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Abstract

In this paper, we study the dynamics of following system of nonlinear difference equations xn+1 = xn−1yn − 1, yn+1 = yn−1zn − 1,
zn+1 = zn−1xn−1. Especially we investigate the periodicity, boundedness and stability of related system of difference equations.
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1. Introduction

Over the last years difference equations and systems of difference equations have been huge attention by scientists and mathematicians. This
attention is particularly related to applications in different fields of science especially ecology, economy, physics and so on. As long as they
achieved more meaningful and impressive results and applications, this attention continues to increase at the high level. Several latest results
can be found in the following papers:
In [15], Kent et al studied dynamics of difference equation

xn+1 = xnxn−1−1.

Further, in [1], Liu et al and in [25], Wang et al obtained some significant results about related difference equation.
In [?], Taşdemir studied the dynamics of following system of difference equations

xn+1 = xn−1yn−1,yn+1 = yn−1xn−1.

In [26], Kurbanlı et al investigated positive solutions of system of difference equations

xn+1 =
xn−1

ynxn−1 +1
,yn+1 =

yn−1

xnyn−1 +1
.

In [27], Kurbanlı studied the solutions of the system of difference equations

xn+1 =
xn−1

ynxn−1 +1
,yn+1 =

yn−1

xnyn−1 +1
,zn+1 =

zn−1

ynzn−1 +1
.

Furthermore, there are many books and papers related to difference equations see [1] - [29].
In this paper, we investigate the dynamics of following system of nonlinear difference equations:

xn+1 = xn−1yn−1, yn+1 = yn−1zn−1, zn+1 = zn−1xn−1,n = 0,1, · · · , (1.1)

where the all initial conditions are real numbers. Especially, we study equilibrium points, stability of solutions, existence of periodic solutions
and boundedness of solutions of related system.
Firstly, we give some definitions and theorems which are used during this study.
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Let us introduce a six-dimensional discrete dynamical system of the form

xn+1 = f1 (xn,xn−1,yn,yn−1,zn,zn−1) ,

yn+1 = f2 (xn,xn−1,yn,yn−1,zn,zn−1) , (1.2)

zn+1 = f3 (xn,xn−1,yn,yn−1,zn,zn−1)

n = 0,1, ..., where f1 : I2
1 × I2

2 × I2
3 → I1, f2 : I2

1 × I2
2 × I2

3 → I2 and f3 : I2
1 × I2

2 × I2
3 → I3 are continuously differentiable functions and

I1, I2, I3 are some intervals of real numbers. Moreover, a solution {(xn,yn,zn)}∞

n=−1 of system (1.2) is uniquely determined by initial values
(xi,yi,zi) ∈ I1× I2× I3 for i ∈ {−1,0}.
Definition 1.1. Along with the system (1.2), we consider the corresponding vector map

F = { f1,xn,xn−1, f2,yn,yn−1, f3,zn,zn−1} .

A point (x̄, ȳ, z̄) is called an equilibrium point of the system (1.2) if

x̄ = f1 (x̄, x̄, ȳ, ȳ, z̄, z̄) ,

ȳ = f2 (x̄, x̄, ȳ, ȳ, z̄, z̄) ,

z̄ = f3 (x̄, x̄, ȳ, ȳ, z̄, z̄) .

The point (x̄, ȳ, z̄) is also called a fixed point of the vector map F.

Definition 1.2. Let (x̄, ȳ, z̄) be an equilibrium point of the system (1.2).

(i) An equilibrium point (x̄, ȳ, z̄) of system (1.2) is called stable if, for every ε > 0, there exists δ > 0 such that, for every initial value
(xi,yi,zi) ∈ I1× I2× I3, with

