Complex Multivariate Montgomery Type Identity Leading to Complex Multivariate Ostrowski and Grüss Inequalities

George A. Anastassiou 1*

Abstract
We give a general complex multivariate Montgomery type identity which is a representation formula for a complex multivariate function. Using it we produce general tight complex multivariate high order Ostrowski and Grüss type inequalities. The estimates involve L_p norms, any $1 \leq p \leq \infty$. We include also applications.

Keywords: Multivariate complex integral, Multivariate complex continuous functions, Multivariate complex analytic functions, Multivariate complex Montgomery identity, Multivariate complex Ostrowski and Grüss inequalities.

1 Department of Mathematical Sciences University of Memphis Memphis, TN 38152, U.S.A.
*Corresponding author: ganastss@memphis.edu
Received: 22 April 2019, Accepted: 14 June 2019, Available online: 27 June 2019

1. Introduction

Our motivation comes from the following results:

Theorem 1.1. (A. Ostrowski, 1938 [1]). Let $f : [a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b) such that $f' : (a, b) \rightarrow \mathbb{R}$ is bounded on (a, b), i.e., $\|f'\|_\infty := \sup_{t \in (a, b)} |f'(t)| < \infty$. Then

$$\left| \frac{1}{b-a} \int_a^b f(t) \, dt - f(x) \right| \leq \frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a} \right)^2 \|f'\|_\infty (b-a),$$

for all $x \in [a,b]$ and the constant $\frac{1}{4}$ is the best possible.

Theorem 1.2. (G. Grüss, 1934 [2]). Let $f, g : [a, b] \rightarrow \mathbb{R}$ be Lebesgue integrable functions, and $m, M, n, N \in \mathbb{R}$ such that: $-\infty < m \leq f \leq M < \infty$, $-\infty < n \leq g \leq N < \infty$, a.e. on $[a, b]$. Then

$$\left| \frac{1}{b-a} \int_a^b f(t) g(t) \, dt - \left(\frac{1}{b-a} \int_a^b f(t) \, dt \right) \left(\frac{1}{b-a} \int_a^b g(t) \, dt \right) \right| \leq \frac{1}{4} (M - m) (N - n),$$

with the constant $\frac{1}{4}$ being the best possible.
Let \(f \in C^1([a,b]) \) and the kernel \(p : [a, b]^2 \rightarrow \mathbb{R} \) be such that
\[
p(x, t) := \begin{cases} t - a, & \text{if } t \in [a, x], \\ t - b, & \text{if } t \in (x, b]. \end{cases}
\]

Then, we have the basic Montgomery integral identity [3, p. 565],
\[
f(x) = \frac{1}{b-a} \int_a^b f(t) \, dt + \frac{1}{b-a} \int_a^b p(x, t) f'(t) \, dt, \quad \forall x \in [a, b].
\]

In order to describe complex extensions of Ostrowski and Grüss inequalities using the complex integral we need the following preparation.

Suppose \(\gamma \) is a smooth path parametrized by \(z(t), t \in [a, b] \) and \(f \) is a complex function which is continuous on \(\gamma \). Put \(\gamma(a) = u \) and \(\gamma(b) = w \) with \(u, w \in \mathbb{C} \). We define the integral of \(f \) on \(\gamma_{a, w} = \gamma \) as
\[
\int_{\gamma} f(z) \, dz = \int_{\gamma_{a, w}} f(z) \, dz := \int_{a}^{b} f(z(t)) \gamma'(t) \, dt.
\]

We observe that the actual choice of parametrization of \(\gamma \) does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose \(\gamma \) is parametrized by \(z(t), t \in [a, b] \), which is differentiable on the intervals \([a, c]\) and \([c, b]\), then assuming that \(f \) is continuous on \(\gamma \) we define
\[
\int_{\gamma_{a, w}} f(z) \, dz := \int_{\gamma_{a, c}} f(z) \, dz + \int_{\gamma_{c, w}} f(z) \, dz,
\]
where \(v := z(c) \). This can be extended for a finite number of intervals.

We also define the integral with respect to arc-length
\[
\int_{\gamma_{a, w}} f(z) |dz| := \int_{a}^{b} f(z(t)) |\gamma'(t)| \, dt
\]
and the length of the curve \(\gamma \) is then
\[
\ell(\gamma) = \int_{\gamma_{a, w}} |dz| := \int_{a}^{b} |\gamma'(t)| \, dt.
\]

Let \(f \) and \(g \) be holomorphic in \(G \), an open domain and suppose \(\gamma \subset G \) is a piecewise smooth path from \(\gamma(a) = u \) to \(\gamma(b) = w \). Then we have the integration by parts formula
\[
\int_{\gamma_{a, w}} f(z) g'(z) \, dz = f(w) g(w) - f(u) g(u) - \int_{\gamma_{a, w}} f'(z) g(z) \, dz.
\]

We recall also the triangle inequality for the complex integral, namely
\[
\left| \int_{\gamma} f(z) \, dz \right| \leq \int_{\gamma} |f(z)| |dz| \leq \|f\|_{\gamma, \infty} \ell(\gamma),
\]
where \(\|f\|_{\gamma, \infty} := \sup_{z \in \gamma} |f(z)| \).

We also define the \(p \)-norm with \(p \geq 1 \) by
\[
\|f\|_{\gamma, p} := \left(\int_{\gamma} |f(z)|^p |dz| \right)^{\frac{1}{p}}.
\]

For \(p = 1 \) we have
\[
\|f\|_{\gamma, 1} := \int_{\gamma} |f(z)| |dz|.
\]

If \(p, q > 1 \) with \(\frac{1}{p} + \frac{1}{q} = 1 \), then by Hölder’s inequality we have
\[
\|f\|_{\gamma, 1} \leq [\ell(\gamma)]^{\frac{1}{q}} \|f\|_{\gamma, p}.
\]
First, we mention a Complex extension of Ostrowski inequality to the complex integral by providing upper bounds for the quantity

$$
\left| f(v)(w-u) - \int_{v}^{w} f(z) \, dz \right|
$$

under the assumption that γ is a smooth path parametrized by $z(t), t \in [a,b], u = z(a), v = z(x)$ with $x \in (a,b)$ and $w = z(b)$ while f is holomorphic in G, an open domain and $\gamma \subset G$.

Secondly, we mention a Complex extension of Grüss inequality:

Suppose $\gamma \subset \mathbb{C}$ is a piecewise smooth path parametrized by $z(t), t \in [a,b]$ from $z(a) = u$ to $z(b) = w$ with $w \neq u$. If f and g are continuous on γ, we consider the complex Čebyšev functional defined by

$$
\mathcal{D}_{\gamma}(f,g) := \frac{1}{w-u} \int_{v}^{w} f(z) g(z) \, dz - \frac{1}{w-u} \int_{v}^{w} f(z) \, dz \frac{1}{w-u} \int_{v}^{w} g(z) \, dz.
$$

We display upper bounds to $|\mathcal{D}_{\gamma}(f,g)|$.

