
International Electronic Journal of Geometry
Volume 1 No. 2 pp. 1-10 (2008) c©IEJG

CANONICAL FORMS OF MATRICES DETERMINING
ANALYTICAL MANIFOLDS

KOSTADIN TRENČEVSKI AND SAMET KERA

(Communicated by Vladimir Balan)

Abstract. In this paper many classes of sets of matrices with entries in F
(F ∈ {R,C,H}) are introduced. Each class with the corresponding topology
determines real analytical, complex or symplectic manifold for F = R, F = C
or F = H respectively. Any such family is called to be a set of canonical
forms of matrices. The construction of such canonical forms of matrices is
determined inductively. First basic canonical forms are studied, and then two
operations for obtaining new canonical forms by using the old canonical forms
are considered. All such manifolds have the property that each of them can
be decomposed into cells which are Cartesian products of F (F ∈ {R,C,H}).

1. Introduction

In the recent paper [6] are introduced two different classes of canonical forms
of matrices over a field F . It easily can be generalized for the quaternions H.
Note that in [6] and also in this paper the term matrix in canonical form does
not mean any reduction of a given matrix in a special form, but only means that
the corresponding matrix belongs to a given family or set of matrices. The term
canonical form comes from the example at the end of this section. According to
the corresponding topology of the classes of canonical forms of matrices (cfm) in
this paper are obtained real analytical (for F = R), complex (for F = C) and
symplectic (for F = H) manifolds. In all cases are obtained manifolds such that in
special cases are obtained the Grassmann manifolds. In the present paper will be
described inductively a large class of cfm yielding to analytical manifolds.

Each set of given cfm consists of n×m matrices with the following properties.
1o. The first property tells about some restrictions concerning the matrices in

the given canonical form (cf), about the first zero coordinates of each vector row.
This property depends on the choice of the cf.

2o. The second property is fixed for all cf and it states that any two different
vector rows are orthogonal.
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3o. The third property is also fixed for all cf and states that any vector row in
cf must have norm 1 and the first nonzero coordinate is positive real number.

Thus in order to define a class of cf it is sufficient to specify the property 1o. Note
that alternatively the vector rows also can be considered as vectors from RPm−1,
CPm−1 or HPm−1 and then the property 3o should be omitted. Note also that
m ≥ n according to 2o. Indeed, if m < n, then that set of cfm is empty set.

We finish the introduction by the basic example concerning the Grassmann man-
ifolds.

Example 1.1. Let us consider the set of n×m matrices (n ≤ m) such that
1o. If a1, · · · , an ∈ Fm are vector rows, then

0 ≤ t(a1) < t(a2) < · · · < t(an) < m,

where t(ai) (i = 1, · · · , n), denotes the number of the first zero coordinates of the
vector ai. This set of matrices together with the fixed properties 2o and 3o for cf
determines the Grassmann manifold Gn,m(F ) with the known topology, consisting
of all n-dimensional subspaces of Fm generated by the vector rows.

2. Construction of different classes of cfm and the corresponding
analytical manifolds

First we determine basic canonical forms as unit n× n matrices for arbitrary n.
Further we introduce two operations over the cfm, such that the result is a new

canonical form. After introducing the topology on the new cfm we obtain a new
analytical manifold (real, complex and symplectic).

i) Inner sum.
Let C1, C2, · · · , Cp be p matrices in cf, not necessary in cf of the same type.

Assume that Ci is an ni ×m matrix (1 ≤ i ≤ p) and let C be the following n×m
block matrix

C =




C1

C2

·
·
·

Cp




,

where n = n1 + · · · + np. If any two different vector rows of C are orthogonal, we
say that C is in cf called inner sum of the cfm C1, · · · , Cp. Thus the inner sum of
given p matrices does not always exist, while the set of matrices of whole cfm is
nonempty for sufficiently large m. The term ”inner” comes from the orthogonality
condition and we can say only ”sum” of the cfm. The new canonical form will be
denoted symbolically by C1 + · · · + Cp. Note that if we neglect the orthogonality
condition we obtain the Cartesian product of cfm C1, · · · , Cp.

Now we introduce the topology on the new cfm as follows. Let us denote by
{C1}, ...,{Cp} the sets of all matrices in given cf, and assume that the corresponding
topologies are known. Then the set of all matrices in the new cf {C1 + ... + Cp} is
a subset of the Cartesian topology space {C1} × ... × {Cp}. Thus the topology of
the new cf {C1 + ... + Cp} we define to be the relative topology with respect to the
Cartesian topological space {C1} × ...× {Cp}.

