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OPTIMAL INEQUALITIES FOR MULTIPLY WARPED
PRODUCT SUBMANIFOLDS

BANG-YEN CHEN AND FRANKI DILLEN

(Communicated by Cihan ÖZGÜR)

Abstract. In an earlier paper [3] the first author proved that, for any isomet-
ric immersion of a warped product N1 ×f N2 into a Riemannian m-manifold
of constant sectional curvature c, the warping function f satisfies the optimal
general inequality:

∆f

f
≤ (n1 + n2)2

4n2
H2 + n1c,

where ni = dim Ni, i = 1, 2, H2 is the squared mean curvature, and ∆ is the
Laplacian operator of N1. Moreover, he proved in [2] that for a CR-warped
product NT ×f N⊥ in a Kaehler manifold, the second fundamental form h

satisfies ||h||2 ≥ 2n2||∇(ln f)||2, where n2 = dim N⊥. In this article we extend
these inequalities to multiply warped product manifolds in an arbitrary Rie-
mannian or Kaehlerian manifold. We also provide some examples to illustrate
that our results are sharp. Moreover, several applications are also obtained.

1. Introduction

Let N1, · · · , Nk be Riemannian manifolds and let N = N1 × · · · × Nk be the
Cartesian product of N1, . . . , Nk. For each i, denote by πi : N → Ni the canon-
ical projection of N onto Ni. When there is no confusion, we identify Ni with a
horizontal lift of Ni in N via πi.

If f2, · · · , fk : N1 → R+ are positive-valued functions, then

〈X,Y 〉 := 〈π1∗X,π1∗Y 〉+
k∑

i=2

(fi ◦ π1)2 〈πi∗X,πi∗Y 〉

defines a Riemannian metric g on N , called a multiply warped product metric. The
product manifold N endowed with this metric is denoted by N1×f2 N2×· · ·×fk

Nk.
For a multiply warped product manifold N1×f2 N2×· · ·×fk

Nk, let Di denote the
distributions obtained from the vectors tangent to Ni (or more precisely, vectors
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tangent to the horizontal lifts of Ni). Assume that

φ : N1 ×f2 N2 × · · · ×fk
Nk → M̃

is an isometric immersion of a multiply warped product N1 ×f2 N2 × · · · ×fk
Nk

into a Riemannian manifold M̃ . Denote by h the second fundamental form of φ.
Then the immersion φ is called mixed totally geodesic if h(Di,Dj) = {0} holds for
distinct i, j ∈ {1, . . . , k}.

Let ψ : N1 ×f2 N2 × · · · ×fk
Nk → M̃ be an isometric immersion of a multiply

warped product N1×f2 N2×· · ·×fk
Nk into an arbitrary Riemannian manifold M̃ .

Denote by trace hi the trace of h restricted to Ni, that is

trace hi =
ni∑

α=1

h(eα, eα)

for some orthonormal frame fields e1, . . . , eni
of Di.

The first author proved in [3] the following general optimal result:

Theorem A. Let φ : N1 ×f N2 → Rm(c) be an isometric immersion of a warped
product into a Riemannian m-manifold of constant sectional curvature c. Then we
have

∆f

f
≤ (n1 + n2)2

4n2
H2 + n1c,(1.1)

where ni = dim Ni, i = 1, 2, H2 is the squared mean curvature of φ, and ∆ is the
Laplacian operator of N1.

The equality sign of (1.1) holds identically if and only if φ : N1 ×f N2 → Rm(c)
is a mixed totally geodesic immersion satisfying trace h1 = trace h2.

One purpose of this article is to extend inequality (1.1) to the following general
inequality for arbitrary isometric immersions of multiply warped product manifolds
into arbitrary Riemannian manifolds.

Theorem 1.1. Let φ : N1×f2 N2×· · ·×fk
Nk → M̃m be an isometric immersion of

a multiply warped product N := N1×f2N2×· · ·×fk
Nk into an arbitrary Riemannian

m-manifold. Then we have

k∑

j=2

nj
∆fj

fj
≤ n2

4
H2 + n1(n− n1)max K̃, n =

k∑

j=1

nj ,(1.2)

where max K̃(p) denotes the maximum of the sectional curvature function of M̃m

restricted to 2-plane sections of the tangent space TpN of N at p = (p1, . . . , pk).
The equality sign of (1.2) holds identically if and only if the following two state-

ments hold:
(1) φ is a mixed totally geodesic immersion satisfying trace h1 = · · · = trace hk;
(2) at each point p ∈ N , the sectional curvature function K̃ of M̃m satisfies

K̃(u, v) = max K̃(p) for each unit vector u in Tp1(N1) and each unit vector v in
T(p2,··· ,pk)(N2 × · · · ×Nk).