We have the following results for functions of a complex variable:

\textbf{Theorem 1.3.} (S. Dragomir, 2019 [4]). Let f be holomorphic in G, an open domain and suppose $\gamma \subset G$ is a smooth path from $z(a) = u$ to $z(b) = w$. If $v = z(x)$ with $x \in (a,b)$, then $\gamma_{u,v} = \gamma_{a,v} \cup \gamma_{v,w}$,

$$
\left| f(v)(w-u) - \int_{v}^{w} f(z) \, dz \right| \leq \|f'\|_{\gamma_{u,v};\infty} \int_{\gamma_{u,v}} |z-u| \, |dz| + \|f'\|_{\gamma_{v,w};\infty} \int_{\gamma_{v,w}} |z-w| \, |dz| \leq
$$

$$
\left\{ \int_{\gamma_{u,v}} |z-u| \, |dz| + \int_{\gamma_{v,w}} |z-w| \, |dz| \right\} \|f'\|_{\gamma_{u,v};\infty},
$$

and

$$
\left| f(v)(w-u) - \int_{v}^{w} f(z) \, dz \right| \leq \max_{z \in \gamma_{u,v}} |z-u| \|f'\|_{\gamma_{u,v};1} + \max_{z \in \gamma_{v,w}} |z-w| \|f'\|_{\gamma_{v,w};1} \leq
$$

$$
\max \left\{ \max_{z \in \gamma_{u,v}} |z-u|, \max_{z \in \gamma_{v,w}} |z-w| \right\} \|f'\|_{\gamma_{u,v};1}.
$$

If $p, q > 1$ with $\frac{1}{p} + \frac{1}{q} = 1$, then

$$
\left| f(v)(w-u) - \int_{v}^{w} f(z) \, dz \right| \leq \left(\int_{\gamma_{u,v}} |z-u|^q \, |dz| \right)^{\frac{1}{q}} \|f'\|_{\gamma_{u,v};p} + \left(\int_{\gamma_{v,w}} |z-w|^q \, |dz| \right)^{\frac{1}{q}} \|f'\|_{\gamma_{v,w};p} \leq
$$

$$
\left(\int_{\gamma_{u,v}} |z-u|^q \, |dz| + \int_{\gamma_{v,w}} |z-w|^q \, |dz| \right)^{\frac{1}{q}} \|f'\|_{\gamma_{u,v};p}.
$$

Suppose $\gamma \subset \mathbb{C}$ is a piecewise smooth path parametrized by $z(t), t \in [a,b]$ from $z(a) = u$ to $z(b) = w$. Now, for $\phi, \Phi \in \mathbb{C}$ define the set of complex-valued functions

$$
\Lambda_{\gamma}(\phi, \Phi) := \left\{ f : \gamma \to \mathbb{C} \mid \left| f(z) - \frac{\phi + \Phi}{2} \right| \leq \frac{1}{2} |\Phi - \phi| \text{ for each } z \in \gamma \right\}.
$$

We have the following complex Grüss type inequalities:

\textbf{Theorem 1.4.} (S. Dragomir, 2018 [5]). Suppose $\gamma \subset \mathbb{C}$ is a piecewise smooth path parametrized by $z(t), t \in [a,b]$ from $z(a) = u$ to $z(b) = w$ with $w \neq u$. If f and g are continuous on γ and there exist $\phi, \Phi, \psi, \Psi \in \mathbb{C}$, $\phi \neq \Phi, \psi \neq \Psi$ such that $f \in \Lambda_{\gamma}(\phi, \Phi)$ and $g \in \Lambda_{\gamma}(\psi, \Psi)$ then

$$
|\mathcal{D}_{\gamma}(f,g)| \leq \frac{1}{4} \|\Phi - \phi\| |\Psi - \psi| \frac{L^{2}(\gamma)}{|w-u|^{2}}.
$$
Complex Multivariate Montgomery Type Identity Leading to Complex Multivariate Ostrowski and Grüss Inequalities — 164/175

If the path γ is a segment $[u, w]$ connecting two distinct points u and w in \mathbb{C} then we write $\int_{\gamma} f(z) \, dz$ as $\int_{u}^{w} f(z) \, dz$.

If f, g are continuous on $[u, w]$ and there exists $\phi, \Phi, \psi, \Psi \in \mathbb{C}$, $\phi \neq \Phi$, $\psi \neq \Psi$ such that $f \in L_{[u, w]}(\phi, \Phi)$ and $g \in L_{[u, w]}(\psi, \Psi)$ then

$$\left| \frac{1}{w-u} \int_{u}^{w} f(z) g(z) \, dz - \frac{1}{w-u} \int_{u}^{w} f(z) \, dz \frac{1}{w-u} \int_{u}^{w} g(z) \, dz \right| \leq \frac{1}{4} |\Phi - \phi| |\Psi - \psi|.$$

We will use the complex Montgomery identity which follows:

Theorem 1.5. (S. Dragomir, 2018 [4]) Let f be holomorphic in G, an open domain and suppose $\gamma \subset G$ is a smooth path from $z(a) = u$ to $z(b) = w$. If $v = z(t)$ with $t \in [a, b]$, then $\gamma_{uw} = \gamma_{uv} \cup \gamma_{vw}$, and

$$f(v) = \frac{1}{w-u} \int_{\gamma} f(z) \, dz + \frac{1}{w-u} \int_{\gamma_{uv}} (z-u) f'(z) \, dz + \frac{1}{w-u} \int_{\gamma_{vw}} (z-w) f'(z) \, dz.$$

Define

$$p(v, z) := \begin{cases} z-u, & \text{if } z \in \gamma_{uv} \\ z-w, & \text{if } z \in \gamma_{vw}. \end{cases}$$

Thus, it holds

$$f(v) = \frac{1}{w-u} \int_{\gamma} f(z) \, dz + \frac{1}{w-u} \int_{\gamma} p(v, z) f'(z) \, dz, \quad (1.1)$$

a form which we will use a lot in this article.

Representation formula (1.1) is the main inspiration to write this article.

We will use (1.1) to derive a multivariate Complex Montgomery type identity then based on it, we will produce Complex multivariate Ostrowski and Grüss type inequalities.

For the last we need:

Definition 1.6. Here we extend the notion of line (curve) integral into multivariate case. Let $\gamma_j, j = 1, \ldots, m$, be a smooth path parametrized by $z_j(t_j), t_j \in [a_j, b_j]$ and f is a complex valued function which is continuous on $\prod_{j=1}^{m} \gamma_j \subseteq \mathbb{C}^m$. Put $z_j(a_j) = u_j$ and $z_j(b_j) = w_j$, with $u_j, w_j \in \mathbb{C}, j = 1, \ldots, m$.