If τ : {1, · · · , p} → {1, · · · , p} is a permutation, then obviously the cfm C1 +
· · ·+ Cp and Cτ(1) + · · ·+ Cτ(p) determine homeomorphic spaces.
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ii) Spreading of a cfm onto a space Σ.
Let {C} be a set of all quadratic n×n matrices from a given canonical form. Let

k > n and Σ be a subspace of F k such that n ≤ dimΣ ≤ k. Specially, Σ can be the
total space F k. Spreading SΣ(C) over Σ is defined to be the set of matrices CX
where X is n × k matrix in canonical form of the Grassmann manifold Gn,k (see
example in section 1) such that the row vectors of X belong to Σ, i.e. X ∈ Gn,Σ.
Applying this spreading for each matrix C from the given cfm we obtain the total
set of matrices of the spread canonical form. Notice that C1X1 = C2X2 implies
C1 = C2 and X1 = X2 (see [6]).

The topology on the set of matrices in the spread cf we define inductively. The
topology of the set {C} of quadratic n× n matrices must be the topology of inner
sum. So assume that it is obtained as a sum C1 + ...+Cp. Then the topology of the
set of the spread cfm is defined to be the topology of the inner sum of the spread
cfm of C1,...,Cp on Σ separately. Hence it is sufficient to determine the topology of
each spread cfm {Ci} over Σ. Continuing this process of decreasing the number n,
we should finally to determine the topology of spread cfm of the unit matrix (i.e.
basic matrix). But, the spreading of the unit matrix is the Grassmann manifold,
whose topology is well known.

Assuming that M is an analytical manifold, then the topology of the spreading
SΣ(C) is such that it is an analytical manifold which is bundle over Gn,Σ with
projection π : SΣ(C) → Gn,Σ defined by: π(CX) is the subspace of Σ generated by
the vector rows of CX, i.e. of X, and the fiber is the topology space M induced via
the set of matrices {C} in initial cf. Note that a spreading of a cf can be done only
on a set of square matrices in cf. Thus if {C} is a set of n×m matrices in cf, then
we can sum with one or more submatrices in cf (example in section 1) determining
the Grassmann manifolds in order to obtain cf on m ×m matrices. Specially we
can sum with m−n vector rows or we can sum with a set of (m−n)×m matrices
from the Grassmann canonical form.

Now having in mind the topology of any cfm, we are able to prove that each
canonical form of n×m matrices {C} yields to an analytical manifold. The coor-
dinates of any such analytical manifold will be constructed in such a way that for
any n × n nonsingular submatrix will be constructed a coordinate neighborhood,
like for the standard coordinate neighborhoods for the Grassmann manifolds.

First note that any basic cf of unit n × n vectors determines a 0-dimensional
manifold, i.e. a point. The first operation must be spreading onto F k and hence in
the first step we obtain the Grassmann manifolds Gn,k which are analytical (real,
complex and symplectic) manifolds.

Further, suppose that a new cfm is obtained via an inner sum of matrices
C1, · · · , Cp in the corresponding cf. If these p cfm determine analytical manifolds,
then the set of new cfm is also an analytical manifold. Indeed, let Gn1,··· ,np,m(F ) be
the manifold consisting of (p + 1)-tuples (Π1,Π2, · · · , Πp, Πp+1) of orthogonal sub-
spaces of Fm where dimΠi = ni for i = 1, 2, · · · , p and dimΠp+1 = m−n1−· · ·−np.
Note that this is a flag manifold of included subspaces V1 = Π1, V2 = Π1 +Π2, V3 =
Π1 +Π2 +Π3, · · · . Thus Gn1,··· ,np,m(F ) is an analytical manifold. Let us denote by
Mi the analytical manifold which is the fiber of the projection of the matrices {Ci}
on the Grassmann manifold Gni,m. Then the new cf of sum of cfm determines a
space which is a bundle with base Gn1,··· ,np,m(F ) and fiber M1 × · · · × Mp. The
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projection π is given by

π
(




C1

C2

·
·
·

Cp




)
= (Π1, Π2, · · · , Πp, Πp+1),

where Π1 is generated by the vector rows of C1, Π2 is generated by the vector rows of
C2, · · · and Πp+1 is the orthogonal complement of Π1 + · · ·+Πp into Fm. Thus this
space of sum of cfm is also an analytical manifold. The coordinate neighborhoods of
the new cf can be constructed as follows. Let C ′ be any nonsingular n×n submatrix
of C. Then there exist p submatrices: C ′1 submatrix of C1 of order n1 × n1, · · · ,
C ′p submatrix of Cp of order np × np, where n = n1 + · · ·+ np, such that

