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Abstract. The concept of trapped surfaces introduced by Roger Penrose in
[Phys. Rev. Lett. 14 (1965), 57–59] plays an extremely important role in
cosmology and general relativity. It is considered as a cornerstone for the
achievement of the singularity theorems, the analysis of gravitational collapse,
the cosmic censorship hypothesis, Penrose inequality, etc. In term of mean
curvature vector, a surface in a space-time (or more generally, in a semi-
Riemannian manifold) is marginally trapped if its mean curvature vector is
light-like at each point. In this article, we survey recent classification results
on marginally trapped surfaces from differential geometric viewpoint. Also, we
provide a brief introduction to a closely related subject; namely, the Kaluza-
Klein theory. In the final part, we present several different recent approaches
to the Kaluza-Klein theory without using compactification of the extra dimen-
sions.

1. Black holes and galaxies.

The idea of an object with gravity strong enough to prevent light from escaping
was proposed in 1783 by J. Michell (1724 - 1793), an amateur British astronomer.
In 1795, P.-S. Laplace (1749 - 1823), a French physicist independently came to the
same conclusion. Black holes, as currently understood, are described by Einstein’s
general theory of relativity developed in 1916 (cf. [16]).

This theory predicts that when a large enough amount of mass is present in
a sufficiently small region of space, all paths through space are warped inwards
towards the center of the volume, preventing all matter and radiation within it
from escaping. Einstein’s theory has important astrophysical applications. It points
towards the existence of black holes. In addition, general relativity is the basis of
current cosmological models of an expanding universe.
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According to the American Astronomical Society, every large galaxy has a su-
permassive black hole (∼ 105 - 109 Msun) at its center. The black hole’s mass is
proportional to the mass of the host galaxy, suggesting that the two are linked very
closely.

Black holes can’t be seen, because everything that falls into them, including
light, is trapped. But the swift motions of gas and stars near an otherwise invisible
object allows astronomers to calculate that it’s a black hole and even to estimate
its mass.

The following are six photos of black holes mostly taken from Hubble telescope
and were released by NASA.

Figure 1. Black Hole in Galaxy M87.

Streaming out from the center of the galaxy M87 like a cosmic searchlight is one of
nature’s most amazing phenomena, a black-hole-powered jet of electrons and other
sub-atomic particles traveling at nearly the speed of light. In this Hubble telescope
image, the blue jet contrasts with the yellow glow from the combined light of billions
of unseen stars and the yellow, point-like clusters of stars that make up this galaxy.
Lying at the center of M87, the monstrous black hole has swallowed up matter equal
to 2 billion times our Sun’s mass. M87 is 50 million light-years from Earth.

Credit: Hubble Space Telescope/NASA/ESA.
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Figure 2. An Intermediate-Mass Black Hole in Galaxy M74.

This intermediate mass black hole (∼ 103 - 104 Msun) in galaxy M74 uncovered by
Hubble has a mass of about 10,000 Suns.

Credit: NASA/CXC/UM.

Figure 3. A 300-Million-Solar-Mass Black Hole.

A 3,700-light-year-wide dust disk encircles a 300-million-solar-mass black hole in
the center of the elliptical galaxy NGC7052.
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Figure 4. Two Supermassive Black Holes in Same Galaxy.

This image of NGC6240, a butterfly-shaped galaxy that is the product of the collision
of two smaller galaxies, revealed that the central region of the galaxy (inset) contains
not one, but two active giant black holes.

Figure 5. Our Galaxy Milky Way’s Giant Black Hole.

Recently, using NASA, Japanese, and European X-ray satellites, a team of Japanese
astronomers has discovered that our galaxy’s central black hole let loose a powerful
flare three centuries ago. (Released on April 16, 2008).
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Figure 6. Second Black Hole Found in Milky Way’s Center.

Astronomers think they have found a rare if not unique black hole very near the
center of our galaxy, the Milky Way. This newly detected object appears to be an
intermediate mass black hole, packing about 1,300 solar masses.