We define the complex multivariate integral of f on $\prod_{j=1}^{m} \gamma_j := \prod_{j=1}^{m} \gamma_{u_j, w_j}$ as

$$\int_{\gamma_1} \ldots \int_{\gamma_m} f(z_1, \ldots, z_m) \, dz_1 \ldots dz_m := \int_{\gamma_1} \int_{\gamma_2} \ldots \int_{\gamma_m} f(z_1, \ldots, z_m) \, dz_1 \ldots dz_m :=$$

$$\int_{\gamma_{u_1, w_1}} \cdots \int_{\gamma_{u_m, w_m}} f(z_1, \ldots, z_m) \, dz_1 \ldots dz_m := \int_{\gamma_{u_1, w_1}} \int_{\gamma_{u_2, w_2}} \ldots \int_{\gamma_{u_m, w_m}} f(z_1, \ldots, z_m) \, dz_1 \ldots dz_m :=$$

$$\int_{a_1}^{b_1} \int_{a_2}^{b_2} \ldots \int_{a_m}^{b_m} f(z_1(t_1), \ldots, z_m(t_m)) \prod_{j=1}^{m} z'_j(t_j) \, dt_1 \ldots dt_m. \quad (1.2)$$

We make

Remark 1.7. Clearly here $z_j \in C^1([a_j, b_j], \mathbb{C}), j = 1, \ldots, m$. The integrand in (1.2) is a continuous complex valued function over $\prod_{j=1}^{m} [a_j, b_j]$. Therefore $|f(z_1(t_1), \ldots, z_m(t_m))| \prod_{j=1}^{m} |z'_j(t_j)|$ is also continuous but from $\prod_{j=1}^{m} [a_j, b_j]$ into \mathbb{R}, hence it is bounded. Consequently it holds

$$\int_{\prod_{j=1}^{m} [a_j, b_j]} |f(z_1(t_1), \ldots, z_m(t_m))| \prod_{j=1}^{m} |z'_j(t_j)| \prod_{j=1}^{m} dt_j < +\infty.$$
Therefore, by Fubini’s theorem, the order integration in (1.2) is immaterial.
Clearly it holds

\[\left| \int_{a_1}^{b_1} \cdots \int_{a_m}^{b_m} f(z_1(t_1), \ldots, z_m(t_m)) \prod_{j=1}^{m} \frac{dz_j}{|dz_j|} dt_1 \cdots dt_m \right| \leq \int_{a_1}^{b_1} \cdots \int_{a_m}^{b_m} |f(z_1(t_1), \ldots, z_m(t_m))| \prod_{j=1}^{m} |f_j'(t_j)| dt_1 \cdots dt_m. \tag{1.3} \]

We also define the integral with respect to arc-lengths

\[\int_{\prod_{j=1}^{m} \gamma_j, w_j} f(z_1, \ldots, z_m) \, |dz_1| \, |dz_2| \cdots |dz_m| := \int_{\prod_{j=1}^{m} [a_j, b_j]} f(z_1(t_1), \ldots, z_m(t_m)) \prod_{j=1}^{m} |f_j'(t_j)| \, dt_1 \cdots dt_m. \tag{1.4} \]

It holds (by (1.3), (1.4))

\[\left| \int_{\prod_{j=1}^{m} \gamma_j, w_j} f(z_1, \ldots, z_m) \, |dz_1| \, |dz_2| \cdots |dz_m| \right| \leq \int_{\prod_{j=1}^{m} \gamma_j, w_j} |f(z_1, \ldots, z_m)| \, |dz_1| \, |dz_2| \cdots |dz_m| \leq \|f\|_{\prod_{j=1}^{m} \gamma_j, w_j} \prod_{j=1}^{m} l(\gamma_j), \]

where

\[\|f\|_{\prod_{j=1}^{m} \gamma_j, w_j} := \sup_{(z_1, \ldots, z_m) \in \prod_{j=1}^{m} \gamma_j} |f(z_1, \ldots, z_m)|, \]

and

\[l(\gamma_j) = \int_{\gamma_j, w_j} |dz_j| = \int_{a_j}^{b_j} |f_j'(t_j)| \, dt_j, \quad j = 1, \ldots, m. \]

We also define the p-norm with \(p \geq 1 \) by

\[\|f\|_{\prod_{j=1}^{m} \gamma_j, w_j} := \left(\int_{\prod_{j=1}^{m} \gamma_j} |f(z_1, \ldots, z_m)|^p \, |dz_1| \, |dz_2| \cdots |dz_m| \right)^{\frac{1}{p}}. \]

For \(p = 1 \) we have

\[\|f\|_{\prod_{j=1}^{m} \gamma_j, w_j} := \int_{\prod_{j=1}^{m} \gamma_j} |f(z_1, \ldots, z_m)| \, |dz_1| \, |dz_2| \cdots |dz_m|. \]

If \(p, q > 1 \) with \(\frac{1}{p} + \frac{1}{q} = 1 \), then by Hölder’s inequality we have

\[\|f\|^{\frac{1}{p}}_{\prod_{j=1}^{m} \gamma_j, w_j} \leq \left(\prod_{j=1}^{m} l(\gamma_j) \right)^{\frac{1}{q}} \|f\|_{\prod_{j=1}^{m} \gamma_j, w_j}. \]

\section{2. Main results}

We start by presenting a complex trivariate Montgomery type representation identity of complex functions:

\textbf{Theorem 2.1.} Let \(f : \prod_{j=1}^{3} D_j \subseteq \mathbb{C}^3 \rightarrow \mathbb{C} \) be a continuous function that is analytic per coordinate on the domain \(D_j, \ j = 1, 2, 3, \)
and \(x = (x_1, x_2, x_3) \in \prod_{j=1}^{3} D_j. \) For \(j = 1, 2, 3, \) suppose \(\gamma_j \subset D_j \) is a smooth path parametrized by \(z_j(t_j), \ t_j \in [a_j, b_j] \) with \(z_j(a_j) = u_j, z_j(t_j) = x_j \) and \(z_j(b_j) = w_j \), where \(u_j, w_j \in D_j, u_j \neq w_j. \) Assume also that all partial derivatives of \(f \) up to order three are continuous functions on \(\prod_{j=1}^{3} D_j. \)
Here we define the kernels for $i = 1, 2, 3$, $p_i : \mathbb{C}^2 \rightarrow \mathbb{C}$

\[p_i(x_i, s_i) := \begin{cases}
 s_i - u_i, & \text{if } s_i \in \gamma_{i,x_i}, \\
 s_i - w_i, & \text{if } s_i \in \gamma_{i,w_i}.
\end{cases} \]

Then

\[
f(x_1, x_2, x_3) = \frac{1}{\prod_{i=1}^{3} (w_i - u_i)} \left\{ \int_{\gamma_1} \int_{\gamma_2} \int_{\gamma_3} f(s_1, s_2, s_3) ds_3 ds_2 ds_1 + \sum_{j=1}^{3} \left(\int_{\gamma_1} \int_{\gamma_2} \int_{\gamma_3} p_j(x_j, s_j) \frac{\partial f(s_1, s_2, s_3)}{\partial s_j} ds_3 ds_2 ds_1 \right) \right. \\
\left. + \sum_{j=1}^{3} \left(\int_{\gamma_1} \int_{\gamma_2} \int_{\gamma_3} p_j(x_j, s_j) \frac{\partial^2 f(s_1, s_2, s_3)}{\partial s_k \partial s_j} ds_3 ds_2 ds_1 \right) \right\}.
\]

(2.1)

Above l counts $(j, k) : j < k; j, k \in \{1, 2, 3\}$.

