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Abstract. For a Jordan domain in the plane the length metric space of points
connected to an interior point by a curve of finite length is a cat(0) space and
Gromov hyperbolic. With respect to the cone topology, that space plus its
boundary at infinity is topologically the same as the original Jordan domain.

1. Introduction

A Jordan domain J is the the homeomorphic image of a closed disk in E2. The
image of the boundary circle is a Jordan curve, which by the Jordan Curve Theorem
separates the plane into two open domains, one bounded, the other not, such that
the curve is the boundary of each. A local geodesic is a curve γ such that for every
non-end point p of γ there is an open subarc ρ of γ containing p such that the
arc of ρ between any two points of ρ is a shortest curve in J connecting those two
points. Bourgin and Renz [3] have analyzed the local geodesics in such domains,
concluding the following:

• A Jordan domain is uniquely geodesic.
• At every non-end point of a geodesic, the geodesic is supported by a closed

half-disk with center at the point and interior contained in the interior of
the Jordan domain.

• Geodesics are characterized in terms of separation: a point p is not on the
geodesic from q to r if and only if there is a straight line segment σ with
ends on the boundary ∂J of J , but otherwise in the interior of J , such that
p is in one connected component of J \ σ and q, r are in the other.

Although geodesics may be infinitely long when an end is on the boundary, the
unique determination of a geodesic by its ends is still true.

We assume throughout that geodesics are parametrized by an arclength param-
eter, and for a geodesic ray the parameter is 0 at the origin of the ray and positive
elsewhere.

There has been a little previous related work concerning not quite the same
domains: in the thesis of F.-E. Wolter [7] it is proved that a simply connected
plane domain with locally rectifiable boundary has the unique geodesic property;
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in a recent text [2, p. 310] there is an outline of a proof that locally simply-
connected plane domains are locally cat(0). In the latter, although the outline is
entirely plausible and at a level of rigor appropriate to a text at that level, essential
technical details (the unique geodesic property and a consideration of triangles with
“tails”) are not mentioned. It is probable that the cat(0) property, but certainly
not Gromov hyperboliciy, can be extended to unbounded domains by exhausting
them with their intersection with increasing disks; also extensions giving natural
curvature bounds for similar domains in Riemannian surfaces are likely to be true;
but it seems as though these extensions would not present any interesting challenges.

2. The cat(0) space

The set X of finite-distance points of J consists of interior points and those points
of ∂J which can be connected to any (and hence every) interior point by a curve
of finite length. Note that every pair of points in the interior can be connected by
polygonal curve in the interior, and so have finite distance apart. If a straight line
segment is interior to J except for one end, then that end is also in X; in particular,
only the ends of a geodesic can fail to be in X, since non-ends are either already
interior to J or a radius of a supporting half-disk provides a segment to an interior
point. The remaining subset of ∂J , points not in X, is called the (metric) boundary
of X, denoted ∂X.

A geodesic triangle in a metric space consists of three shortest curves (its sides)
connecting a triple of points (its vertices). A comparison triangle in E2 is a triangle
with the same side-lengths, and by taking equal distances from the vertices we get
comparison points on the sides. A geodesic triangle is thin if the distance between
every pair of points in the sides is ≤ the distance between the comparison points.
A cat(0) space is a complete metric space such that every pair of points can be
joined by a (finite-length) geodesic and every geodesic triangle is thin. It is easy to
show that a cat(0) space is uniquely geodesic and contractible [4]. Conversely, if
a space is locally cat(0) and simply connected, then it is cat(0) [1].

Theorem 2.1. The set X of finite-distance points of a Jordan domain J is a
cat(0) space.

Proof. Consider three points p, q, r ∈ X. We suppose that the geodesic triangle
with vertices p, q, r is nondegenerate, since degenerate triangles are trivially thin.
Then the two sides starting from p must consist of a common part (which may be
just p) ending at a bifurcation point p̄; similarly, there are bifurcation points q̄, r̄ on
the sides starting from q, r. Then 4p̄q̄r̄ is a Jordan curve in X and 4pqr consists
of 4p̄q̄r̄ with three “tails”. Clearly if we show that 4p̄q̄r̄ is thin, then 4pqr is also
thin.

The interior of 4p̄q̄r̄ must lie in the interior of X, and at each point of a side
which also lies in the interior of X, that side is locally a straight line segment.
Hence at those points the side is supported by half-disks in the interior of X, both
interior and exterior to 4p̄q̄r̄. But at a point of a side which is in ∂X, a supporting
half-disk can only lie entirely in the domain bounded by4p̄q̄r̄. Thus, a side of4p̄q̄r̄
is supported at every point except the ends by an open half-disk interior to 4p̄q̄r̄.
Therefore the sides are locally convex and have well-defined one-sided directions
at every point and also a total curvature. At the ends the signed turning angle
(choose an orientation of E2!) is at most π, while the signed total curvature of any
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simple closed, locally convex curve must be 2π. The signed total curvatures of the
sides must be ≤ 0, so together they add to at least 2π − 3π = −π. In particular,
each side must actually be convex, i.e., is on the boundary of its convex hull, and
the remaining part of that boundary is a straight line segment. The triangle of
these three segments has 4p̄q̄r̄ in its interior, so that 4p̄q̄r̄ must have angle sum
≤ 2π. One of Alexandrov’s criteria for a locally cat(0) space is that locally angle
sums of triangles are ≤ 2π. Since X is simply connected, we conclude that it is
also cat(0).