As an immediate consequence of Theorem 1.1, we have the following.
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Corollary 1.1. Let φ : N1×f2 N2×· · ·×fk
Nk → Rm(c) be an isometric immersion

of a multiply warped product N1×f2 N2×· · ·×fk
Nk into a Riemannian m-manifold

Rm(c) of constant curvature c. Then we have
k∑

j=2

nj
∆fj

fj
≤ n2

4
H2 + n1(n− n1)c, n =

k∑

j=1

nj .(1.3)

The equality sign of (1.3) holds identically if and only if φ is a mixed totally
geodesic immersion satisfying trace h1 = · · · = trace hk.

A submanifold M of a Kaehler manifold M̃ is called totally real if the almost
complex structure J of M̃ carries each tangent space of M into its corresponding
normal space. A submanifold N of a Kaehler manifold M̃ is called a CR-warped
product if N is the warped NT ×f N2 of a holomorphic submanifold NT and a
totally real submanifold N2 of M̃ (see [2] for details).

The first author proved in [2] that for any CR-warped product in a Kaehler
manifold M̃ the second fundamental form h of NT ×f N2 in M̃ and the warping
function f satisfy the following optimal inequality:

||h||2 ≥ 2n2||∇(ln f)||2,(1.4)

where ∇(ln f) is the gradient of ln f .
In the following, a multiply warped product NT ×f2 N2×· · ·×fk

Nk in a Kaehler
manifold M̃ is called a multiply CR-warped product if NT is a holomorphic sub-
manifold and N⊥ := f2N2 × · · · ×fk

Nk is a totally real submanifold of M̃ .
The second purpose of this article is to extend (1.4) to the following.

Theorem 1.2. Let N = NT ×f2 N2× · · · ×fk
Nk be a multiply CR-warped product

in an arbitrary Kaehler manifold M̃ . Then the second fundamental form h and the
warping functions f2, . . . , fk satisfy

||h||2 ≥ 2
k∑

i=2

ni||∇(ln fi)||2.(1.5)

The equality sign of (1.5) holds identically if and only if the following statements
hold:

(i) NT is a totally geodesic holomorphic submanifold of M̃ ;
(ii) For each i ∈ {2, . . . , k}, Ni is a totally umbilical submanifold of M̃ with

−∇(ln fi) as its mean curvature vector;
(iii) f2N2 × · · · ×fk

Nk is immersed as mixed totally geodesic submanifold in M̃ ;
and

(iv) For each point p ∈ N , the first normal space Im hp is a subspace of J(TpN⊥).

In the last section we provide examples to illustrate that inequalities (1.2) and
(1.5) are both sharp.

2. Preliminaries

Let N be a Riemannian n-manifold isometrically immersed in a Riemannian m-
manifold M̃m. We choose a local field of orthonormal frame e1, . . . , en, en+1, . . . , em

in M̃m such that, restricted to N , the vectors e1, . . . , en are tangent to N and
en+1, . . . , em are normal to N .
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Let K(ei, ej), 1 ≤ i < j ≤ n, denote the sectional curvature of the plane section
spanned by ei and ej . Then the scalar curvature of N is given by

τ =
∑

i<j

K(ei, ej).

Let L be a subspace of TpN of dimension r ≥ 2 and {e1, . . . , er} an orthonormal
basis of L. The scalar curvature τ(L) of the r-plane section L is defined by τ(L) =∑

α<β K(eα, eβ), 1 ≤ α, β ≤ r.
For a submanifold N in M̃m we denote by ∇ and ∇̃ the Levi-Civita connec-

tions of N and M̃m, respectively. The Gauss and Weingarten formulas are given
respectively by

∇̃XY = ∇XY + h(X,Y ),

∇̃Xξ = −AξX + DXξ

for vector fields X, Y tangent to N and ξ normal to N , where h denotes the second
fundamental form, D the normal connection, and A the shape operator of the
submanifold. Let {hr

ij}, i, j = 1, . . . , n; r = n + 1, . . . ,m, denote the coefficients of
the second fundamental form h with respect to e1, . . . , en, en+1, . . . , em.