1. these matrices are submatrices of C ′,
2. the columns of C ′1, · · · , C ′p are distinct,
3. the matrices C ′1, · · · , C ′p are non-singular, and
4. by deleting the rows and columns of the submatrices C ′1, C

′
2, · · · , C ′i, the rest

(ni+1+· · ·+np)×(ni+1+· · ·+np) submatrix of C ′ is nonsingular (i = 1, 2, · · · , p−1).
Note that such a choice of submatrices C ′1, C

′
2, · · · , C ′p is possible because by

generalization of the Laplace decomposition of the determinants it holds

detC ′ =
∑

±detD′
1 · detD′

2 · · · detD′
p

where D′
j is nj×nj submatrix of C ′ and submatrix of Cj and such that the columns

of D′
1, · · · , D′

p are distinct.
In the next step we choose the coordinate neighborhoods as follows. All n(m−n)

elements which do not belong to C ′ may be changed to be close to the correspond-
ing elements of C. The same choice is for the elements which are simultaneously in
the same row as C ′i and in the same column as C ′j for i > j, i.e. they may be chosen
to be close to the corresponding elements of C ′. Also according to the inductive
assumption the elements of C ′1, C

′
2, · · · , C ′p can be chosen in the corresponding co-

ordinate neighborhoods which they induce respectively on {C1}, {C2}, · · · , {Cp}.
Finally according to the properties 1. - 4. we note that the elements which belong
simultaneously in the same row as C ′i and in the same column as C ′j for i < j can
uniquely be determined such that the row vectors of C are orthogonal. Hence we
showed that the chosen matrix C can be covered by a coordinate neighborhood of
C1 + · · ·+Cp. The Jacobi matrices for the described coordinate neighborhoods are
analytical functions, because of the inductive assumptions for C1, · · · , Cp and the
analytical solutions of linear algebraic systems.

Next we should show how we can associate a coordinate neighborhood for any
nonsingular n × n submatrix C ′ of spread n × k matrix SΣ(C). Without loss
of generality we can suppose that C is a square n × n matrix in former cf and
by inductive assumption it can be covered with coordinate neighborhoods with
analytical elements of the Jacobi matrices. Since {SΣ(C)} is a bundle with base
Gn,k and according to the standard construction for the coordinates induced by any
nonsingular n × n submatrix and the fact that the fiber is an analytical manifold
by the inductive assumption, we obtain the required covering.
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Note that inductively it follows that all the manifolds obtained via this method
of cf are compact. Finally we can resume the previous results in the following two
theorems.

Theorem 2.1. The set of all matrices in a chosen canonical form with the intro-
duced topology is a compact analytical (real, complex or symplectic) manifold.

Theorem 2.2. Any manifold determined via a cf of n × m matrices is a bundle
over the base manifold Gn,m(F ) or Gn1,n2,··· ,np,m(F ).

3. Some examples

In this section will be considered some examples of cfm.

Example 3.1. Assume that n1 = 1, · · · , np = 1 (n = p) and let s1, · · · , sn ∈
{0, · · · , m−1} be given numbers. Then each of the cf of 1×m matrices belongs to the
space FPm−1. For any i, let Σi be the subspace generated by esi+1, esi+2, · · · , em.
Then the inner sum of cf can be described as a set of n orthogonal projective vectors,
such that the first starts with at least s1 zeros, the second starts with at least s2

zeros and so on. The dimension of this manifold is

mn− n(n + 1)
2

− s1 − s2 − · · · − sn.

Let us consider the special case m = n. Then there exists a permutation τ such
that sτ(i) < i, because in opposite case the corresponding matrix would not be or-
thogonal. Hence without loss of generality we assume that si < i, (i = 1, 2, · · · , n).
Hence there are n! such manifolds. Some of them are homeomorphic. Note that
specially, if s1 = s2 = · · · = sn = 0, we obtain the full flag manifold.