It is also easy to see that X is complete. Indeed, distances in X are ≥ the
corresponding Euclidean distances, so that a Cauchy sequence in X is also Cauchy
in the plane. The limit in the plane is in J and the distance of the limit from any
point of the sequence is finite. ¤

Let us call a triangle in X such as 4p̄q̄r̄ a Jordan triangle. As a corollary to the
above proof we have a uniform bound on the perimeter of Jordan triangles:

Corollary 2.1. If D is the diameter of J in E2, then the perimeter of every Jordan
triangle is bounded by 4D.

Proof. In E2 the length of a closed convex curve is monotone increasing with respect
to the inclusion ordering of convex hulls. We can choose Euclidean segments from
the vertices of 4p̄q̄r̄ so that they don’t intersect the sides and either are concurrent
or meet in pairs to give a triangle 4abc in the interior. The latter case is generic,
pictured in Figure 1. The sides of the Jordan triangle are shorter than the smaller
triangle in which they are contained; that is, `(τ) < d(p̄, a) + d(a, r̄), etc. In the
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concurrent case, when point a = b = c = m̄, then the segments m̄p̄, m̄q̄, m̄r̄ are in
the interior of 4p̄q̄r̄ except for the ends. The sum of the lengths of these segments
from m̄ is at most 2D (the sum of distances in E2 from several points is a convex
function, so the maximum on a triangle must occur at a vertex), and hence twice
that sum is greater than twice the sum of the two longest side-lengths of 4p̄q̄r̄.

The generic case can be reduced to the concurrent case by showing that there is
an interior point m̄ of4abc such that the segments m̄p̄, m̄q̄, m̄r̄ again have pairwise
sums of lengths which bound the lengths of τ, γ, ρ. Consider the ellipse with foci
p̄, r̄ passing through a. For any point on that ellipse the sum of distances from p̄, r̄
is the same, hence greater than `(τ). For a point outside the ellipse the sum is even
greater, so that is true for any point (except a) on the tangent line to the ellipse
at a. But the rule for reflection in an ellipse tells us that that tangent line bisects
∠bac. Similarly, the angle bisectors of ∠abc, ∠bca give points from which the sums
of distances from p̄, q̄ and q̄, r̄ majorize the lengths of γ, ρ. Thus we can take m̄ to
be the incenter of 4abc. ¤

3. Gromov hyperbolicity

A geodesic metric space X is δ-hyperbolic, where δ ≥ 0, if for every triangle the
distance from any point on one side of the triangle to the union of the other two
sides is ≤ δ. If X is δ-hyperbolic for some δ, then it is Gromov hyperbolic.

When X is a Jordan domain, it is clear that it is δ-hyperbolic if the defining
property is true for every Jordan triangle in X. Half the perimeter of the triangle
obviously satisfies the defining property, so by Corollary 2.1 X is 2D-hyperbolic.
However, a better value for δ is obtained by observing that for a Euclidean triangle
the extreme case is equilateral and if the side-lengths are D, then the maximum
distance from a point to the other sides is half the altitude. Thus we obtain the
sharp value for δ, realized by the case when X is bounded by an equilateral triangle
of side D.

Corollary 3.1. If X is a Jordan domain with Euclidean diameter D, then it is√
3D/4-hyperbolic.

4. The cone topology

For a cat(0) space X the boundary at infinity ∂X consists of asymptote classes
of geodesic rays; two rays are asymptotic if the distance between pairs at equal
distance from their origins is bounded. The cone topology on X̄ = X ∪ ∂X is
defined by specifying a neighborhood basis: for points of X we take the usual
metric neighborhoods. The neighborhoods of ∂X are defined in terms of a fixed
center point p ∈ X, and then it is proved that the resulting topology is independent
of p. For an infinite ray γ starting at p and positive numbers C, ε we define a
neighborhood N (γ, C, ε) of the asymptote class of γ to be the points on geodesics
starting at p which pass through the ball B(γ(C), ε) and have distance > C from
p, along with the asymptote classes of the extensions of those geodesics to rays
whenever possible. (The definition was originally due to Eberlein and O’Neill for
Riemannian manifolds [5].) For each asymptote class there is exactly one ray for a
given origin [4].