0

∑
i=−1
|xi− x̄|< δ ,

0

∑
i=−1
|yi− ȳ|< δ ,

0

∑
i=−1
|zi− z̄|< δ

implying |xn− x̄|< ε, |yn− ȳ|< ε and |zn− z̄|< ε for n ∈ N.
(ii) An equilibrium point (x̄, ȳ, z̄) of system (1.2) is called unstable, if it is not stable.
(iii) An equilibrium point (x̄, ȳ, z̄) of system (1.2) is called locally asymptotically stable if it is stable and if, in addition, there exists γ > 0

such that
0

∑
i=−1
|xi− x̄|< γ,

0

∑
i=−1
|yi− ȳ|< γ,

0

∑
i=−1
|zi− z̄|< γ,

and (xn,yn,zn)→ (x̄, ȳ, z̄) as n→ ∞.
(iv) An equilibrium point (x̄, ȳ, z̄) of system (1.2) is called a global attractor if (xn,yn,zn)→ (x̄, ȳ, z̄) as n→ ∞.
(v) An equilibrium point (x̄, ȳ, z̄) of system (1.2) is called globally asymptotically stable if it is stable and a global attractor.

Definition 1.3. Let (x̄, ȳ, z̄) be an equilibrium point of the map F where f1, f2 and f3 are continuously differentiable functions at (x̄, ȳ, z̄).
The linearized system of system (1.2) about the equilibrium point (x̄, ȳ, z̄) is

Xn+1 = F (Xn) = BXn,

where

Xn =


xn

xn−1
yn

yn−1
zn

zn−1


and B is a Jacobian matrix of system (1.2) about the equilibrium point (x̄, ȳ, z̄).

Definition 1.4. Assume that Xn+1 = F (Xn) ,n = 0,1, · · · , is a system of difference equations such that X̄ is a fixed point of F. If no
eigenvalues of the Jacobian matrix B about X̄ have absolute value equal to one, then X̄ is called hyperbolic. Otherwise, X̄ is said to be
nonhyperbolic.

Theorem 1.5 (Linearized Stability Theorem [28], p.11). Assume that

Xn+1 = F (Xn) ,n = 0,1, · · · ,

is a system of difference equations such that X̄ is a fixed point of F.

(i) If all eigenvalues of the Jacobian matrix B about X̄ lie inside the open unit disk |λ |< 1, that is, if all of them have absolute value less
than one, then X̄ is locally asymptotically stable.

(ii) If at least one of them has a modulus greater than one, then X̄ is unstable.

Definition 1.6. A solution {(xn,yn,zn)}∞

n=−1 of system (1.2) is bounded and persists if there exist constants M, N such that M < N and

M < xn,yn,zn < N, n =−m,−m+1, · · · .

Definition 1.7. A positive solution {(xn,yn,zn)}∞

n=−1 of system (1.2) is periodic with period p if

xn+p = xn,yn+p = yp,zn+p = zn for all n≥−1.
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2. Equilibrium Points of System (1.1)

This section, we find out the equilibrium points of system (1.1).

Theorem 2.1. There are two equilibrium points of system (1.1) which are each elements of equilibrium points golden ratio or its conjugate.
The equilibrium points of system (1.1) are:

(x̄1, ȳ1, z̄1) =

(
1+
√

5
2

,
1+
√

5
2

,
1+
√

5
2

)
, (2.1)

(x̄2, ȳ2, z̄2) =

(
1−
√

5
2

,
1−
√

5
2

,
1−
√

5
2

)
. (2.2)

Note that all elements of the first equilibrium point equal to 1+
√

5
2 ≈ 1.618 which is golden ratio.

Proof. Let xn = x̄, yn = ȳ and zn = z̄ for all n≥−1. Then, we obtain following system from system (1.1):

x̄ = x̄ · ȳ−1, (2.3)

ȳ = ȳ · z̄−1, (2.4)

z̄ = z̄ · x̄−1. (2.5)

Therefore, we have easily from (2.3)-(2.5):

x̄ =
1+
√

5
2

, ȳ =
1+
√

5
2

, z̄ =
1+
√

5
2

,

x̄ =
1−
√

5
2

, ȳ =
1−
√

5
2

, z̄ =
1−
√

5
2

.

So, the proof completed.

3. Existence of Periodic Solutions of System (1.1)

In this here, we study the periodic or non-periodic solutions of system (1.1). Moreover we obtain the initial values for the periodic solutions
of system.

Theorem 3.1. There are no two periodic solutions of system (1.1).