Example 3.2. Now let us consider the following example. Suppose that m1, · · · ,
mp are fixed positive integers such that m = m1 + · · ·+ mp. Let

Σ1 be the subspace generated by e1, · · · , em1 ,
Σ2 be the subspace generated by em1+1, · · · , em1+m2 ,
Σ3 be the subspace generated by em1+m2+1, · · · , em1+m2+m3 ,
· · ·
Σp be the subspace generated by em1+···+mp−1+1, · · · , em.
Then the cf which is an inner sum has the following form




C1 0 0 · · · 0
0 C2 0 · · · 0
0 0 C3 · · · 0
·
·
·
0 0 0 · · · Cp




as a block matrix of type (n1 +n2 + · · ·+np)× (m1 +m2 + · · ·+mp). Obviously the
induced analytical manifold is the Cartesian product M1 ×M2 × · · · ×Mp where
Mi is the analytical manifold induced by the i-th cf of type Ci on ni ×mi matrix
(ni ≤ mi).

Example 3.3. Let C be an inner sum of C1, · · · , Cp where Ci is an ni×mi matrix,
where n1 + n2 + · · ·+ np = n and m1 + · · ·+ mp = m = n. Since ni ≤ mi, it must
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be ni = mi for i = 1, · · · , p, i.e.

C =




C1 0 · · · 0
0 C2 · · · 0
·
·
·
0 0 · · · Cp




where Ci is ni × ni matrix in cf. Since detCi 6= 0 for i = 1, 2, · · · , p, one can verify
that the spread n ×m′ matrix C ′ is in cf if and only if C ′ decomposes into block
matrices

C ′ =




C11 C12 · · · C1p

C21 C22 · · · C2p

·
·
·

Cp1 Cp2 · · · Cpp




where Cij is an ni×m′
j matrix, where m′

1, · · · ,m′
p are not fixed but m′

1+· · ·+m′
p =

m′, such that
i) Cij = 0 for i > j,
ii) rankCii = ni,
iii) the row vectors of C ′ are orthogonal,
iv) the first non-zero coordinate of each vector is a positive real number.
In special case if {C1}, · · · , {Cp} are the cf of full flag manifolds, we obtain the

manifold described in [6] section 3.

Example 3.4. Let be given p positive integers n1, n2, · · · , np and let n1 + n2 +
· · ·+ np = n ≤ m. We consider a set of linearly independent vectors

a11,a12, · · · ,a1n1 ,a21,a22, · · · ,a2n2 , · · · ,ap1,ap2, · · · ,apmp ,

of Fm and we denote the matrix with these n row-vectors by A. The matrix A is
in a cf if

i) t1 < t2 < · · · < tp, where ti = min{t(ai1), t(ai2), · · · , t(aini)} and t(a)
denotes the number of the first zero coordinates of a,

ii) each two different vectors of these n vectors are orthogonal,
iii) each vector row has norm 1 and the first non-zero coordinate is positive real

number.
It is not obvious that this cf belongs to the cf of matrices introduced inductively

in section 2. One can prove that this set of matrices can be considered as a spreading
of n × n matrices with the same property i), ii) and iii). Thus we should consider
the case m = n. It is clear that the set of n × n matrices in cf is an inner sum
of n1 vectors in Fn and set of canonical forms of (n2 + · · · + np) × n matrices
with parameters n2, n3, · · · , np, projected on the space generated by the vectors
e2, e3, · · · , en. Hence by induction of p we obtain that the considered cfm is included
in the family of manifolds obtained in section 2.
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Let us consider the following special case for F = R, p = 2, n1 = 2, n2 = 1 and
m = 3. Then the manifold of canonical vectors consists of the following cells

C1 =




x ∗ ∗
y ∗ ∗
0 ∗ ∗


 , C2 =




1 0 0
0 ∗ ∗
0 ∗ ∗


 , C3 =




0 ∗ ∗
1 0 0
0 ∗ ∗


 ,

where x, y > 0. The cell C1 is homeomorphic to R × S1 because for fixed ratio
λ = x/y ∈ R+ it is homeomorphic to S1. The cells C2 and C3 are homeomorphic
to S1. Thus the Euler characteristic of the manifold is χ = 0. It can be described
such that each point consists of two orthogonal lines p and q through the coordinate
origin in R3 such that q lies in the yz-plane. The third line which is orthogonal to
p and q is uniquely determined by p and q. This manifold is homeomorphic to the
Klein’s bottle. Note that if we consider the complex and quaternionic cases, then
we obtain complex and symplectic manifolds - analogs of the Klein’s bottle.

4. Decomposition into cells

In this section we show the existence of cell decomposition which is analogous
to the Schubert’s cell decomposition of the Grassmann manifolds.

By the construction of cf described in section 2 we obtain a large class of compact
analytical manifolds, three manifolds for each cfm: real, complex and symplectic.
All these manifolds have the following property.

Theorem 4.1. All the manifolds obtained via cfm are such that they can be de-
composed into disjoint cells of type F i.