Proof. Here we apply (1.1) repeatedly.

First we see that

\[f(x_1, x_2, x_3) = A_0 + B_0, \]

where

\[A_0 := \frac{1}{w_1 - u_1} \int_{\gamma_1} f(s_1, x_2, x_3) ds_1, \]

and

\[B_0 := \frac{1}{w_1 - u_1} \int_{\gamma_1} p_1(x_1, s_1) \frac{\partial f(s_1, x_2, x_3)}{\partial s_1} ds_1. \]

Furthermore we have

\[f(s_1, x_2, x_3) = A_1 + B_1, \]

where

\[A_1 := \frac{1}{w_2 - u_2} \int_{\gamma_2} f(s_1, s_2, x_3) ds_2, \]

and

\[B_1 := \frac{1}{w_2 - u_2} \int_{\gamma_2} p_2(x_2, s_2) \frac{\partial f(s_1, s_2, x_3)}{\partial s_2} ds_2. \]

Also we find that

\[f(s_1, s_2, x_3) = \frac{1}{w_3 - u_3} \int_{\gamma_3} f(s_1, s_2, s_3) ds_3 + \]

\[\frac{1}{w_3 - u_3} \int_{\gamma_3} p_3(x_3, s_3) \frac{\partial f(s_1, s_2, s_3)}{\partial s_3} ds_3. \]

Next we put things together, and we derive

\[A_1 = \frac{1}{(w_2 - u_2)(w_3 - u_3)} \int_{\gamma_2} f(s_1, s_2, s_3) ds_3 ds_2 + \frac{1}{(w_2 - u_2)(w_3 - u_3)} \int_{\gamma_3} p_3(x_3, s_3) \frac{\partial f(s_1, s_2, s_3)}{\partial s_3} ds_3 ds_2. \]
And we get
\[A_0 = \frac{1}{\prod_{i=1}^{3} (w_i - u_i)} \int_{\gamma_1} \int_{\gamma_2} \int_{\gamma_3} f(s_1, s_2, s_3) ds_3 ds_2 ds_1 + \frac{1}{\prod_{i=1}^{3} (w_i - u_i)} \int_{\gamma_1} \int_{\gamma_2} \int_{\gamma_3} p_3(x_3, s_3) \frac{\partial f(s_1, s_2, s_3)}{\partial s_3} ds_3 ds_2 ds_1 \]
\[+ \frac{1}{(w_1 - u_1) (w_2 - u_2)} \int_{\gamma_1} \int_{\gamma_2} p_2(x_2, s_2) \frac{\partial f(s_1, s_2, s_3)}{\partial s_2} ds_2 ds_1. \]

Also we obtain
\[\frac{\partial f(s_1, s_2, x_3)}{\partial s_2} = \frac{1}{w_3 - u_3} \int_{\gamma_3} \frac{\partial f(s_1, s_2, s_3)}{\partial s_3} ds_3 + \frac{1}{w_3 - u_3} \int_{\gamma_3} p_3(x_3, s_3) \frac{\partial^2 f(s_1, s_2, s_3)}{\partial s_3 \partial s_2} ds_3. \]

Therefore we get
\[A_0 = \frac{1}{\prod_{i=1}^{3} (w_i - u_i)} \int_{\gamma_1} \int_{\gamma_2} \int_{\gamma_3} f(s_1, s_2, s_3) ds_3 ds_2 ds_1 + \frac{1}{\prod_{i=1}^{3} (w_i - u_i)} \int_{\gamma_1} \int_{\gamma_2} \int_{\gamma_3} p_3(x_3, s_3) \frac{\partial f(s_1, s_2, s_3)}{\partial s_3} ds_3 ds_2 ds_1 \]
\[+ \frac{1}{\prod_{i=1}^{3} (w_i - u_i)} \int_{\gamma_1} \int_{\gamma_2} \int_{\gamma_3} p_2(x_2, s_2) \frac{\partial f(s_1, s_2, s_3)}{\partial s_2} ds_2 ds_1 + \frac{1}{\prod_{i=1}^{3} (w_i - u_i)} \int_{\gamma_1} \int_{\gamma_2} \int_{\gamma_3} p_2(x_2, s_2) p_3(x_3, s_3) \frac{\partial^2 f(s_1, s_2, s_3)}{\partial s_3 \partial s_2} ds_3 ds_2 ds_1. \]

Similarly we obtain that
\[B_0 = \frac{1}{\prod_{i=1}^{3} (w_i - u_i)} \int_{\gamma_1} \int_{\gamma_2} \int_{\gamma_3} p_1(x_1, s_1) \frac{\partial f(s_1, s_2, s_3)}{\partial s_1} ds_3 ds_2 ds_1 + \]
\[\frac{1}{\prod_{i=1}^{3} (w_i - u_i)} \int_{\gamma_1} \int_{\gamma_2} \int_{\gamma_3} p_1(x_1, s_1) p_3(x_3, s_3) \frac{\partial^2 f(s_1, s_2, s_3)}{\partial s_3 \partial s_1} ds_3 ds_2 ds_1 + \]
\[\frac{1}{\prod_{i=1}^{3} (w_i - u_i)} \int_{\gamma_1} \int_{\gamma_2} \int_{\gamma_3} p_1(x_1, s_1) p_2(x_2, s_2) \frac{\partial^2 f(s_1, s_2, s_3)}{\partial s_2 \partial s_1} ds_3 ds_2 ds_1 + \]
\[\frac{1}{\prod_{i=1}^{3} (w_i - u_i)} \int_{\gamma_1} \int_{\gamma_2} \int_{\gamma_3} p_1(x_1, s_1) p_2(x_2, s_2) p_3(x_3, s_3) \frac{\partial^3 f(s_1, s_2, s_3)}{\partial s_3 \partial s_2 \partial s_1} ds_3 ds_2 ds_1. \]

We have proved (2.1).

Next comes the general complex multivariate Montgomery type representation identity of complex functions:

Theorem 2.2. Let \(f : \prod_{j=1}^{m} D_j \subseteq \mathbb{C}^m \rightarrow \mathbb{C} \) be a continuous function that is analytic per coordinate on the domain \(D_j, j = 1, \ldots, m, \)

and \(x = (x_1, \ldots, x_m) \in \prod_{j=1}^{m} D_j. \) For \(j = 1, \ldots, m, \) suppose \(\gamma_j \subset D_j \) is a smooth path parametrized by \(z_j(t_j), t_j \in [a_j, b_j] \) with

\(z_j(a_j) = u_j, z_j(b_j) = w_j, \)

where \(u_j, w_j \in D_j, u_j \neq w_j. \) Assume also that all partial derivatives of \(f \) up to order

\(m \in \mathbb{N} \) are continuous functions on \(\prod_{j=1}^{m} D_j. \)

