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Abstract 

This study investigates the transverse vibrations taking place tensioned viscoelastic 

pipes conveying fluid with time-dependent velocity taking into account simple 

supports condition. The governing equation is derived from Newton’s second law, 

Boltzmann’s superposition principle, and the stress-strain relation given for Maxwell 

viscoelastic model. The time-dependent velocity is assumed to vary harmonically 

about mean velocity. This system experiences a Coriolis acceleration component 

which renders such systems gyroscopic. The equation of motion is solved using the 

multiple time scale method. Principal parametric resonance is investigated. Stability 

boundaries are determined analytically. It is demonstrated that instabilities occur 

when the frequency of velocity fluctuations is close to two times the natural 

frequency of the system with constant velocity or when the frequency is close to the 

sum of any two natural frequencies. 

 

1. INTRODUCTION  
 

The dynamics of axially moving continua has been extensively studied due to its technological importance. There 

are many engineering designs which involve axially moving continua structures such as high speed magnetic tapes, 

band-saws, textile and composite fibers, pipes and beams conveying fluid, etc. Over a certain critical moving speed 

causes structural failures on such axially moving structures because of severe vibrations and dynamical 

instabilities. To explore stable working conditions for such structural systems, the dynamic responses and stability 

of such systems have been studied extensively. In literature, string behavior [1], beam behavior [1,2] and transition 

behavior from string to beam [1] have been used to model axially moving structures with respect to elastic 

behavior. However, with the advancement of material technologies, new widely used engineering materials such 

as plastics, metallic or ceramic reinforced composite materials and polymeric materials exhibit viscoelastic 

behavior. Reduced noise and vibrations can be achieved with the viscoelastic behavior of the materials in the 

accessory systems. The viscoelastic theory of materials allows to model the creeping and damping characteristics 

of the materials. The differential operator and the hereditary integrals methods are utilized to describe the stress–

strain relations of viscoelastic materials because they do not obey Hook’s law. 

 

When a viscoelastic model is expressed in a differential operator method, the equation of motion describing the 

viscoelastic behavior of system as a beam/pipe or string is modeled in a partial differential equation form. In the 

differential operator method, the stress–strain relationship is expressed as ij ijP Qe  , where P and Q are 

differential operators; ij  and ije  are the stress and elongation. The equation of motion of the system under 

consideration is written in a form including a set of stress terms. The equation is then multiplied by the differential 

operator, P. In the latest equation, ijQe is written in place of ijP to define a specific equation of motion for the 

viscoelastic model desired. Fung et al. [3] first applied this methodology to axially moving string problem and 

developed an equation of motion for a 3-parameter viscoelastic model referred to as standard linear solid model. 

In a similar way, the equations of motion were obtained for a 4-paremeter viscoelastic model known as Burger 

model [4] and  Zener viscoelastic model based on three parameters [5] for axially moving beam. Zhang and Zu [6] 

and Hou and Zu [7] examined the dynamic analysis of axially moving string problem using the relation, 

/ij ijQ Pe  . 
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However, when a viscoelastic model of hereditary integral type is adopted, the equation motion is modeled as a 

partial differential–integral equation form. The integral method is not useful for time dependent constitutive 

models due to complicated formulations that are less suitable for numerical calculations. Various methods have 

been presented for the vibration analysis of structures composed of viscoelastic materials. Fung et al. [8] used 

Galerkin method and a finite difference numerical integration procedure to obtain the transient responses. Chen et 

al. [9] gives a good solution by Galerkin method to axially moving viscoelastic beam modelled by integral method. 

Yang and Chen [10] examined parametric resonance case of linear axially moving beam modelled Boltzmann 

integral constitutive low by the multiple time scale method. 

 

Several viscoelastic models are analyzed in literature [11]. Pipes composed of Kelvin-Voight material are 

extensively studied. However, Kruijer, et al., [12] showed experimentally that a pipe materials can obey different 

viscoelastic models. The dynamic of pipes conveying fluid is a popular problem for axially moving subject. 

Therefore, the dynamic analyses of pipes have been investigated by several researchers. An extensive review is 

given by Païdoussis and Li [13]. Païdoussis [14,15] are also published two well recognized books on fluid structure 

interactions.  

 

It is observed that there is no investigation on dynamics of viscoelastic pipes constituted by the viscoelastic 

constitutive law of an integral type. This paper attempts to address the lack of research in the literature, by 

investigating the stability of principal parametric resonances of viscoelastic pipe constituted by Boltzmann’s 

superposition principle. The equations of motion for viscoelastic models are obtained by Newton’s second law of 

motion. The pipe material is modeled using Maxwell viscoelastic models. The fluid velocity is assumed to vary 

harmonically about a constant mean velocity. The multiple time scale method is used to determine boundary line 

for principal parametric resonance. The numerical results of viscoelastic pipes conveying fluid are calculated for 

simply supported ends condition. 