Proof. Let {(xn,yn,zn)}∞

n=−1 be a two periodic solution of system (1.1). Therefore, x2n = a, x2n−1 = b, y2n = c, y2n−1 = d, z2n = e and
z2n−1 = f for all n ∈ N0, a,b,c,d,e, f ∈ R such that a 6= b,c 6= d and e 6= f . Hence, we have from system (1.1)

x2n+1 = x2n−1y2n−1,

x2n = x2n−2y2n−1−1,

y2n+1 = y2n−1z2n−1,

y2n = y2n−2z2n−1−1,

z2n+1 = z2n−1x2n−1,

z2n = z2n−2x2n−1−1.

Thus, we obtain the following equalities:

b = bc−1, (3.1)

a = ad−1, (3.2)

d = de−1, (3.3)

c = c f −1, (3.4)

f = f a−1, (3.5)

e = eb−1, (3.6)

So, we have from (3.1)-(3.6),

a = b = c = d = e = f =
1+
√

5
2

= x̄1 = ȳ1 = z̄1,

a = b = c = d = e = f =
1−
√

5
2

= x̄2 = ȳ2 = z̄2.

Since a 6= b,c 6= d and e 6= f , this is a contradiction. The proof completed.

Theorem 3.2. System (1.1) has three periodic solutions with the initial values as

x−1 = −1,x0 =−1,y−1 =−1,y0 =−1,z−1 =−1,z0 =−1, (3.7)

x−1 = 0,x0 =−1,y−1 = 0,y0 =−1,z−1 = 0,z0 =−1. (3.8)
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Proof. Let {(xn,yn,zn)}∞

n=−1 be a three periodic solution of system (1.1). Hence, x−1 = a, x0 = b, y−1 = c, y0 = d, z−1 = e and z0 = f for
all n ∈ N0, a,b,c,d,e, f ∈ R. Therefore, we obtain that:

x1 = x−1y0−1 = ad−1

y1 = y−1z0−1 = c f −1

z1 = z−1x0−1 = ea−1

x2 = x0y1−1 = b(c f −1)−1 = a (3.9)

y2 = y0z1−1 = d(ea−1)−1 = c (3.10)

z2 = z0x1−1 = f (ad−1)−1 = e (3.11)

x3 = x1y2−1 = (ad−1)c−1 = b (3.12)

y3 = y1z2−1 = (c f −1)e−1 = d (3.13)

z3 = z1x2−1 = (ea−1)a−1 = f (3.14)

Thus, we have four cases from solutions of system of equations (3.9)-(3.14):

a = b = c = d = e = f =−1, (3.15)

a = 0,b =−1,c = 0,d =−1,e = 0, f =−1, (3.16)

a = b = c = d = e = f =
1+
√

5
2

, (3.17)

a = b = c = d = e = f =
1−
√

5
2

. (3.18)

(3.15) and (3.16) are three periodic solutions but the other cases aren’t periodic solutions. Because they are equilibrium solutions. The proof
completed.

Remark 3.3. From (3.7) and (3.8), three periodic cycle of system (1.1) is

{· · · ,(−1,−1,−1) ,(0,0,0),(−1,−1,−1),(−1,−1,−1), · · ·} .

Proof. We take the initial values x−1 = 0,x0 =−1,y−1 = 0,y0 =−1,z−1 = 0,z0 =−1. Therefore, we obtain the followings:

x1 = x−1y0−1 = 0 · (−1)−1 =−1,

y1 = y−1z0−1 = 0 · (−1)−1 =−1,

z1 = z−1x0−1 = 0 · (−1)−1 =−1,

x2 = x0y1−1 = (−1) · (−1)−1 = 0,

y2 = y0z1−1 = (−1) · (−1)−1 = 0,

z2 = z0x1−1 = (−1) · (−1)−1 = 0,

x3 = x1y2−1 = (−1) ·0−1 =−1,

y3 = y1z2−1 = (−1) ·0−1 =−1,

z3 = z1x2−1 = (−1) ·0−1 =−1.

Hence, system (1.1) has three periodic cycle as:

{· · · ,(−1,−1,−1) ,(0,0,0),(−1,−1,−1),(−1,−1,−1), · · ·} .

4. Boundedness of System (1.1)

During this section we study the bounded or unbounded solutions of system (1.1).

