{L}\right\}$ if and only if f is an injective mapping;
(13) if J is a UP-bisubalgebra of L, then the image $f(J)$ is a UP-bisubalgebra of B;
(14) if $J=J_{1} \cup J_{2}$ is a UP-biideal of L, and J_{1} and J_{2} are subsets of L_{1} and of L_{2}, respectively, with $\operatorname{Ker}(f) \subseteq J_{1} \cap J_{2}$, then the image $f(J)$ is a UP-biideal of M;
(15) if D is a UP-bisubalgebra of M, then the inverse image $f^{-1}(D)$ is a a UP-bisubalgebra of L; and
(16) if D is a UP-biideal of M, then the inverse image $f^{-1}(D)$ is a UP-biideal of L.

3. The main results

In our forthcoming article [9], we formulated and proved a form of the first isomorphism theorem between UP-bialgebras. To this direction, we used the following lemma.
Lemma 3.1 ([9]). Let $L=L_{1} \uplus L_{2}$ and $M=M_{1} \uplus M_{2}$ be two UP-bialgebras and let $f: L \longrightarrow M$ be a UP-bihomomorphism. Then the set $\operatorname{Ker}\left(f_{\left[A_{1}\right]}\right) \cup \operatorname{Ker}\left(f_{\left[A_{2}\right]}\right)$ is a UP-biideal of L and $\operatorname{Ker}(f)=\operatorname{Ker}\left(f_{\left[L_{1}\right]}\right) \uplus \operatorname{Ker}\left(f_{\left[L_{2}\right]}\right)$ holds.
Let $L=L_{1} \uplus L_{2}$ be a UP-bialgebra with two binary operations • and $*$, and let $M=M_{1} \uplus M_{2}$ be a UP-bialgebra with two binary operations .' and $*^{\prime}$ and let $f: L \longrightarrow M$ be a UP-bihomomorphism. Let \sim_{1} is the congruence on L_{1} generated by the UP-ideal $\operatorname{Ker}\left(f_{\left[L_{1}\right]}\right)$

$$
\left.\forall x, y \in L_{1}\right)\left(x \sim_{1} y \Longleftrightarrow\left(x \cdot y \in \operatorname{Ker}\left(f_{\left[L_{1}\right]}\right) \wedge y \cdot x \in \operatorname{Ker}\left(f_{\left[L_{1}\right]}\right)\right)\right)
$$

and let \sim_{2} be the congruence on L_{2} generated by the UP-ideal $\operatorname{Ker}\left(f_{\left[L_{2}\right]}\right)$

$$
\left(\forall x, y \in L_{2}\right)\left(x \sim_{2} y \Longleftrightarrow\left(x * y \in \operatorname{Ker}\left(f_{\left[L_{2}\right]}\right) \wedge y * x \in \operatorname{Ker}\left(f_{\left[L_{2}\right]}\right)\right)\right) .
$$

Then we can construct the factor-UP-algebra L_{1} / \sim_{1} and the factor-UP-algebra L_{2} / \sim_{2}. So, $L_{1} / \sim_{1} \uplus L_{2} / \sim_{2}$ is a UP-bialgebra with two binary operation ${ }^{\prime} \odot^{\prime}$ and ${ }^{\prime} \circledast{ }^{\prime}$ defined by

$$
\left.\left(\forall[x]_{\sim_{1}},[y]_{\sim_{1}} \in L_{1} / \sim_{1}\right)\right)\left([x]_{\sim_{1}} \odot[y]_{\sim_{1}}=[x \cdot y]_{\sim_{1}}\right)
$$

and

$$
\left.\left(\forall[x]_{\sim_{2}},[y]_{\sim_{2}} \in L_{2} / \sim_{2}\right)\right)\left([x]_{\sim_{2}} \circledast[y]_{\sim_{2}}=[x * y]_{\sim_{2}}\right) .
$$