Proof. Note that the base cf determine 0-dimensional manifolds and each of them
is a point, i.e. F 0.

First let us prove that if the set of cfm {C} satisfies the property of the Theorem
4.1, then {SΣ(C)} satisfies that property also. Since {C} is a set of quadratic
matrices, {SΣ(C)} consists of all matrices of type CX where X is matrix of the
Grassmann manifolds, and the representation is unique. Hence we obtain that the
cells of {CX} are products of the cells of {C} and the cells of {X}. The cells of {C}
are of type F i because of the inductive assumption and the cells of the Grassmann
manifolds Gn,Σ are also of that type and in this case the proof is finished. Indeed,
Gn,Σ can be decomposed into Cn

r cells of type F i, where r = dimΣ.
Suppose that the manifolds determined by the cf {Ci} satisfy the property in

Theorem 4.1. Then we will show that the manifold induced by the sum C1+· · ·+Cp

also satisfies that property. This reduces to the special case when C1, · · · , Cp are
spreadings over the corresponding Grassmann manifolds with bases Mi which are
quadratic matrices. Indeed this manifold is a bundle over the base Gn1,n2,··· ,np,m(F )
and the fiber M1 × M2 × · · · × Mp and moreover the new manifold is equivalent
(but not necessary homeomorphic) to the Cartesian product

Gn1,n2,··· ,np,m(F )× (M1 ×M2 × · · · ×Mp).

It follows from the fact that the set of matrices for the spreading of quadratic ni×ni

matrices is the product (which is unique) of matrices of Mi and the Grassmann
manifold Gni,m. Since Mi satisfies the property in Theorem 4.1, and the base
manifold Gn1,n2,··· ,np,m(F ) can be decomposed into

m!
n1!n2! · · ·np!(m− n1 − · · · − np)!
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cells of type F i, we obtain that the inner sum C1+· · ·+Cp also satisfies the property
of the Theorem 4.1.

This completes the proof of the theorem and moreover it gives a method for
finding all of the cells. ¤

In the paper [10] is given a decomposition of the full flag manifold Gn(F ) into
n! cells of type F i. Indeed, the following theorem is proved in [10].

Theorem 4.2. The manifold Gn(F ) is a disjoint union of n! disjoint cells, such
that for each sequence (i1, i2, · · · , in−1), for 0 ≤ ij ≤ j and 1 ≤ j ≤ n − 1, there
exists a cell Ci1,··· ,in−1 which is homeomorphic to F i1 × F i2 × · · · × F in−1 .

Note that the Theorem 4.1 tells nothing about real manifolds because each real
manifold can be decomposed into cells of type Ri. But there are complex manifolds
which can not be decomposed into disjoint cells of type Ci. For example if the torus
T = S1 × S1 can be decomposed into some cells of type C1 = R2 and C0 = R0,
then the Euler characteristic is a sum of such cells and it is positive number, which
is a contradiction.

The cohomology modules for any manifolds constructed via the canonical forms
in section 2 can be found easily. Indeed, we know the cohomology modules for
the manifolds Gn,m(F ) and Gn1,··· ,np,m(F ). Using the Leray-Hirsch theorem [1] we
can find step by step all the cohomology modules for any such manifold. Indeed,
according to the Theorem 2.2, we have the following theorem.

Theorem 4.3. Let us denote by Pt(M) the polynomial

dim H0(M,R) + t dim H1(M,R) + t2 dim H2(M,R) + · · ·+ ts dim Hs(M,R),

for a manifold M , where s = dim M .
a) If M is a real analytical manifold obtained via cfm for F = R, then Pt(M) is

a product of polynomials of types

Pt(Gp,p+q) =
(1− t)(1− t2) · · · (1− tp+q)

(1− t)(1− t2) · · · (1− tp)(1− t)(1− t2) · · · (1− tq)
;

b) If M is a complex manifold obtained via cfm for F = C, then Pt(M) is a
product of polynomials of types

Pt(Gp,p+q) =
(1− t2)(1− t4) · · · (1− t2(p+q))

(1− t2)(1− t4) · · · (1− t2p)(1− t2)(1− t4) · · · (1− t2q)
;

c) If M is a symplectic manifold obtained via cfm for F = H, then Pt(M) is a
product of polynomials of types

Pt(Gp,p+q) =
(1− t4)(1− t8) · · · (1− t4(p+q))

(1− t4)(1− t8) · · · (1− t4p)(1− t4)(1− t8) · · · (1− t4q)
.