We define the kernels \(p_j : \gamma_j^2 \rightarrow \mathbb{C} \)

\[p_j(x_i, s_i) := \begin{cases}
 s_i - u_i, & \text{if } s_i \in \gamma_{i_{u_i}}, \\
 s_i - w_i, & \text{if } s_i \in \gamma_{i_{w_i}},
\end{cases} \]

for \(i = 1, 2, \ldots, m. \)
Then

\[
f(x_1, x_2, \ldots, x_m) = \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \left\{ \int_{\prod_{i=1}^{m} \mathbb{P}} f(s_1, s_2, \ldots, s_m) \, ds_1 \ldots ds_m + \sum_{j=1}^{m} \left(\int_{\prod_{i=1}^{m} \mathbb{P}} p_j(x_j, s_j) \frac{\partial f(s_1, s_2, \ldots, s_m)}{\partial s_j} \, ds_1 \ldots ds_m \right) \right\} +
\]

\[
\left(\sum_{l=1}^{\frac{m}{2}} \left(\sum_{j<k} \left(\int_{\prod_{i=1}^{m} \mathbb{P}} p_j(x_j, s_j) p_k(x_k, s_k) \frac{\partial^2 f(s_1, s_2, \ldots, s_m)}{\partial s_j \partial s_k} \, ds_1 \ldots ds_m \right) \right) \right)_{(l)} +
\]

\[
\left(\sum_{l=1}^{\frac{m}{3}} \left(\sum_{j<k<r} \left(\int_{\prod_{i=1}^{m} \mathbb{P}} p_1(x_1, s_1) \ldots p_l(x_l, s_l) \ldots p_m(x_m, s_m) \frac{\partial^{m-1} f(s_1, \ldots, s_m)}{\partial s_1 \partial s_2 \ldots \partial s_l} \, ds_1 \ldots ds_l \right) \right) \right)_{(l)} + \ldots +
\]

\[
\left(\sum_{l=1}^{m} \left(\int_{\prod_{i=1}^{m} \mathbb{P}} p_l(x_l, s_l) \frac{\partial^m f(s_1, \ldots, s_m)}{\partial s_1 \partial s_2 \ldots \partial s_l} \, ds_1 \ldots ds_l \right) \right) \right) + \int_{\prod_{i=1}^{m} \mathbb{P}} \left(\int_{\prod_{i=1}^{m} \mathbb{P}} p_l(x_l, s_l) \frac{\partial^m f(s_1, \ldots, s_m)}{\partial s_1 \partial s_2 \ldots \partial s_l} \, ds_1 \ldots ds_l \right) \right) \right\}.
\]

(2.2)

Above \(l_1\) counts \((j, k) : j < k; j, k \in \{1, 2, \ldots, m\}\), also \(l_2\) counts \((j, k, r) : j < k < r; j, k, r \in \{1, 2, \ldots, m\}\), etc. Also \(p_l(x_l, s_l)\) and \(\hat{s}_l\) means that \(p_l(x_l, s_l)\) and \(\hat{s}_l\) are missing, respectively.

Proof. Similar to Theorem 2.1.

\(\square\)

We make

Remark 2.3. (on Theorems 2.1, 2.2)

By (2.1) we get

\[
E_f(x_1, x_2, x_3) := f(x_1, x_2, x_3) - \frac{1}{\prod_{i=1}^{3} (w_i - u_i)} \left\{ \int_{\prod_{i=1}^{3} \mathbb{P}} f(s_1, s_2, s_3) \, ds_1 ds_2 ds_3 \right\}
\]

\[
= \frac{1}{\prod_{i=1}^{3} (w_i - u_i)} \left(\int_{\prod_{i=1}^{3} \mathbb{P}} p_1(x_1, s_1) \frac{\partial f(s_1, s_2, s_3)}{\partial s_1} \, ds_1 ds_2 ds_3 \right) - \sum_{j=1}^{3} \left(\int_{\prod_{i=1}^{3} \mathbb{P}} p_j(x_j, s_j) \frac{\partial f(s_1, s_2, s_3)}{\partial s_j} \, ds_1 ds_2 ds_3 \right)_{(l)}
\]

Above \(l\) counts \((j, k) : j < k; j, k \in \{1, 2, 3\}\).

Similarly, by (2.2) we find

\[
E_f(x_1, x_2, \ldots, x_m) = f(x_1, x_2, \ldots, x_m) -
\]

\[
= \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \left\{ \int_{\prod_{i=1}^{m} \mathbb{P}} f(s_1, \ldots, s_m) \, ds_1 \ldots ds_m - \sum_{j=1}^{m} \left(\int_{\prod_{i=1}^{m} \mathbb{P}} p_j(x_j, s_j) \frac{\partial f(s_1, \ldots, s_m)}{\partial s_j} \, ds_1 \ldots ds_m \right) \right\} - \]
Theorem 2.4. By (2.3) and generalized Hölder’s inequality.

Above l_1 counts $(j, k): j < k; l_2$ counts $(j, k, r): j < k < r; j, k, r \in \{1, 2, ..., m\}$, etc. Also $p_i(x_i, s_i)$ and ∂s_i means that $p_j(x_j, s_j)$ and ∂s_j is missing, respectively.

Hence it holds

$$|E_f(x_1, x_2, x_3)| \leq \frac{1}{3} \prod_{i=1}^3 |w_i - u_i| \times \left(\int_{\prod_{i=1}^3 \gamma_i} \int_{\prod_{i=1}^3 \gamma_i} \left| \frac{\partial f(x_1, x_2, x_3)}{\partial x_1, \partial x_2, \partial x_3} \right| ds_1 |ds_2| |ds_3| \right),$$

(2.3)

and

$$|E_f(x_1, ..., x_m)| \leq \frac{1}{m} \prod_{i=1}^m |w_i - u_i| \times \left(\int_{\prod_{i=1}^m \gamma_i} \left| \prod_{i=1}^m p_i(x_i, s_i) \right| |ds_1| ... |ds_m| \right).$$

(2.4)

We give the following complex multivariate Ostrowski type inequalities:

Theorem 2.4. All as in Theorem 2.1. Here $r_1, r_2, r_3, r_4 > 0: \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} + \frac{1}{r_4} = 1$. Then

$$|E_f(x_1, x_2, x_3)| \leq \frac{1}{3} \prod_{i=1}^3 |w_i - u_i| \times \min \left\{ \left(\int_{\prod_{i=1}^3 \gamma_i} \left| p_i(x_i, s_i) \right| ds_i \right) \left(\frac{\partial^3 f}{\partial s_3 \partial s_2 \partial s_1} \right)_{[m]} \gamma_j, \right\},$$

$$\left(\prod_{i=1}^3 \|p_i(x_i, s_i)\|_{r_j, \gamma_j} \right) \left(\prod_{j=1}^3 \left(\prod_{i=1}^3 \gamma_i \right) \right)^\frac{1}{2} \left(\frac{\partial^3 f}{\partial s_3 \partial s_2 \partial s_1} \right)_{[r_4]} \gamma_j,$$

$$\left(\sup_{(x_1, x_2, x_3) \in \prod_{i=1}^3 \gamma_i} \left(\int_{\prod_{i=1}^3 \gamma_i} \left| p_i(x_i, s_i) \right| ds_i \right) \right) \left(\frac{\partial^3 f}{\partial s_3 \partial s_2 \partial s_1} \right)_{[1]} \gamma_j,$$