Theorem 4.1. Let xi,yi,zi ∈ (−1,0) for i ∈ {−1,0}, then the solutions of system (1.1) are such that xn,yn,zn ∈ (−1,0) for n≥−1.

Proof. Let xi,yi,zi ∈ (−1,0) for i ∈ {−1,0}. Thus we obtain from System (1.1):

x1 = x−1y0−1 ∈ (−1,0),

y1 = y−1z0−1 ∈ (−1,0),

z1 = z−1x0−1 ∈ (−1,0).

Therefore, we have by induction

xn = xn−2yn−1−1 ∈ (−1,0),

yn = yn−2zn−1−1 ∈ (−1,0),

zn = zn−2xn−1−1 ∈ (−1,0)

for n≥−1. The proof is completed.
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Theorem 4.2. Let the initial values x−1,x0,y−1,y0,z−1,z0 <−1. Then

x1,y1,z1 > 0,

x2,y2,z2 < −1,

x3,y3,z3 < −1.

Proof. Let the initial values x−1,x0,y−1,y0,z−1,z0 <−1. We have from System (1.1):

x1 = x−1y0−1 > 0.

Calculations of y1,z1,x2,y2,z2,x3,y3,z3 are similar to x1, so we leave them to the readers.

Theorem 4.3. Let {(xn,yn,zn)}∞

n=−1 be a solution of system (1.1). Then,

xn+3− yn = (yn+2 +1)(zn+1 +1)− (xn+1 +1)(yn +1) , (4.1)

yn+3− zn = (zn+2 +1)(xn+1 +1)− (yn+1 +1)(zn +1) , (4.2)

zn+3− xn = (xn+2 +1)(yn+1 +1)− (zn+1 +1)(xn +1) . (4.3)

Proof. Let {(xn,yn,zn)}∞

n=−1 be a solution of system (1.1). Hence, we have from system (1.1) and by some calculations:

xn+3− yn = (xn+1yn+2−1)− yn

= xn+1 (ynzn+1−1)−1− yn

= xn+1ynzn+1− xn+1−1− yn

= xn+1yn (zn−1xn−1)− xn+1−1− yn

= xn+1ynzn−1xn− xn+1yn− xn+1−1− yn

= xn+1ynzn−1xn− xn+1 (yn +1)− (yn +1)

= xn+1ynzn−1xn− zn−1xn + zn−1xn− (yn +1)(xn+1 +1)

= zn−1xn (xn+1yn−1)+ zn−1xn− (yn +1)(xn+1 +1)

= zn−1xn (yn+2 +1)− (yn +1)(xn+1 +1)

= zn−1xn (yn+2 +1)− (yn+2 +1)+(yn+2 +1)− (yn +1)(xn+1 +1)

= (yn+2 +1)(zn−1xn−1)+(yn+2 +1)− (yn +1)(xn+1 +1)

= (yn+2 +1)zn+1 +(yn+2 +1)− (yn +1)(xn+1 +1)

= (yn+2 +1)(zn+1 +1)− (xn+1 +1)(yn +1) .

Because proofs of (4.2) and (4.3) are similar to (4.1), we leave them to the readers.

Theorem 4.4. Let {(xn,yn,zn)}∞

n=−1 be a solution of system (1.1). Let the initial values x−1,x0,y−1,y0,z−1,z0 <−1. Then the following
statements are true:

(i)

0 < x1 < z4 < y7 < · · ·< x9k+1 < z9k+4 < y9k+7 < · · · ,
0 < y1 < x4 < z7 < · · ·< y9k+1 < x9k+4 < z9k+7 < · · · ,
0 < z1 < y4 < x7 < · · ·< z9k+1 < y9k+4 < x9k+7 < · · · ,
−1 > x2 > z5 > y8 > · · ·> x9k+2 > z9k+5 > y9k+8 > · · · ,
−1 > y2 > x5 > z8 > · · ·> y9k+2 > x9k+5 > z9k+8 > · · · ,
−1 > z2 > y5 > x8 > · · ·> z9k+2 > y9k+5 > z9k+8 > · · · ,
−1 > x3 > z6 > y9 > · · ·> x9k+3 > z9k+6 > y9k+9 > · · · ,
−1 > y3 > x6 > z9 > · · ·> y9k+3 > x9k+6 > z9k+9 > · · · ,
−1 > z3 > y6 > x9 > · · ·> z9k+3 > y9k+6 > z9k+9 > · · · .