The mean curvature vector
−→
H is defined by

−→
H =

1
n

traceh =
1
n

n∑

i=1

h(ei, ei),

where {e1, . . . , en} is a local orthonormal frame of the tangent bundle TN of N .
The squared mean curvature is given by H2 = 〈−→H,

−→
H 〉, where 〈 , 〉 denotes the

inner product. A submanifold N is called minimal in M̃m if the mean curvature
vector of N in M̃m vanishes identically.

Denote by R and R̃ the Riemann curvature tensor of N and M̃m, respectively.
Then the equation of Gauss is given by (see, for instance, [1])

(2.1)
R(X, Y ;Z, W ) = R̃(X, Y ;Z,W ) + 〈h(X, W ), h(Y,Z)〉

− 〈h(X,Z), h(Y, W )〉 ,
for vectors X, Y, Z, W tangent to N .

Let M be a Riemannian p-manifold and {e1, . . . , ep} be an orthonormal frame
field on M . For a differentiable function ϕ on M , the Laplacian of ϕ is defined by

∆ϕ =
p∑

j=1

{(∇ej ej)ϕ− ejejϕ}.

Recall that if M is compact, every eigenvalue of ∆ is non-negative.
A warped product immersion is defined as follows: Let M1×ρ2 M2× · · · ×ρk

Mk

be a warped product and let ψi : Ni → Mi, i = 1, · · · , k, be isometric immersions,
and define fi := ρi ◦ ψ1 : N1 → R+ for i = 2, · · · , k. Then the map

ψ : N1 ×f2 N2 × · · · ×fk
Nk → M1 ×ρ2 M2 × · · · ×ρk

Mk

given by ψ(x1, · · · , xk) := (ψ1(x1), · · · , ψk(xk)) is an isometric immersion, which is
called a warped product immersion [6] (see, also [5]).

A multiply warped product manifold M1×ρ2 M2×· · ·×ρk
Mk is called a multiply

warped product representation of a real space form Rm(c) of constant sectional
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curvature c if the multiply warped product M1 ×ρ2 M2 × · · · ×ρk
Mk is an open

dense subset of Rm(c).
Let N = N1×f2 N2×· · ·×fk

Nk, M = M1×ρ2 M2×· · ·×ρk
Mk and let ψ : N → M

be a warped product immersion. Denote by πi : N → Ni and π̄i : M → Mi, i =
1, . . . , k be the canonical projections. Then the second fundamental forms for hψ

and hψi (ψi = ψ|Ni) are related by (cf. Lemma 12 of [6]):

π̄1∗h
ψ(X, Y ) = hψ1(π1∗(X), π1∗Y ),(2.2)

π̄i∗h
ψ(v, w) = hψi1(πi∗(v), πi∗w), i = 2, . . . , k,(2.3)

for v, w ∈ TpN and X,Y tangent to horizontal the lift of N1 at p ∈ N .
We recall the following result of S. Nölker [6] for later use.

Nölker’s Theorem. Let f : N1 ×f2 N2 × · · · ×fk
Nk → RN (c) be an isometric

immersion into a Riemannian manifold of constant curvature c. If f is mixed
totally geodesic, then f is locally a warped product immersion.

Let n be a natural number ≥ 2 and let n1, . . . , nk be k natural numbers. If
n1 + · · ·+ nk = n, then (n1, . . . , nk) is called a partition of n.

We also need the following general algebraic lemma from [4].

Lemma 2.1. Let a1, . . . , an be n real numbers and let k be an integer in [2, n− 1].
Then, for any partition (n1, . . . , nk) of n, we have

∑

1≤i1<j1≤n1

ai1aj1 +
∑

n1+1≤i2<j2≤n1+n2

ai2aj2 + · · ·+
∑

n1···+nk−1+1≤i1<j1≤n

aik
ajk

≥ 1
2k

{
(a1 + · · ·+ an)2 − k(a2

1 + · · ·+ a2
n)

}
,

with the equality holding if and only if
a1 + · · ·+ an1 = · · · = an1+···+nk−1+1 + · · ·+ an.