 

2. GOVERNING EQUATION OF MOTION 
 

A uniform viscoelastic pipe is considered with density ρp, cross-sectional area Ap, distance L, moment of inertial I 

and initial tension P0. The fluid velocity, V(T), is the time dependent and ρf and Af are the density and cross-

sectional area of the fluid, respectively. The bending vibration of the pipe described by the transverse displacement 

U(X,T) is considered. Newton’s second low of motion yields [10] 

 

   
2 2 2 2 2 2

2

02 2 2 2 2
2p p f f

U U U dV U U U M
A A V V P

X T dT XT T X X X
 

       
      

       
          (1) 

 

where T, X is the time and the axial coordinate respectively, and M is the bending moment given by 

 

   , , ,
A

M X T Z X Z T dA                 (2) 

where Z, X plane is the principal plane of bending, and σ(X,Z,T) is the disturbed normal stress. The one dimensional 

constitutive equation of an integral type material which is given by the Boltzmann superposition principle is 

adopted as [8,10,16] 

 

         
0

, , , , 0 , , '

T

X Z T e X Z T E E T T e X Z T dT                 (3) 

 

where E(T) is the relaxation modules and e(X, Z, T) is the axial strain. For small deflection, the strain-displacement 

relation is 

 

 
2

2
, ,

U
e X Z T Z

X


 


                (4) 

 

For linear viscoelastic models such as Maxwell, the extensional relaxation function is given as follows; 

 

  TE T E F e                   (5) 
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where E, F and viscosity coefficient, η, are varying coefficients determined by Laplace transform of constitutive 

relation of the viscoelastic model. The relaxation modules and constitutive relation for Maxwell viscoelastic model 

[16] is given in Table 1. Where E1 and E2 are spring coefficients and C is dashpot coefficient. The viscoelastic 

coefficient, η, is assumed is very small then the Eq. (5) is transformed into following form [10]. 

 

Table1. Maxwell viscoelastic model, with constitutive relation and relaxation modules 

Viscoelastic 

Model 

Illustration of 

Viscoelastic Model 
Constitutive Relation 

Relaxation Module 

          TE T E Fe    

M
ax

w
el

l 

 

1

C
C

E
     

           
1

1

E
T

CE T E e


  

 

  TE T E F e                   (6) 

 

where the bookkeeping device ε is a small dimensionless parameter. Substitution of Eqs.(4) and (6) into Eq.(3) 

 

     
2 2

2 2

0

, , '

T
T TU U

X Z T Z E F F e Z dT
X X


 

  
   

              (7) 

 

and substitution of the above equation into Eq. (2) leads to 

 

     
2 2

2 2

0

, '

T
T TU U

M X T E F I FI e dT
X X




  
  

              (8) 

 

Finally, substituting Eq.(8) into Eq.(1), the equation of motioned is obtained 

 

   

   

2 2 2 2
2

2 2 2

2 4 4

0 2 4 4

0

2

0

p p f f

T
T T

U U U dV U U
A A V V

X T dT XT T X

U U U
P E F I IF e dT

X X X



 


 

     
    

     

  
    

  

          (9) 

 

Because U and V are dependent, and X and T independent variables in Eq. (9), they can be non-dimensionalized. 

U and X can be non-dimensionalized by substituting 

 

,
U X

u x
L L

                 (10) 

 

V and T can be non-dimensionalized using; 

 

1

2

1

,
f fAE IT

t v VL
m E IL


               (11) 

 

where f f p pm A A   . The equation of motions can then be written in dimensionless form for all viscoelastic 

models: 

 

C 

E1 
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 
2 2 2 4

2

2 2 4
2

u u dv u u u
v v qs

x t dt xt x x
   

    
     

    
          (12) 

 

where  

 

 
4

4

0

,

t
f f t t
A u

s e dt
m x





  

 
             (13) 

 

4

1

1

E mL

C E I
                 (14) 

 

q=1.0. The time derivative of the last term of dimensionless equation motion is as follows [10]: 

 
4

4

u
s s

x



  


                (15) 

 

The velocity of fluid is assumed to be a small simple harmonic variation, with the frequency ω and the amplitude 

εv1 about the mean speed v0 

 

  0 1 sin( )v t v v t                  (16) 

 