(ii)
lim
n→∞

x9n+1 = ∞, lim
n→∞

x9n+4 = ∞, lim
n→∞

x9n+7 = ∞,

lim
n→∞

y9n+1 = ∞, lim
n→∞

y9n+4 = ∞, lim
n→∞

y9n+7 = ∞,

lim
n→∞

z9n+1 = ∞, lim
n→∞

z9n+4 = ∞, lim
n→∞

z9n+7 = ∞,

lim
n→∞

x9n+2 =−∞, lim
n→∞

x9n+5 =−∞, lim
n→∞

x9n+8 =−∞,

lim
n→∞

y9n+2 =−∞, lim
n→∞

y9n+5 =−∞, lim
n→∞

y9n+8 =−∞,

lim
n→∞

z9n+2 =−∞, lim
n→∞

z9n+5 =−∞, lim
n→∞

z9n+8 =−∞,

lim
n→∞

x9n+3 =−∞, lim
n→∞

x9n+6 =−∞, lim
n→∞

x9n+9 =−∞,

lim
n→∞

y9n+3 =−∞, lim
n→∞

y9n+6 =−∞, lim
n→∞

y9n+9 =−∞,

lim
n→∞

z9n+3 =−∞, lim
n→∞

z9n+6 =−∞, lim
n→∞

z9n+9 =−∞.
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Proof. (i) Let {(xn,yn,zn)}∞

n=−1 be a solution of system (1.1). Let the initial values x−1,x0,y−1,y0,z−1,z0 <−1. Therefore, we know the
followings from Theorem 4.2

x1,y1,z1 > 0,

x2,y2,z2 < −1,

x3,y3,z3 < −1.

Firstly we consider (4.1) for n = 1. Thus we have

x4− y1 = (y3 +1)(z2 +1)− (x2 +1)(y1 +1) .

Since y3,z2,x2 <−1 and y1 > 0, we obtain that

x4− y1 > 0⇒ x4 > y1.

So x4 > y1 > 0 and similarly y4 > z1 > 0 and z4 > x1 > 0.
Now we take n = 2 for (4.1), therefore we get

x5− y2 = (y4 +1)(z3 +1)− (x3 +1)(y2 +1) .

Because of y4 > 0 and x3,z3,y2 <−1, we have

x5− y2 < 0⇒ x5 < y2.

Hence we obtain x5 < y2 <−1 and y5 < z2 <−1, z5 < x2 <−1 similarly.
Next we get (4.1) for n = 3. We attain that

x6− y3 = (y5 +1)(z4 +1)− (x4 +1)(y3 +1)

= (y3z4−1+1)(z4 +1)− (x2y3−1+1)(y3 +1)

= y3z2
4 + y3z4− x2y2

3− x2y3

From y3,x2 <−1, we have

x6− y3 < −z2
4 +−z4 + y2

3 + y3

= (y3− z4)(y3 + z4 +1)

From y3 <−1, we obtain

x6− y3 < (y3− z4)z4 < 0.

So we get x6 < y3 <−1 and similarly y6 < z3 <−1 and z6 < x3 <−1.
Now we take (4.1) for n = 4. We obtain that

x7− y4 = (y6 +1)(z5 +1)− (x5 +1)(y4 +1) .

Since y6,z5,x5 <−1 and y4 > 0, we have x7−y4 > 0 and x7 > y4 > z1 > 0. Therefore we get y7 > z4 > x1 > 0 and z7 > x4 > y1 > 0.
We consider (4.1) for n = 5. We have that

x8− y5 = (y7 +1)(z6 +1)− (x6 +1)(y5 +1) .