3. Proof of Theorem 1.1

Let ∇̂, R̂, · · · , etc., denote the Levi-Civita connection, the Riemann curvature
tensor, · · · , etc., of the Riemannian product N1 ×N2 × · · · ×Nk; and by ∇, R, · · ·
the corresponding quantities of the multiply warped product N1×f2 N2×· · ·×fk

Nk.
Denote by ∇f the gradient of f . If we put Hi = −∇((ln fi) ◦ π1), then we have

(cf. [6])

∇XY − ∇̂XY =
k∑

i=2

( 〈
Xi, Y i

〉
Hi − 〈Hi, X〉Y i − 〈Hi, Y 〉Xi

)
,(3.1)

R(X,Y )− R̂(X,Y ) =
k∑

i=2

(∇X1Hi − 〈Hi, X〉Hi) ∧ Y i(3.2)

+
k∑

i=2

Xi ∧ (∇Y 1Hi − 〈Hi, Y 〉Hi)−
k∑

i,j=2

〈Hi,Hj〉Xi ∧ Y j ,

where Xi denotes the Ni-component of X and X ∧ Y is defined by

(X ∧ Y )Z := 〈Z, Y 〉X − 〈Z,X〉Y.(3.3)

By applying (3.1) and (3.2), we know that the sectional curvature function of
the multiply warped product N1 ×f2 N2 × · · · ×fk

Nk satisfies
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(3.4)
K(X1, Xi) =

1
fi

(∇X1X1fi −X2
1fi

)
,

K(Xi, Xj) = −〈∇fi,∇fj〉
fifj

, i, j = 2, . . . , k,

for each unit vector Xi tangent to Ni. In particular, (3.4) yields

∆fi = fi

n1∑

j=1

K(ej , Xi), i = 2, . . . , k,(3.5)

for any unit vector Xi tangent to Ni.
From the equation (2.1) of Gauss, we know that the scalar curvature τ and the

squared mean curvature H2 of N in M̃m satisfy

2τ(p) = n2H2(p)− ||h||2(p) + 2τ̃(Tp(N)), p ∈ N,(3.6)

where ni = dim Ni, n = n1 + · · · + nk, ||h||2 is the squared norm of the second
fundamental form h of N in M̃m and τ̃(Tp(N)) the scalar curvature of the subspace
Tp(N) in M̃m. Let us put

η = 2τ − n2
(
1− 1

k

)
H2 − 2τ̃(Tp(N)).(3.7)

Then from (3.6) and (3.7) we find

n2H2 = k
(
η + ||h||2) .(3.8)

Let us also put

∆1 = {1, . . . , n1}, . . . , ∆k = {n1 + · · ·+ nk−1 + 1, . . . , n1 + · · ·+ nk}.
For a given point p ∈ N we choose an orthonormal basis e1, . . . , em at p such

that, for each j ∈ ∆i, ej is tangent to Ni for i = 1, . . . , k. Moreover, we choose the
normal vector en+1 in the direction of the mean curvature vector at p (When the
mean curvature vanishes at p, en+1 can be chosen to be any unit normal vector at
p). Then from (3.8) we have

(
n∑

A=1

aA

)2

− k

n∑

A=1

(aA)2 = k

[
η +

∑

A 6=B

(hn+1
AB )2 +

m∑
r=n+2

n∑

A,B=1

(hr
AB)2

]
,(3.9)

where aA = hn+1
AA and hr

AB = 〈h(eA, eB), er〉 with 1 ≤ A,B ≤ n and n+1 ≤ r ≤ m.
Since (n1, . . . , nk) is a partition of n, we may apply Lemma 2.1 to (3.9) to obtain

(3.10)

∑

α1<β1

aα1aβ1 +
∑

α2<β2

aα2aβ2 + · · ·+
∑

αk<βk

aαk
aβk

≥ η

2
+

∑

A<B

(hn+1
AB )2 +

1
2

m∑
r=n+2

n∑

A,B=1

(hr
AB)2,

where αi, βi ∈ ∆i, i = 1, . . . , k.
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On the other hand, it follows from the equation of Gauss and (3.5) that