$\forall (x_1, x_2, x_3) \in \prod_{j=1}^3 \gamma_j.$

Proof. By (2.3) and generalized Hölder’s inequality. □
Theorem 2.5. All as in Theorem 2.2. Here \(r_1, r_2, \ldots, r_m, r_{m+1} > 0 : \sum_{i=1}^{m+1} \frac{1}{r_i} = 1. \) Then

\[
|E_f(x_1, \ldots, x_m)| \leq \frac{1}{\prod_{i=1}^{m} |w_i - u_i|} \times \min \left\{ \left(\prod_{i=1}^{m} \int_{\gamma_i} |p_i(x_i, s_i)| |ds_i| \right) \left\| \frac{\partial^m f}{\partial s_{m+1} \cdots \partial s_1} \right\|_{m, j=1}^{m+1} \gamma_j \right.,
\]

\[
\left(\prod_{i=1}^{m} \left\| p_i(x_i, s_i) \left\|_{r_i, \gamma_i} \right. \right) \right\} \left\| \frac{\partial^m f}{\partial s_{m+1} \cdots \partial s_1} \right\|_{r_{m+1}, j=1}^{m+1} \gamma_j,
\]

\[
\left(\sup_{(s_1, \ldots, s_m) \in \prod_{j=1}^{m} \gamma_j} \left(\prod_{i=1}^{m} |p_i(x_i, s_i)| \right) \right) \left\| \frac{\partial^m f}{\partial s_{m+1} \cdots \partial s_1} \right\|_{1, j=1}^{m+1} \gamma_j \right\},
\]

\[
\forall (x_1, \ldots, x_m) \in \prod_{j=1}^{m} \gamma_j.
\]

Proof. By (2.4) and generalized Hölder’s inequality. \(\square \)

We make

Remark 2.6. Working further on (2.1) we call:

\[
A_f^{(3)} := A_f^{(3)} (x_1, x_2, x_3) := \sum_{j=1}^{3} \left(\int_{\prod_{i=1}^{3} \gamma_i} p_j(x_j, s_j) \frac{\partial f(s_1, s_2, s_3)}{\partial s_j} ds_1 ds_2 ds_3 \right)
\]

\[
+ \sum_{j < k}^{3} \left(\int_{\prod_{i=1}^{3} \gamma_i} p_j(x_j, s_j) p_k(x_k, s_k) \frac{\partial^2 f(s_1, s_2, s_3)}{\partial s_j \partial s_k} ds_1 ds_2 ds_3 \right) (l),
\]

and

\[
B_f^{(3)} := B_f^{(3)} (x_1, x_2, x_3) := \int_{\prod_{i=1}^{3} \gamma_i} \left(\prod_{i=1}^{3} p_i(x_i, s_i) \right) \frac{\partial^3 f(s_1, s_2, s_3)}{\partial s_1^3} ds_1 ds_2 ds_3,
\]

Set also

\[
T_f^{(3)} := T_f^{(3)} (x_1, x_2, x_3) := A_f^{(3)} + B_f^{(3)}.
\]

Thus, we have \((x = (x_1, x_2, x_3))\)

\[
f(x) = f(x_1, x_2, x_3) = \frac{1}{3} \prod_{i=1}^{3} (w_i - u_i) \int_{\prod_{i=1}^{3} \gamma_i} f(s_1, s_2, s_3) ds_1 ds_2 ds_3 + \frac{1}{3} \prod_{i=1}^{3} (w_i - u_i) \left(A_f^{(3)} + B_f^{(3)} \right) =
\]

\[
\frac{1}{3} \prod_{i=1}^{3} (w_i - u_i) \int_{\prod_{i=1}^{3} \gamma_i} f(s_1, s_2, s_3) ds_1 ds_2 ds_3 + \frac{1}{3} \prod_{i=1}^{3} (w_i - u_i) T_f^{(3)}.
\]

Working further on (2.2) we call:

\[
A_f^{(m)} := A_f^{(m)} (x_1, \ldots, x_m) := \sum_{j=1}^{m} \left(\int_{\prod_{i=1}^{m} \gamma_i} p_j(x_j, s_j) \frac{\partial f(s_1, \ldots, s_m)}{\partial s_j} ds_1 \cdots ds_m \right) +
\]
Thus, we have (x = (x₁, ..., xₘ))

\[
\sum_{j_1=1}^{m} \left(\int_{\mathbb{R}^n} p_j(x_j, s_j) p_k(x_k, s_k) \frac{\partial^2 f(s_1, ..., s_m)}{\partial s_k \partial s_j} ds_1...ds_m \right)_{(l_1)} + \\
\sum_{j_2=1}^{m} \left(\int_{\mathbb{R}^n} p_j(x_j, s_j) p_k(x_k, s_k) p_r(x_r, s_r) \frac{\partial^3 f(s_1, ..., s_m)}{\partial s_r \partial s_j \partial s_k} ds_1...ds_m \right)_{(l_2)} + ... + \\
\sum_{l=1}^{m-1} \left(\int_{\mathbb{R}^n} p_1(x_1, s_1) ... p_l(x_l, s_l) ... p_m(x_m, s_m) \frac{\partial^{m-1} f(s_1, ..., s_m)}{\partial s_m ... \partial s_l ... \partial s_1} ds_1...ds_l...ds_m \right),
\]

and

\[
B_f^{(m)} := B_f^{(m)}(x_1, ..., x_m) := \int_{\mathbb{R}^n} \left(\prod_{i=1}^{m} p_i(x_i, s_i) \right) \frac{\partial^m f(s_1, ..., s_m)}{\partial s_m ... \partial s_1} ds_1...ds_m.
\]

Set also

\[
T_f^{(m)} := T_f^{(m)}(x_1, ..., x_m) := A_f^{(m)} + B_f^{(m)}. \]

Thus, we have (x = (x₁, ..., xₘ))

\[
f(x) = f(x_1, ..., x_m) = \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \int_{\mathbb{R}^n} f(s_1, ..., s_m) ds_1...ds_m + \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \left(A_f^{(m)} + B_f^{(m)} \right) = \\
\frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \int_{\mathbb{R}^n} f(s_1, ..., s_m) ds_1...ds_m + \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} T_f^{(m)}. \tag{2.5}
\]

Let function g as in Theorem 2.2. Then as in (2.5) we obtain

\[
g(x) = g(x_1, ..., x_m) = \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \int_{\mathbb{R}^n} g(s_1, ..., s_m) ds_1...ds_m + \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \left(A_g^{(m)} + B_g^{(m)} \right) = \\
\frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \int_{\mathbb{R}^n} g(s_1, ..., s_m) ds_1...ds_m + \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} T_g^{(m)}. \tag{2.6}
\]

Above \(A_g^{(m)}, B_g^{(m)}, T_g^{(m)}\) have the obvious meaning.