Thus we obtain following

x8− y5 < 0⇒ x8 < y5 < z2 <−1.

from y7 > 0 and z6,x6,y5 <−1. Similarly we get y8 < z5 < x2 <−1 and z8 < x5 < y2 <−1.
We take (4.1) for n = 6. We have

x9− y6 = (y8 +1)(z7 +1)− (x7 +1)(y6 +1)< 0

from y8,y6 <−1 and z7,x7 > 0. Thus we obtain x9 < y6 < z3 <−1, y9 < z6 < x3 <−1 and z9 < x6 < y3 <−1.
Now we consider (4.1) for n = 7. Hence we obtain

x10− y7 = (y9 +1)(z8 +1)− (x8 +1)(y7 +1)> 0

from y9,z8,x8 <−1 and y7 > 0. So we have x10 > y7 > z4 > x1 > 0, y10 > z7 > x4 > y1 > 0 and z10 > x7 > y4 > z1 > 0.
Finally we obtain the followings by induction

0 < x1 < z4 < y7 < · · ·< x9k+1 < z9k+4 < y9k+7 < · · · ,
0 < y1 < x4 < z7 < · · ·< y9k+1 < x9k+4 < z9k+7 < · · · ,
0 < z1 < y4 < x7 < · · ·< z9k+1 < y9k+4 < x9k+7 < · · · ,
−1 > x2 > z5 > y8 > · · ·> x9k+2 > z9k+5 > y9k+8 > · · · ,
−1 > y2 > x5 > z8 > · · ·> y9k+2 > x9k+5 > z9k+8 > · · · ,
−1 > z2 > y5 > x8 > · · ·> z9k+2 > y9k+5 > z9k+8 > · · · ,
−1 > x3 > z6 > y9 > · · ·> x9k+3 > z9k+6 > y9k+9 > · · · ,
−1 > y3 > x6 > z9 > · · ·> y9k+3 > x9k+6 > z9k+9 > · · · ,
−1 > z3 > y6 > x9 > · · ·> z9k+3 > y9k+6 > z9k+9 > · · · .

Therefore the proof completed as desired.
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(ii)

x9n+1 = x9n−1y9n−1

= (x9n−3y9n−2−1)(y9n−2z9n−1−1)−1

= x9n−3y2
9n−2z9n−1− x9n−3y9n−2− y9n−2z9n−1

We have from x9n−3y2
9n−2z9n−1 > 0 and x9n−3y9n−2 < 0,

x9n+1 >−y9n−2z9n−1.

From z9n−1 <−1, we obtain

x9n+1 > y9n−2 = y9n−4z9n−3−1

= y9n−4 (z9n−5x9n−4−1)−1

= y9n−4z9n−5x9n−4− y9n−4−1.

From y9n−4 <−1 and y9n−4x9n−4 > 1 we have

x9n+1 > y9n−4z9n−5x9n−4 > z9n−5

= z9n−7x9n−6−1

= z9n−7 (x9n−8y9n−7−1)−1

= z9n−7x9n−8y9n−7− z9n−7−1.

Thus we get from z9n−7 <−1 and y9n−7 <−1

x9n+1 > z9n−7x9n−8y9n−7 > x9n−8.

So lim
n→∞

x9n+1 = ∞. Since the proof of the other cases are similar to this, we leave them to readers.

5. Stability of System (1.1)

Throughout this section we investigate the stability of system (1.1).
Now, we take into account the transformation to set up the linearized form of system (1.1):

(xn,xn−1,yn,yn−1,zn,zn−1)→ ( f , f1,g,g1,h,h1) ,

where 
f = xn−1yn−1,

f1 = xn,
g = yn−1zn−1,

g1 = yn,
h = zn−1xn−1,

h1 = zn.

 .

Thus, we obtain the Jacobian matrix about the equilibrium point (x̄, ȳ, z̄):

B(x̄, ȳ, z̄) =


0 ȳ x̄ 0 0 0
1 0 0 0 0 0
0 0 0 z̄ ȳ 0
0 0 1 0 0 0
z̄ 0 0 0 0 x̄
0 0 0 0 1 0

 . (5.1)

Theorem 5.1. The equilibrium point (x̄1, ȳ1, z̄1) =
(

1+
√

5
2 , 1+

√
5

2 , 1+
√

5
2

)
of system (1.1) is locally unstable.