(3.11)

k∑

i=2

ni
∆fi

fi
=

∑

j∈∆1

∑

β∈∆2∪···∪∆k

K(ej , eβ)

= τ −
∑

1≤j1<j2≤n1

K(ej1 , ej2)−
∑

n1+1≤α<β≤n

K(eα, eβ)

= τ − τ̃(D1)−
m∑

r=n+1

∑

1≤j1<j2≤n1

(
hr

j1j1h
r
j2j2 − (hr

j1j2)
2
)

− τ̃(D2 ⊕ · · · ⊕ Dk)−
m∑

r=n+1

∑

n1+1≤α<β<n

(
hr

ααhr
ββ − (hr

αβ)2
)
.

Therefore, by combining (3.7), (3.10) and (3.11), we obtain

(3.12)

k∑

i=2

ni
∆fi

fi
≤ τ − τ̃(T (N)) +

∑

j∈∆1

∑

β∈∆2∪···∪∆k

K̃(ej , eβ)

− 1
2

m∑
r=n+2

n∑

A,B=1

(hr
AB)2 −

∑

1≤j≤n1; n1+1≤α≤n

(hn+1
jα )2

+
m∑

r=n+2

∑

1≤j1<j2≤n1

(
(hr

j1j2)
2 − hr

j1j1h
r
j1j2

)

+
m∑

r=n+2

∑

n1+1≤α<β<n

(
(hr

αβ)2 − hr
ααhr

ββ

)− η

2

= τ − τ̃(T (N)) +
∑

j∈∆1

∑

β∈∆2∪···∪∆k

K̃(ej , eβ)− η

2

−
m∑

r=n+1

∑

1≤j≤n1

∑

n1+1≤α≤n

(hr
jα)2

− 1
2

m∑
r=n+2

( ∑

1≤j≤n1

hr
jj

)2

− 1
2

m∑
r=n+2

( ∑

n1+1≤α≤n

hr
αα

)2

≤ τ − τ̃(T (N)) + n1(n− n1)max K̃ − η

2

=
n2

4
H2 + n1(n− n1)max K̃.

This proves inequality (1.2).
If the equality sign of (1.2) holds, then all of inequalities in (3.10) and (3.12)

become equalities. Hence, by applying Lemma 2.1, we know that if the equality
sign of (1.2) holds, then the immersion is mixed totally geodesic and also trace h1 =
· · · = trace hk holds identically. This gives (1) in Theorem (1.1). From the equality
case of the last inequality in (3.12) we have (2) as well.

The converse can be easily verified. ¤
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4. Proof of Theorem 1.2

For a CR-submanifold M in an arbitrary Kaehler manifold M̃ , we denote by
ν the complementary orthogonal subbundle of JD⊥ in the normal bundle T⊥N .
Hence we have the following orthogonal direct sum decomposition:

T⊥N = JD⊥ ⊕ ν, JD⊥ ⊥ ν.

Assume that N := NT ×f2 N2 × · · · ×fk
Nk is a multiply CR-warped product in

a Kaehler manifold M̃ . Denote f2N2 × · · · ×fk
Nk by N⊥. Let DT ,D2, . . . ,Dk,D⊥

denote the distributions obtained from vectors tangent to NT , N2, . . . , Nk, N⊥, re-
spectively. Then we have

J∇XZ + Jσ(X, Z) = −AJZX + DXJZ(4.1)

for any vector fields X, Y in DT and Z in D⊥. Thus, by taking the inner product
of (4.1) with JY , we find

〈∇XZ, Y 〉 = −〈AJZX,JY 〉 = −〈σ(X, JY ), JZ〉 .(4.2)

Since NT ×f2 N2 × · · · ×fk
Nk is a multiply warped product, (3.1) implies that

NT is totally geodesic in N . Thus we have

〈∇XZ, Y 〉 = 〈∇XY, Z〉 = 0(4.3)

for vector fields X,Y in DT and Z in D⊥. By combining (4.2) and (4.3) we obtain

〈σ(X, Y ), JZ〉 = 0.(4.4)

for vector fields X, Y in DT and Z in D⊥.
It follows from (3.1) that,

∇XZ =
k∑

i=2

(X(ln fi))Zi(4.5)

for vector fields X, Y in DT and Z in D⊥, where Zi is the Ni-component of Z. By
applying (4.5) and Lemma 2.1 of [2] we find