By (2.5) we get

\[
f(x)g(x) = \frac{g(x)}{\prod_{i=1}^{m} (w_i - u_i)} \int_{\mathbb{R}^n} f(s_1, ..., s_m) ds_1 + \frac{g(x)}{\prod_{i=1}^{m} (w_i - u_i)} T_f^{(m)},
\]

and by (2.6) we get

\[
g(x)f(x) = \frac{f(x)}{\prod_{i=1}^{m} (w_i - u_i)} \int_{\mathbb{R}^n} g(s_1, ..., s_m) ds_1 + \frac{f(x)}{\prod_{i=1}^{m} (w_i - u_i)} T_g^{(m)}.
\]

Consequently after integration we get:
We conclude that (set $d := (s_1, \ldots, s_m)$)

$$
\int_{\prod_{i=1}^m (w_i - u_i)} \prod_{i=1}^m \frac{f(s)g(s)}{d_{i}} \prod_{i=1}^m ds_i = \prod_{i=1}^m g(s) \prod_{i=1}^m ds_i + \frac{1}{\prod_{i=1}^m (w_i - u_i)} \int_{\prod_{i=1}^m (w_i - u_i)} g(s) T_f^{(m)}(s) \prod_{i=1}^m ds_i, \tag{2.7}
$$

and

$$
\int_{\prod_{i=1}^m (w_i - u_i)} \prod_{i=1}^m \frac{f(s)g(s)}{d_{i}} \prod_{i=1}^m ds_i = \prod_{i=1}^m g(s) \prod_{i=1}^m ds_i + \frac{1}{\prod_{i=1}^m (w_i - u_i)} \int_{\prod_{i=1}^m (w_i - u_i)} f(s) T_g^{(m)}(s) \prod_{i=1}^m ds_i. \tag{2.8}
$$

By (2.7) and (2.8) we obtain

$$
\int_{\prod_{i=1}^m (w_i - u_i)} \prod_{i=1}^m f(s)g(s) d^m \dd s - \frac{1}{\prod_{i=1}^m (w_i - u_i)} \left(\int_{\prod_{i=1}^m (w_i - u_i)} f(s) d^m \dd s \right) \left(\int_{\prod_{i=1}^m (w_i - u_i)} g(s) d^m \dd s \right) = \frac{1}{2 \left(\prod_{i=1}^m (w_i - u_i) \right)^2} \left[\int_{\prod_{i=1}^m (w_i - u_i)} f(s) T_g^{(m)}(s) + g(s) T_f^{(m)}(s) \right] d^m \dd s.
$$

Therefore we have

$$
\frac{1}{\prod_{i=1}^m (w_i - u_i)} \int_{\prod_{i=1}^m (w_i - u_i)} f(s) g(s) d^m \dd s - \frac{1}{\prod_{i=1}^m (w_i - u_i)} \left(\int_{\prod_{i=1}^m (w_i - u_i)} f(s) d^m \dd s \right) \frac{1}{\prod_{i=1}^m (w_i - u_i)} \left(\int_{\prod_{i=1}^m (w_i - u_i)} g(s) d^m \dd s \right) = \frac{1}{2 \left(\prod_{i=1}^m (w_i - u_i) \right)^2} \left[\int_{\prod_{i=1}^m (w_i - u_i)} \left(f(s) A_g^{(m)}(s) + B_g^{(m)}(s) \right) + g(s) \left(A_f^{(m)}(s) + B_f^{(m)}(s) \right) \right] d^m \dd s.
$$

Hence it holds

$$
\Delta(f, g) := \frac{1}{\prod_{i=1}^m (w_i - u_i)} \int_{\prod_{i=1}^m (w_i - u_i)} f(s) g(s) d^m \dd s - \frac{1}{\prod_{i=1}^m (w_i - u_i)} \left(\int_{\prod_{i=1}^m (w_i - u_i)} f(s) d^m \dd s \right) \frac{1}{\prod_{i=1}^m (w_i - u_i)} \left(\int_{\prod_{i=1}^m (w_i - u_i)} g(s) d^m \dd s \right) - \frac{1}{2 \left(\prod_{i=1}^m (w_i - u_i) \right)^2} \left[\int_{\prod_{i=1}^m (w_i - u_i)} \left(f(s) A_g^{(m)}(s) + g(s) A_f^{(m)}(s) \right) d^m \dd s \right] = \frac{1}{2 \left(\prod_{i=1}^m (w_i - u_i) \right)^2} \left[\int_{\prod_{i=1}^m (w_i - u_i)} \left(f(s) B_g^{(m)}(s) + g(s) B_f^{(m)}(s) \right) d^m \dd s \right].
$$

Clearly we derive that \(|d^m \dd s| := \prod_{i=1}^m |ds_i|) \)

$$
|\Delta(f, g)| \leq \frac{1}{2 \left(\prod_{i=1}^m |w_i - u_i| \right)^2} \left[\int_{\prod_{i=1}^m (w_i - u_i)} \left\{ |f(s)| B_g^{(m)}(s) + |g(s)| B_f^{(m)}(s) \right\} d^m \dd s \right] = \tag{2.9}
$$
Theorem 2.7. Let \(f, g \) and all as in Theorem 2.2. Then\[
\left| \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \int_{\prod_{i=1}^{m} \gamma} f(s) g(s) d\mathbf{s} - \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \left(\int_{\prod_{i=1}^{m} \gamma} f(s) d\mathbf{s} \right) \right| \left(\int_{\prod_{i=1}^{m} \gamma} g(s) d\mathbf{s} \right) - \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \left(\int_{\prod_{i=1}^{m} \gamma} f(s) d\mathbf{s} \right) \leq \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \left[\int_{\prod_{i=1}^{m} \gamma} \left(f(s) A_g^{(m)}(s) + g(s) A_f^{(m)}(s) \right) d\mathbf{s} \right].
\]

The corresponding \(L_p \) Grüss inequality follows:

Theorem 2.8. Let \(f, g \) and all as in Theorem 2.2 and \(p, q > 1 \) such that \(\frac{1}{p} + \frac{1}{q} = 1 \). Then\[
\left| \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \int_{\prod_{i=1}^{m} \gamma} f(s) g(s) d\mathbf{s} - \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \left(\int_{\prod_{i=1}^{m} \gamma} f(s) d\mathbf{s} \right) \right| \left(\int_{\prod_{i=1}^{m} \gamma} g(s) d\mathbf{s} \right) - \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \left(\int_{\prod_{i=1}^{m} \gamma} f(s) d\mathbf{s} \right) \leq \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \left[\int_{\prod_{i=1}^{m} \gamma} \left(f(s) A_g^{(m)}(s) + g(s) A_f^{(m)}(s) \right) d\mathbf{s} \right].
\]

Proof. Use of (2.9) and Hölder inequality.