Proof. Linearized system of system (1.1) about the equilibrium point (x̄1, ȳ1, z̄1) =
(

1+
√

5
2 , 1+

√
5

2 , 1+
√

5
2

)
is Xn+1 = B(x̄, ȳ, z̄)Xn where

Xn = ((xn,xn−1,yn,yn−1,zn,zn−1))
T

and

B(x̄, ȳ, z̄) = B

(
1+
√

5
2

,
1+
√

5
2

,
1+
√

5
2

)

=



0 1+
√

5
2

1+
√

5
2 0 0 0

1 0 0 0 0 0
0 0 0 1+

√
5

2
1+
√

5
2 0

0 0 1 0 0 0
1+
√

5
2 0 0 0 0 1+

√
5

2
0 0 0 0 1 0


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Therefore, the characteristic equation of B(x̄, ȳ, z̄) about (x̄1, ȳ1, z̄1) =
(

1+
√

5
2 , 1+

√
5

2 , 1+
√

5
2

)
is

λ
6−

(
3+3

√
5

2

)
λ

4−
(

2+
√

5
)

λ
3 +

(
9+3

√
5

2

)
λ

2−2−
√

5 = 0. (5.2)

Then, six roots of (5.2) are

λ1 ≈ 2.31651,

λ2 ≈ 0.757501−0.456732i,

λ3 ≈ 0.757501+0.456732i,

λ4 ≈ −0.698478,

λ5 ≈ −1.56652−0.944526i,

λ6 ≈ −1.56652+0.944526i.

Thus,

|λ4|< |λ2|= |λ3|< 1 < |λ5|= |λ6|< |λ1| .

Hence, the first equilibrium point of system (1.1) is locally unstable from linearized stability theorem.

Theorem 5.2. The equilibrium point (x̄2, ȳ2, z̄2) =
(

1−
√

5
2 , 1−

√
5

2 , 1−
√

5
2

)
of system (1.1) is locally unstable.

Proof. Linearized system of system (1.1) about the equilibrium point (x̄2, ȳ2, z̄2) =
(

1−
√

5
2 , 1−

√
5

2 , 1−
√

5
2

)
is Xn+1 = B(x̄, ȳ, z̄)Xn where

Xn = ((xn,xn−1,yn,yn−1,zn,zn−1))
T

and

B(x̄, ȳ, z̄) = B

(
1−
√

5
2

,
1−
√

5
2

,
1−
√

5
2

)

=



0 1−
√

5
2

1−
√

5
2 0 0 0

1 0 0 0 0 0
0 0 0 1−

√
5

2
1−
√

5
2 0

0 0 1 0 0 0
1−
√

5
2 0 0 0 0 1−

√
5

2
0 0 0 0 1 0


Therefore, the characteristic equation of B(x̄, ȳ, z̄) about (x̄2, ȳ2, z̄2) =

(
1−
√

5
2 , 1−

√
5

2 , 1−
√

5
2

)
is

λ
6 +

(
−3+3

√
5

2

)
λ

4 +
(
−2+

√
5
)

λ
3 +

(
9−3

√
5

2

)
λ

2−2+
√

5 = 0 (5.3)

Hence, we have six roots of (5.3):

λ1 ≈ −0.309017−0.722871i,

λ2 ≈ −0.309017+0.722871i,

λ3 ≈ 0.10393−0.549903i,

λ4 ≈ 0.10393+0.549903i,

λ5 ≈ 0.205087−1.08514i,

λ6 ≈ 0.205087+1.08514i.

From these we obtain that

|λ3|= |λ4|< |λ1|= |λ2|< 1 < |λ5|= |λ6| .

So, the second equilibrium point of system (1.1) is locally unstable from linearized stability theorem.

6. Conclusion

In this paper, we investigate the equilibrium points of system (1.1). Moreover we find out the periodic solutions of system (1.1) with three
period. We also study the bounded or unbounded solutions of system (1.1). Finally, we analyze the stability of solutions of system (1.1) both
the two equilibrium points.
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[15] C.M. Kent, W. Kosmala, M.A. Radin and S. Stević, Solutions of the difference equation xn+1 = xnxn−1−1, Abstr. Appl. Anal., 2010 (2010), 1-13.
[16] C.M. Kent, W. Kosmala, On the Nature of Solutions of the Difference Equation xn+1 = xnxn−3−1, International Journal of Nonlinear Analysis and

Applications, 2(2) (2011), 24-43.
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