(4.6)

〈h(JX, Z), JW 〉 = −〈JAJW Z,X〉 = −〈∇ZW,X〉

=
n∑

i=2

(X(ln fi))
〈
Zi,W i

〉

for vector fields X in DT and Z, W in D⊥.
For a given point p ∈ N we may choose an orthonormal basis e1, . . . , en at p

such that eα is tangent to Ni for each α ∈ ∆i, i = 2, . . . , k. For each i ∈ {2, . . . , k},
(4.6) implies that

(4.7)
∑

α∈∆i

〈h(JX, eα), Jeα〉 = ni

n∑

i=2

X(ln fi).

Now, inequality (1.5) follows from (4.4) and (4.7).
It follows from (4.7) that the equality sign of (1.5) holds identically if and only

if we have

h(DT ,DT ) = {0}, h(D⊥,D⊥) = {0}, h(DT ,D⊥) ⊂ JD⊥.(4.8)

Because NT is totally geodesic in NT ×f2 N2 × · · · ×fk
Nk, the first condition in

(4.8) implies that NT is totally geodesic in M̃ . This gives statement (i).
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From (3.1) we know that, for any 2 ≤ i 6= j ≤ k, and any vector field Zi in Di

and Zj in Zj , we have ∇Zi
Zj = 0. This yields

〈∇Zi
Wi, Zj〉 = 0

Thus, if ĥi denotes the second fundamental form of Ni in N , we have

ĥ(Di,Di) ⊂ DT .(4.9)

From (4.6) and (4.9) we find

ĥ(Zi,Wi) = −(X(ln fi)) 〈Zi, Wi〉(4.10)

for Zi,Wi tangent to Ni. Therefore, by combining the first condition in (4.8) and
(4.10), we obtain statement (ii).

Statement (iii) follows immediately from (3.1) and the second condition in (4.8).
The last statement follows from (4.8).

The converse is easy to verify. ¤

5. Remarks and applications

Combining Theorem 1.1. and Nölker’s theorem gives immediately the following.

Corollary 5.1. Let φ : N1×f2 N2×· · ·×fk
Nk → Rm(c) be an isometric immersion

of the multiply warped product N1×f2N2×· · ·×fk
Nk into a Riemannian m-manifold

of constant curvature c. If we have
k∑

j=2

nj
∆fj

fj
=

n2

4
H2 + n1(n− n1)c,

then φ is a warped product immersion.

By applying Theorem 1.1 we have the following.

Corollary 5.2. If f2, . . . , fk are harmonic functions on N1 or eigenfunctions of
the Laplacian ∆ on N1 with positive eigenvalues, then the multiply warped prod-
uct manifold N1 ×f2 N2 × · · · ×fk

Nk cannot be isometrically immersed into any
Riemannian manifold of negative sectional curvature as a minimal submanifold.

Corollary 5.3. If f2, . . . , fk are eigenfunctions of the Laplacian ∆ on N1 with
nonnegative eigenvalues and at least one of f2, . . . , fk is non-harmonic, then the
multiply warped product manifold N1 ×f2 N2 × · · · ×fk

Nk cannot be isometrically
immersed into any Riemannian manifold of non-positive sectional curvature as a
minimal submanifold.

By applying Theorem 1.1 we also have the following.

Corollary 5.4. If f2, . . . , fk are harmonic functions on N1, then every isometric
minimal immersion of the multiply warped product manifold N1×f2 N2×· · ·×fk

Nk

into a Euclidean space is a warped product immersion.

Proof. Assume that φ : N1×f2 N2×· · ·×fk
Nk → Em is an isometric immersion of a

multiply warped product N1×f2N2×· · ·×fk
Nk into Euclidean m-space. If f2, . . . , fk

are harmonic functions on N1, then the minimality of N1 ×f2 N2 × · · · ×fk
Nk in

the Euclidean space and the harmonicity of f2, . . . , fk imply that the equality sign
of (1.2) holds identically. Thus, the immersion is mixed totally geodesic according
to Theorem 1.1. Hence, by applying Nölker’s theorem, we know that φ is locally a
warped product immersion. ¤
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Since the proof of Theorem 1.1 bases only on the equation of Gauss, the same
proof as Theorem 1.1 yields the following.