The corresponding \(L_1 \) Grüss inequality follows:

Theorem 2.9. Let \(f, g \) and all as in Theorem 2.2. Then

\[
\left| \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \int_{\prod_{i=1}^{m} \gamma} f(s) g(s) d\mathbf{s} - \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \left(\int_{\prod_{i=1}^{m} \gamma} f(s) d\mathbf{s} \right) \right| \left(\int_{\prod_{i=1}^{m} \gamma} g(s) d\mathbf{s} \right) - \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \left(\int_{\prod_{i=1}^{m} \gamma} f(s) d\mathbf{s} \right) \leq \frac{1}{\prod_{i=1}^{m} (w_i - u_i)} \left[\int_{\prod_{i=1}^{m} \gamma} \left(f(s) A_g^{(m)}(s) + g(s) A_f^{(m)}(s) \right) d\mathbf{s} \right].
\]
Proof. By Theorem 2.8 for $m=3$.

\[\frac{1}{2} \left(\prod_{i=1}^{m} (w_i - u_i) \right)^2 \left[\int_{\prod_{i=1}^{m} \mathbb{Y}} \left(f(s) A_g^{(m)}(s) + g(s) A_f^{(m)}(s) \right) d\mathbf{s} \right] \leq \]

\[\frac{1}{2} \left(\prod_{i=1}^{m} |w_i - u_i| \right)^2 \left[\left\| f \right\|_{1, \prod_{i=1}^{m} \mathbb{Y}} \left\| B_g^{(m)} \right\|_{1, \prod_{i=1}^{m} \mathbb{Y}} + \left\| g \right\|_{1, \prod_{i=1}^{m} \mathbb{Y}} \left\| B_f^{(m)} \right\|_{1, \prod_{i=1}^{m} \mathbb{Y}} \right]. \]

\[\text{Corollary 2.10. Let } f, g \text{ and all as in Theorem 2.1. Then} \]

\[\frac{1}{3} \prod_{i=1}^{m} (w_i - u_i) \int_{\prod_{i=1}^{m} \mathbb{Y}} f(s) g(s) d\mathbf{s} - \frac{1}{3} \prod_{i=1}^{m} (w_i - u_i) \left(\int_{\prod_{i=1}^{m} \mathbb{Y}} f(s) d\mathbf{s} \right) \frac{1}{3} \prod_{i=1}^{m} (w_i - u_i) \left(\int_{\prod_{i=1}^{m} \mathbb{Y}} g(s) d\mathbf{s} \right) - \]

\[\frac{1}{2} \left(\prod_{i=1}^{3} (w_i - u_i) \right)^2 \left[\int_{\prod_{i=1}^{3} \mathbb{Y}} \left(f(s) A_g^{(3)}(s) + g(s) A_f^{(3)}(s) \right) d\mathbf{s} \right] \leq \]

\[\frac{1}{2} \left(\prod_{i=1}^{3} |w_i - u_i| \right)^2 \left[\left\| f \right\|_{3, \prod_{i=1}^{3} \mathbb{Y}} \left\| B_g^{(3)} \right\|_{3, \prod_{i=1}^{3} \mathbb{Y}} + \left\| g \right\|_{3, \prod_{i=1}^{3} \mathbb{Y}} \left\| B_f^{(3)} \right\|_{3, \prod_{i=1}^{3} \mathbb{Y}} \right]. \]

Proof. By Theorem 2.7 for $m=3$.

\[\text{Corollary 2.11. Let } f, g \text{ and all as in Theorem 2.1 and } p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1. \text{ Then} \]

\[\frac{1}{3} \prod_{i=1}^{m} (w_i - u_i) \int_{\prod_{i=1}^{m} \mathbb{Y}} f(s) g(s) d\mathbf{s} - \frac{1}{3} \prod_{i=1}^{m} (w_i - u_i) \left(\int_{\prod_{i=1}^{m} \mathbb{Y}} f(s) d\mathbf{s} \right) \frac{1}{3} \prod_{i=1}^{m} (w_i - u_i) \left(\int_{\prod_{i=1}^{m} \mathbb{Y}} g(s) d\mathbf{s} \right) - \]

\[\frac{1}{2} \left(\prod_{i=1}^{3} (w_i - u_i) \right)^2 \left[\int_{\prod_{i=1}^{3} \mathbb{Y}} \left(f(s) A_g^{(3)}(s) + g(s) A_f^{(3)}(s) \right) d\mathbf{s} \right] \leq \]

\[\frac{1}{2} \left(\prod_{i=1}^{3} |w_i - u_i| \right)^2 \left[\left\| f \right\|_{p, \prod_{i=1}^{3} \mathbb{Y}} \left\| B_g^{(3)} \right\|_{q, \prod_{i=1}^{3} \mathbb{Y}} + \left\| g \right\|_{p, \prod_{i=1}^{3} \mathbb{Y}} \left\| B_f^{(3)} \right\|_{q, \prod_{i=1}^{3} \mathbb{Y}} \right]. \]

Proof. By Theorem 2.8 for $m=3$.

\[\text{Corollary 2.12. Let } f, g \text{ and all as in Theorem 2.1. Then} \]

\[\frac{1}{3} \prod_{i=1}^{m} (w_i - u_i) \int_{\prod_{i=1}^{m} \mathbb{Y}} f(s) g(s) d\mathbf{s} - \frac{1}{3} \prod_{i=1}^{m} (w_i - u_i) \left(\int_{\prod_{i=1}^{m} \mathbb{Y}} f(s) d\mathbf{s} \right) \frac{1}{3} \prod_{i=1}^{m} (w_i - u_i) \left(\int_{\prod_{i=1}^{m} \mathbb{Y}} g(s) d\mathbf{s} \right) - \]

\[\frac{1}{2} \left(\prod_{i=1}^{3} (w_i - u_i) \right)^2 \left[\int_{\prod_{i=1}^{3} \mathbb{Y}} \left(f(s) A_g^{(3)}(s) + g(s) A_f^{(3)}(s) \right) d\mathbf{s} \right] \leq \]

\[\frac{1}{2} \left(\prod_{i=1}^{3} |w_i - u_i| \right)^2 \left[\left\| f \right\|_{p, \prod_{i=1}^{3} \mathbb{Y}} \left\| B_g^{(3)} \right\|_{q, \prod_{i=1}^{3} \mathbb{Y}} + \left\| g \right\|_{p, \prod_{i=1}^{3} \mathbb{Y}} \left\| B_f^{(3)} \right\|_{q, \prod_{i=1}^{3} \mathbb{Y}} \right]. \]
\[
\frac{1}{2} \left(\prod_{i=1}^{3} (w_i - u_i) \right)^{-2} \left[\int_{\prod_{i=1}^{3} \gamma_i} \left(f(s) A^{(3)}_g(s) + g(s) A^{(3)}_f(s) \right) d\gamma \right] \leq \\
\frac{1}{2} \left(\prod_{i=1}^{3} |w_i - u_i| \right)^{-2} \left[\| f \|_{1, \prod_{i=1}^{3} \gamma_i} \left\| B^{(3)}_g \right\|_{1, \prod_{i=1}^{3} \gamma_i} + \| g \|_{1, \prod_{i=1}^{3} \gamma_i} \left\| B^{(3)}_f \right\|_{1, \prod_{i=1}^{3} \gamma_i} \right].
\]

Proof. By Theorem 2.9 for \(m = 3 \).

References

[2] G. Grüss, "Über das Maximum des absoluten Betrages von \(\int_a^b f(x)g(x) dx - \frac{1}{(b-a)^2} \int_a^b f(x) dx \int_a^b g(x) dx \), Math. Z., 39 (1935), 215-226.