Lemma 4.1. For a Jordan domain J and the space of finite points X, two asymp-
totic rays in X must eventually coincide.
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Proof. We first prove this for two asymptotic rays γ, σ for which the origins are
interior points p, q of J such that the geodesic connecting them is a straight line
segment in the interior. Then any triangle 4pqr must end in a tail at r as soon
as d(p, r) + d(q, r) > 4D, since bifurcation of geodesics can only occur at boundary
points, not at p, q (unless4pqr is degenerate and the following conclusion is trivial).
Taking r = γ(s), as soon as s + d(q, r) > 4D the continuation of the segment from
q to γ(s) by γ|[s,∞) is a geodesic ray asymptotic to γ. Since the origin is q, that ray
must coincide with σ. So for close-by interior points “eventually” means as soon as
the sum of distances from their origins exceeds 4D.

Now for arbitrary origins in X we can connect them by a curve τ through the
interior, and for any two interior points of τ , we conclude that beyond the distance
2D from τ , the rays in the given asymptote class coincide. The limit rays at the
ends then must also coincide beyond that distance. ¤
Theorem 4.1. For a Jordan domain J the asymptote classes of the space of finite
points X can be indentified with the points of ∂J at infinite distance. The topology
on J coincides under this identification with the cone topology on X ∪ ∂X.

Proof. A ray in X has a unique limit point in ∂J , which by Lemma 4.1 is the same
for all rays in the same asymptote class.

Suppose that q ∈ ∂J is the end of a ray γ from p ∈ X, so q is identified with
the asymptote class of γ. Let B(γ(C), ε) specify a cone neighborhood N (γ,C, ε) of
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Figure 2. Disk inside cone neighborhood

q. Then there is a straight line segment rs contained in B(γ(C), ε), and containing
γ(C), transverse to γ. If γ(C) ∈ ∂J , then, say, take r = γ(C) and rs to be a radius
of a supporting half-disk at γ(C). Otherwise rs can be in the interior of J . Let
m,n be the first points in geodesic extensions of the geodesics pr, ps where those
extensions intersect ∂J (so that if r ∈ ∂J let m = r). Since m,n must be at finite
distance from p, they are different from q. See Figure 2.
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Then there is a Jordan curve obtained by chaining together geodesics mr, rs, sn
with the arc of ∂J from n to m which does not contain q. A sufficiently small disk
centered at q will not intersect that new Jordan curve, and any geodesic from p to
a point of that disk must cross rs, so the point in the disk must be in N (γ, C, ε).
Thus there are neighborhoods of the induced topology on J in a cone topology
neighborhood.

Conversely, suppose that U is the intersection of J with a disk D1 centered at
q, so that U is a neighborhood of the induced topology. We may assume that U
does not contain p. Then there is a largest arc of ∂J containing q and contained in
U . Let m,n be the ends of that arc. Since q is at infinite distance, it cannot be on
the geodesic from m to n. Hence there must be a straight line segment with ends
r, s ∈ ∂J separating mn from q. See Figure 3. The arcs of ∂J in U from m to q

q

p

m

n
r s

Figure 3. Cone neighborhood inside disk

and from n to q each must contain only one of r, s, since both of those arcs connect
q to {m,n} and cross rs. The geodesic mn together with the arc of ∂J with ends
m,n not containing q is a Jordan curve having p inside and q, rs outside; then the
Jordan curve consisting of rs and the arc of ∂J from r to s through q must bound a
domain D2 inside U . Any geodesic from p to a point of D2 must cross rs. Let γ(C)
be the point where pq crosses rs. Then for sufficiently small ε the ball B(γ(C), ε)
will be separated by rs and contained in U ; we can take ε < the distance in E2

from γ(C) to ∂D1. Then any point of N (γ,C, ε) will either be in B(γ(C), ε) or D2,
and hence in U . ¤

Remark 4.1. The continuity of geodesics in J as a function of their endpoints
has also been addressed by Fabel ([6]). He proves that when the endpoints of
a sequence converge in J , then the geodesics converge uniformly with respect to
the Euclidean metric. There is also a convergence interpretation of Theorem 4.1.
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Namely, it says that the convergence of endpoints is equivalent to convergence
of the geodesics uniformly on bounded sets in the length metric. A related fact
for cat(0) spaces, which provides a link between the two kinds of convergence
in Jordan domains, is that the distance d(γ(t), σ(at)) between two geodesics is a
convex function of t for any a > 0. On a bounded interval of R the convergence of
the end values of a convex function implies the uniform convergence on the interval.
Thus Euclidean convergence of the infinite endpoints controls the unbounded ends
of geodesics uniformly with respect to the Euclidean metric, and the convexity of
the length metric (which majorizes the Euclidean metric) controls the bounded
part. This provides the kernel of the proof that the two kinds of convergence are
equivalent. However, Fabel goes on to prove a much stronger theorem, namely, the
Euclidean-uniform continuity of geodesics not only as functions of the ends, but
also as functions of the domain J with respect to the Hausdorff distance.
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