Corollary 5.5. Let φ : N1×f2 N2×· · ·×fk
Nk → M̃m(4c) be a totally real isometric

immersion of the multiply warped product N1 ×f2 N2 × · · · ×σk
Nk into a complex

space form of constant holomorphic sectional curvature 4c (or a quaternionic space
form of constant quaternionic sectional curvature 4c). Then we have

k∑

j=2

nj
∆fj

fj
≤ n2

4
H2 + n1(n− n1)c, n =

k∑

j=0

nj .

6. Examples and remark

The following two examples show that inequalities (1.2) and (1.5) are both sharp.

Example 6.1. Let M1 ×ρ2 M2 × · · · ×ρk
Mk be a multiply warped product repre-

sentation of a real space form Rm(c). Assume that ψ1 : N1 → M1 is a minimal
immersion of N1 into M1 and let f2, . . . , fk be the restrictions of ρ2, . . . , ρk on N1.
Then the following warped product immersion:

ψ = (ψ1, id, . . . , id) : N1 ×f2 M2 × · · · ×fk
Mk → M1 ×ρ2 M2 × · · · ×ρk

Mk ⊂ Rm(c)

is a mixed totally geodesic warped product submanifold of Rm(c) which satisfies
the condition:

trace h1 = · · · = tracehk = 0.

Thus, the immersion ψ satisfies the equality case of (1.2) according to Theorem
1.1. Therefore, inequality (1.2) is optimal.

Example 6.2. Assume that h and k are natural numbers with h ≥ k. Let NT =
Ch := {(z1, . . . , zh) : z1, . . . , zh ∈ C} and let Ni = Sni denote the unit ni-spheres
for i = 2, . . . , k.

Consider the immersion ψ of NT ×Sn2 × · · · ×Snk into Ch+n2+···+nk defined by

ψ = (z1w2,0, . . . , z1w2,n2 , . . . , zkwk,0, . . . , zkwk,nk
, zk+1, . . . , zh),

where (wi,0, . . . , wi,ni) ∈ Rni+1 satisfy
∑ni

α=0 w2
i,α = 1 for i = 2, . . . , k.

It is easy to see that the product manifold Ch×Sn2×· · ·×Snk endowed with the
induced metric via ψ is the multiply warped product manifold Ch×f2 Sn2×· · ·×fk

Snk with fi = |zi|. Moreover, with respect to the canonical complex structure of
Ch+n2+···+nk , the immersion ψ is a multiply CR-warped product submanifold.

A straightforward computation shows that this example of multiply CR-warped
product submanifold satisfies the equality case of (1.5). This examples shows that
inequality (1.5) is also optimal.

Example 6.3. Let M1×f2 M2×· · ·×fk
Mk be a multiply warped product represen-

tation of a Riemannian m-manifold Rm(c) of constant curvature c. Assume that
ψi : Ni → Mi, i = 2, . . . , k, are minimal immersions. Then it follows from (2.2)
and (2.3) that the immersion:

ψ : M1 ×f2 N2 × · · · ×fk
Nk → M1 ×f2 M2 × · · · ×fk

Mk

defined by ψ = (id, ψ2, . . . , ψk) is a minimal isometric immersion of the multiply
warped product manifold M1 ×ρ2 N2 × · · · ×ρk

Nk into Rm(c).
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On the other hand, since M1 ×f2 M2 × · · · ×fk
Mk is of constant curvature c,

it follows from (3.4) that the warping functions f2, . . . , fk are eigenfunctions of
the Laplacian ∆ of M1 with eigenvalues given by n2c, . . . , nkc, respectively. In
particular, if c = 0 the warping functions f2, . . . , fk are harmonic functions.

Example 6.3 illustrates that the warping functions f2, . . . , fk in Corollary 5.5
cannot be replaced by eigenfunctions with negative eigenvalue. Moreover, the target
space in Corollary 5.5 cannot be replaced either by Euclidean space or by spheres.
Therefore Corollary 5.5 is sharp.

Example 6.3 with c = 0 implies that Corollary 5.3 is sharp as well.
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