5. About a further generalization

Now will be presented a possible generalization for F = C, which can be a subject
of further research. We give the definition and the basic results about symmetric
products of manifolds.

Let M be an arbitrary set and m be a positive integer. In the Cartesian product
Mm we define a relation ≈ such that (x1, · · · , xm) ≈ (y1, · · · , ym) iff y1, y2, . . . , ym

is an arbitrary permutation of x1, x2, . . . , xm. This is equivalence relation and the
equivalence class represented by (x1, · · · , xm) is denoted by (x1, · · · , xm)/ ≈ and
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the quotient space Mm/ ≈ is called symmetric product of M and is denoted by
M (m).

If M is a topological space, then the quotient space M (m) is also a topological
space. The space M (m) is introduced quite early [4], but mainly it was studied
in [12]. The space (Rn)(m) is a manifold only for n = 2 [12]. If n = 2, then
(R2)(m) = C(m) is homeomorphic to Cm. Indeed, using that C is algebraically
closed field, it is obvious that the mapping ϕ : C(m) → Cm defined by

ϕ((z1, · · · , zm)/ ≈) = (σ1, σ2, · · · , σm)

is a bijection, where σi (1 ≤ i ≤ m) is the i-th symmetric function of z1, · · · , zm,
i.e.

σi(z1, · · · , zm) =
∑

1≤j1<j2<...<ji≤m

zj1 · zj2 · · · zji .

The mapping ϕ is also a homeomorphism. Moreover, M (m) is a complex manifold
if M is 1-dimensional complex manifold [7]. For example, if M is a sphere, i.e. the
complex manifold CP 1, then M (m) is the projective complex space CPm. Using
the permutation products it is easy to see how M (m) = CPm decomposes into
disjoint cells C0,C1, · · · ,Cm. Let ξ ∈ M . Then we define ((x1, · · · , xm)/ ≈) ∈ Mi

if exactly i of the elements x1, · · · , xm are equal to ξ. Thus

M (m) = M0 ∪M1 ∪ · · · ∪Mm = (M \ {ξ})(m) ∪ (M \ {ξ})(m−1) ∪ · · · ∪ (M \ {ξ})(0)

= C(m) ∪ C(m−1) ∪ · · · ∪ C(0) = Cm ∪ Cm−1 ∪ · · · ∪ C0.

Some recent results about symmetric products of manifolds are obtained in [11, 2].
This theory about symmetric products has an important role in the theory of the
topological commutative vector valued groups [8, 9, 5].

We mentioned in the section 1 that the property 30 can be omitted by assum-
ing that the row vectors of the cfm are projective vectors, i.e. they are elements
of CPm−1. Indeed, for any such vector v = (v1, · · · , vm) ∈ CPm−1 we joint a
polynomial

P (z) = vmzm−1 + vm−1z
m−2 + · · ·+ v1

and hence its complex roots (z1, · · · , zm−1)/ ≈ up to a permutation. Here z1, · · · ,
zm−1 ∈ C∗ = C ∪ {∞} such that if vm = vm−1 = · · · = vm−s+1 = 0 and vm−s 6= 0,
then exactly s of the roots are equal to ∞.

Now instead of the complex manifold S2 = C ∪ {∞} we should consider an
arbitrary 1-dimensional complex manifold M . Then any 1 × m canonical form
of matrices induces the complex manifold M (m−1) and it can be considered as a
projective space over M . The idea for generalization is the following. For any cfm
the vector rows should be considered as elements of M (m−1). The zero initial values
of the vector rows correspond to the multiplicity of a chosen point ξ on the chosen 2-
dimensional surface. If one manages to determine the corresponding orthogonality
conditions, then a complex manifold which corresponds to the considered cfm and
the basic 1-dimensional complex manifold M will be obtained.

At this moment we know only the projective space over given 2-dimensional
real surface, which is the symmetric product of the surface, but do not know the
Grassmann manifold over given 2-dimensional real surface.
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[11] Trenčevski, K. and Kera, S., One conjecture concerning the permutation products on mani-
folds, Math. Balkanica, 12(1998), 425 – 429.

[12] Wagner, C. H., Symmetric, cyclic and permutation products of manifolds, Dissert. Math.
(Rozravy math.), 182(1980), 3 – 48.

Institute of Mathematics, Sts. Cyril and Methodius University, P.O.Box 162, 1000
Skopje, Macedonia

E-mail address: kostatre@iunona.pmf.ukim.edu.mk

E-mail address: samet kera@hotmail.com