Previous analysis enables us to introduce the following determination: Let $L=L_{1} \uplus L_{2}$ be a UP-bialgebra. For a pair $\left(\sim_{1}, \sim_{2}\right)$ the relation of congruence \sim_{1} on L_{1} and \sim_{2} on L_{2} we write $L_{1} \uplus L_{2} /\left(\sim_{1}, \sim_{2}\right)$ instead of $L_{1} / \sim_{1} \uplus L_{2} / \sim_{2}$. If $\pi_{1}: L_{1} \longrightarrow L_{1} / \sim_{1}$ and $\pi_{2}: L_{2} \longrightarrow L_{2} / \sim_{2}$ are canonical UP-epimorphisms, then there is a unique canonical UP-epimorphism $\pi: L_{1} \uplus L_{2} \longrightarrow L_{1} \uplus L_{2} /\left(\sim_{1}, \sim_{2}\right)$ such that $\pi_{\left[L_{1}\right]}=\pi_{1}$ and $\pi_{\left[L_{2}\right]}=\pi_{2}$. Particulary, there is a unique UP-epimorphism $\pi: L_{1} \uplus L_{2} \longrightarrow\left(L_{1} \uplus L_{2}\right) /\left(\operatorname{Ker}\left(f_{\left[L_{1}\right]}\right), \operatorname{Ker}\left(f_{\left[L_{2}\right]}\right)\right)$. The first theorem of isomorphism between UP-bialgebras has the form in which for simplicity we write $A / \operatorname{Ker}(f)$ instead of $A /\left(\operatorname{Ker}\left(f_{\left[A_{1}\right]}\right), \operatorname{Ker}\left(f_{\left[A_{2}\right]}\right)\right)$.
Theorem 3.2 ([9]). Let $f: L \longrightarrow M$ be a UP-bihomomorphism. Then there exists the unique UP-bihomomorphism $g: L / \operatorname{Ker}(f) \longrightarrow M$ such that $f=g \circ \pi$. In addition, for the UPB-subalgebra $f(L)$ of M holds $L / \operatorname{Ker}(f) \cong f(L)$.
Let us analyze now the following situation:
Let J and K be UP-biideals of a UP-bialgebra L such that $J \subseteq K$. Then there exist UP-ideals J_{1} and K_{1} of the UP-algebra L_{1} and there exist UP-ideals J_{2} and K_{2} of the UP-algebra L_{2} such that $J_{1} \neq J_{2}$ and $J=J_{1} \cup J_{2}$, and $K_{1} \neq K_{2}$ and $K=K_{1} \cup K_{2}$, by Definition 2.5. If $J_{1} \subseteq K_{1}$ and $J_{2} \subseteq K_{2}$ hold, then K_{1} / J_{1} is a UP-ideal of UP-algebra L_{1} / J_{1} and K_{2} / J_{2} is a UP-ideal of UP-algebra L_{2} / J_{2}. From here follows $L_{1} / K_{1} \cong\left(L_{1} / J_{1}\right) /\left(K_{1} / J_{1}\right)$ according to Theorem 3.10 in [6]. We also have it $L_{2} / K_{2} \cong\left(L_{2} / J_{2}\right) /\left(K_{2} / J_{2}\right)$ according to same theorem. So, the set $K_{1} / J_{1} \uplus K_{2} / J_{2}$ is a UP-biideal of the UP-bialgebra $L_{1} / J_{1} \uplus L_{2} / J_{2}$. Thus, the mapping $g_{1}: L_{1} / J_{1} \longrightarrow L_{1} / K_{1}$ has $\operatorname{Ker}\left(g_{1}\right)=K_{1} / J_{1}$. Analogously, the mapping $g_{2}: L_{2} / J_{2} \longrightarrow L_{2} / K_{2}$ has $\operatorname{Ker}\left(g_{2}\right)=K_{2} / J_{2}$ as core. Therefore, the homomorphism $g: L /\left(J_{1}, J_{2}\right) \longrightarrow L /\left(K_{1}, K_{2}\right)$, determined by $g_{\left[L_{1} / J_{1}\right]}=g_{1}$ and $g_{\left[L_{2} / J_{2}\right]}=g_{2}$ has the core exactly $K_{1} / J_{1} \uplus K_{2} / J_{2}$.
The previous analysis is a motivation for the following theorem can be seen as the Third isomorphism theorem between UP-bialgebras.
Theorem 3.3. Let $L=L_{1} \uplus L_{2}$ be a UP-bialgebra and let $J=J_{1} \uplus J_{2}$ and $K=K_{1} \uplus K_{2}$ be UP-biideals such that $J_{1} \subseteq K_{1}$ and $J_{2} \subseteq K_{2}$. Then

$$
L /\left(K_{1}, K_{2}\right) \cong\left(L /\left(J_{1}, J_{2}\right)\right) /\left(K_{1} / J_{1}, K_{2} / J_{2}\right)
$$

holds.

Final Observation

The concept of UP-algebras introduced and first results on them given by Iampan 2017 [1]. This author took part in analyzing the properties of UP-algebras and their substructures, also [4, 5, 6]. Algebraic bi-strukture was analyzed by Vasantha Kandasamy in 2003 [7]. The concept of UP-bialgebras introduced and the first results ware given by Mosrijai and Iampan at the beginning of 2019 [8]. Using by the concept of UP-bihomorphisms, introduced in [8], in this article we formulated and proved the theorem (Theorem 3.3), which can be viewed as the Third isomorphism theorem between the UP-bialgebras.
Of course, there remains an open possibility of formulating and trying to prove other forms of these two isomorphism theorems between the UP-bialgebra.

Acknowledgement

The author thanks the reviewer (s) on useful suggestions that helped make the concepts more accurate and the ideas outlined in this article are more consistently formulated. The author also owes his gratitude to the editorial office of the journal on patience and expressed good will.

References

[1] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Topics, 5(1) (2017), 35--54.
[2] A. Iampan, The UP-isomorphism theorems for UP-algebras, Discuss. Math. Gen. Algebra Appl., 39(1) (2019), 113-123.
[3] P. Mosrijai, A. Satirad, A. Iampan, The new UP-isomorphism theorems for UP-algebras in the meaning of the congruence determined by a UPhomomorphism, Fundam. J. Math. Appl., 1(1) (2018), 12-17.
4] D. A. Romano, Proper UP-filters in UP-algebra, Univers. J. Math. Appl., 1(2) (2018), 98-100
[5] D. A. Romano, Some properties of proper UP-filters of UP-algebras, Fundam. J. Math. Appl., 1(2) (2018), 109-111.
[6] D. A. Romano, Notes on UP-ideals in UP-algebras, Commun. Adv. Math. Sci., 1(1) (2018), 35-38.
[7] W. B. V. Kandasamy, Bialgebraic Structures and Smarandache Bialgebraic Structures, India: American Research Press, 2003.
[8] P. Mosrijai, A. Iampan, A new branch of bialgebraic structures: UP-bialgebras, J. Taibah University Sci., 13(1) (2019), 450--459
[9] D. A. Romano, The first theorem on UP-biizomorphism between UP-bialgebras, Konuralp J. Math., (To appear)