Here ε is used to show the fact that the fluctuation amplitude is small, with the same order as the dimensionless 

viscosity coefficient. Substitution of Eq. (16) into Eq. (12) and neglect higher orders ε terms in the resulting 

equation yield 

 

 

     

2 2 2 4
2

0 02 2 4

2 2

1 1 0 1 2

2

2 sin cos 2 sin

u u u u
v v

x tt x x

u u u
qs v t v t v v t

x t x x

 

       

   
    

   

   
   

    

        (17) 

 

3. SOLUTION OF THE EQUATION 
 

The Multiple Time Scale method is employed in search of approximate solution of the dimensionless equation of 

motion. The following expansion is assumed 

 

     0 0 1 1 0 1, ; , , , , ....u x t u x T T u x T T                 (18) 

 

and a zero order to s is 

 

   1 0 1, ; , , ;s x t s x T T                 (19) 

 

where T0=t is the fast time scale and T1=εt is the slow time scale. Time derivatives are defined as 

 

0 1 ...
d

D D
dt

     
2

2

0 0 12
2 ...

d
D D D

dt
              (20) 

 

where n

n

D
T





. Substituting Eqs. (18)-(20) into Eq. (17) and separating terms at each order of ε, equations are 

obtained 

 

O(1):   2 2

0 0 0 0 0 0 0 02 0ıvD u v D u v u u                  (21) 
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O(ε):  
 

    

2 2

0 1 0 0 1 0 1 1 1 0 1 0

0 1 0 1 0 0 0 0 0 1 0 0

2 2

2 2 sin cos

ıvD u v D u v u u qs D D u

v D u v T D u v u v T u

  

     

      

      
        (22) 

 

The solution at order 1 can be written as  

 

     0

0 0 1 1, , ; . .ni T

n nu x T T A T e Y x c c
                (23) 

 

where c.c. stands for the complex conjugate of all preceding terms on the right hand of an equation. s1 is given as 

follows [10]  

 

     0

1 0 1 1

1
, , ; . .ni T ıv

n n

n

s x T T A T e Y x c c
i




              (24) 

 

The spatial functions Yn(x) with boundary conditions satisfy the equation 

 
2 22 0ıv

n n n n n nY v Y vi Y Y                     (25) 

 

The solution is  

 

   1 2 3 4

1 2 3 4
n n n ni x i x i x i x

n n n n nY x c e c e c e c e
   

                (26) 

 

where cin are arbitrary coefficients. The αin satisfy the dispersive relation 

 
4 2 2 22 0 1,2,3,4 1,2,...in in n in nv v i n                      (27) 

 

cin are determined by applying boundary conditions. The boundary conditions of the pipe with simple supports in 

dimensionless form are 

 

       0 1 0 1 0n n n nY Y Y Y                   (28) 

 

The mode shapes of that boundary conditions were calculated previously [17] 
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   

   
  

   

    
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 

4n x

  

       (29) 

 

where αin are eigenvalues of simple supported case.  

 

4. PRINCIPLE PARAMETRIC RESONANCES 
 

In this section, it is assumed that one dominant mode of vibration exists. Depending on the numerical values of 

frequency of the pipe, the case with ω close to 2ωn is investigated. 

 

In this case, to represent the nearness of velocity variation frequency to two times one of the natural frequencies 

 

2 n                    (30) 

 

The solvability condition requires  

 
1

1 1 0 1 0
i T

n n nD A v k A e k A
                  (31) 
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where k0 and k1 are 

 
1 1 1

0

0 0 0

0 1 1

0

0 0

1

2

2 2

n n n n n n n

n

n n n n n

Y Y dx Y Y dx iv Y Y dx

k

i Y Y dx v Y Y dx

  

 

   





  

 

            (32) 

1

0

1 1 1

0

0 0

2 2

ıv

n n

n

n n n n n

iq
Y Y dx

k

i Y Y dx v Y Y dx



 







 

             (33) 

 

 

To perform a stability analysis, the following transformation is used 

 
  1/2i T

n nA B e


                 (34) 

 

1 1 1 0 0
2

n n nD B i k B v k B



 

    
 

              (35) 

 

Eq. (35) takes the same form as Eq. (19) in the paper of Öz et al. [1]. The coefficients used in the analytical 

expression of the stability boundaries of parametric resonance in Eq. (36) are different from the coefficients given 

by Öz et al. [1]. The stability boundaries are determined by 

 

2 2

1 1 0 02 2I R Ik v k k                 (36) 

 

where superscripts R and I denote the real and imaginary parts of coefficient, respectively. Inserting σ further into 

Eq. (30) gives two different values of ω. The two values denote the stability boundaries for small ε. Numerical 

solutions will be given in numerical results section. Note that for constant velocities, v1=0 and hence the second 

term of right hand side in Eq. (36) is disappeared.  

 

5. NUMERICAL RESULTS 
 

The natural frequencies and stability boundaries given analytically in the previous sections of the viscoelastic pipe 

conveying fluid are investigated. The numerical results are obtained for the following parameters: the fluid-mass 

ratio, β=0.8; dimensionless mean fluid velocity, v0=5.0; initial tension parameter, γ=25; and the small non-

dimensional parameter, ε=0.1. The parameter q is 1.0 for Maxwell viscoelastic model. 

 

The natural frequencies for the first, second and third modes are plotted depending on mean velocity. Stability 

analysis is done for the principal parametric resonance case. In principal parametric resonances analysis, when the 

velocity fluctuation frequency is close to zero, no instabilities are detected up to the first order of perturbation. 

When the fluctuation frequency is away from zero and twice the natural frequency, the solutions are bounded and 

no instabilities observed. Instable regions occur when the frequency of fluctuation is close to two times natural 

frequencies of the constant velocity system.  

 

Numerical values of the natural frequencies can be computed by using Eq.(27). The principal parametric 

instabilities are plotted using Eq. (36). Eqs.(32) and (33) are used on calculations of k0 and k1. For the computation 

of the coefficients k0 and k1, Eq.(29) is used as the shape function, Yn(x). As can be seen from Figure 1 the natural 

frequencies of the system decreases when the mean velocity increases. As the frequency values vanish, the 

divergence instability occurs. The velocity for which the natural frequency is lost is named the critical fluid 

velocity. The natural frequency and critical velocity values increases at higher modes. When v=0.0, the natural 

frequency is 18,55 for the first mode, 50.45 for the second mode and 100.55 for the third mode. The velocity for 

which the frequency values vanish cannot be determined exactly due to numerical procedures. However, it can be 

stated that the velocity is about 5.8 for first mode, 8.2 for second mode and 11.3 for third mode. 
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Figure 1. Natural frequencies of the pipe versus mean velocity for different modes with simply supports 

 

In Figures 2, the stable and unstable regions are plotted for the principal parametric resonance case for different 

amplitude of fluctuation velocity and viscosity coefficient.  

 

 
(a)       (b) 

 
(c) 

Figure 2. Principal parametric resonances with simply supported end conditions for Maxwell viscoelastic model 

(a) for the first mode, 2ω1 (b) the second mode, 2ω2 (c) the third mode 2ω3 
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The stability boundary is nonlinearly dependent on viscosity coefficient and amplitude of fluctuation. The smallest 

stable area for principal parametric resonances is obtained for the first mode. When the velocity fluctuation 

amplitude is bigger than 0.14, the system is always unstable for the viscosity coefficient given. The viscosity 

coefficient, μ, is taken 0.8 in Figures 6.  

 

0 40 80 120 160 200



0

0.2

0.4

0.6

0.8

1

v
1

 
Figure 6. Stable and unstable regions for principal parametric resonances with simply supported end conditions: 

ω=2ω1+εσ (      ), ω=2ω2+εσ (      ), ω=2ω3+εσ (      ) 

 

The principal parametric instabilities are plotted in Figure 6 for the first three natural frequencies. The instability 

region for the first natural frequency is the largest and begins at the minimum amplitude of velocity fluctuation 

v1=0.14. The instability region begins at v1=0.18 for the second mode and at v1=0.21 for the third mode in Figure 

6. The narrowest instability region of principal parametric case is obtained at the third mode.  

 

6. CONCLUSIONS 
 

In this paper, the transverse stability of viscoelastic pipes conveying fluid is studied. The pipe whose material is 

modeled by Maxwell viscoelastic model is constituted by Boltzmann’s superposition principle. The fluid velocity 

is assumed to be harmonically changing about a mean velocity. The method of multiple time scale is applied to 

the governing equation. The influence of small fluctuations of fluid velocity on the stability of the pipe is 

investigated. The boundaries separating stable and unstable regions are derived from the solvability conditions. 

The pipes with simple supports are numerically investigated. Principal parametric resonances for any two modes 

are considered in the analyses. A detuning parameter is used to quantify the deviation between the fluctuation 

frequency of the fluid velocity and the sum of two natural frequency or the multiple of a natural frequency. 

 

The instability region occurs while the fluid velocity fluctuation frequency near twice of any natural frequency. 

However, for the case of the frequency close to zero, no instabilities are detected up to the first order 

approximation. The stability boundary is nonlinearly dependent on viscosity coefficient and amplitude of 

fluctuation.  
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