2. Space-times.

For physical reasons, a space-time is mathematically defined as a 4-dimensional,
smooth, connected pseudo-Riemannian manifold with a smooth Lorentz metric of
signature (−, +, +,+). By combining space and time into a single manifold, physi-
cists have significantly simplified a large number of physical theories, as well as
described in a more uniform way the workings of the universe at both the super-
galactic and subatomic levels.

Formerly, from experiments at slow speeds, time was believed to be a constant,
which progressed at a fixed rate; however, later high-speed experiments revealed
that time slowed down at higher speeds (with such slowing called “time dilation”).
Many experiments have confirmed the slowing from time dilation, such as atomic
clocks onboard a Space Shuttle running slower than synchronized Earth-bound
clocks. Since time varies, it is treated as a variable within the space-time coordinate
grid, and time is no longer assumed to be a constant, independent of the location
in space.

The geometry of space-time in special relativity is described by the Minkowski
metric on R4. This space-time is called Minkowski space-time E4

1.
Besides Minkowski space-time, there are two other space-times which are of

constant curvature; namely, the de Sitter space-time S4
1 (or dS4 by many physicists)

and the anti-de Sitter space-times H4
1 (or AdS4).

De Sitter space-time can be defined as a hypersurface of Minkowski space. Take
Minkowski space-time E5

1 with the standard metric

g = −dt2 + dx2 + dy2 + dz2,

the de Sitter space-time is the submanifold described by the hyperboloid

−t2 + x2 + y2 + z2 = c2.
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where c is some positive constant. The metric on de Sitter space-time is the metric
induced from the ambient Minkowski metric.

Similarly, an anti de Sitter space-time can be realized as a hypersurface of the
pseudo-Euclidean space E5

2 with index 2 described by

−t2 − x2 + y2 + z2 = −c2.

where c is some positive constant.
Another important cosmological model in general relativity is the Robertson-

Walker space-time described as the warped product:

L4
1(f, c) := (I × S, gc

f ), gc
f = −dt2 + f2(t)gc,(2.1)

where (S, gc) is a 3-dimensional space of constant curvature c. It describes a simply-
connected, homogeneous, isotropic expanding or contracting universe.

Robertson-Walker space-times provide good descriptions of our Universe except
in the earliest and the final era (cf. [25]).

3. Einstein’s general relativity.

The starting point of marginally trapped surfaces and the Kaluza-Klein theory is
the General Relativity Theory of Albert Einstein (1879 – 1955) published in 1916.

Einstein’s General Relativity is the geometrical theory of gravitation, which uni-
fies special relativity and Newton’s law of universal gravitation with the insight
that gravitation is not due to a force but rather is a manifestation of curved space
and time, with this curvature being produced by the mass-energy and momentum
content of the space-time.

Einstein’s general relativity is distinguished from other theories of gravitation
by its use of the so-called Einstein field equations:

Rij − 1
2
Rgij = kTij

to relate mass-energy tensor Tij with Ricci curvature Rij of space-time, where gij

is the metric tensor, R is the scalar curvature, and k is called the Einstein constant
of gravitation.

In a vacuum (a region of space-time with no matter), i.e., Tij = 0, the space-time
is called an Einstein space. In this case, the Ricci tensor Rij is proportional to the
metric tensor gij .

The predictions of general relativity differ significantly from those of classical
physics, especially concerning the passage of time, the geometry of space, the motion
of bodies in free fall, and the propagation of light.

Examples of such differences include gravitational time dilation, the gravitational
redshift of light, and the gravitational time delay. General relativity’s predictions
have been confirmed in all observations and experiments to date.

4. Trapped surfaces.

The concept of trapped surfaces, introduced by Roger Penrose (1931 - ) in 1965
[27] plays extremely important role in general relativity and cosmology.

It is considered as a cornerstone for the achievement of the singularity theorems,
the analysis of gravitational collapse, the cosmic censorship hypothesis, the Penrose
inequality, ... etc.
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In the theory of cosmic black holes, if there is a massive source inside the surface,
then close enough to a massive enough source, the outgoing light rays may also be
converging; a trapped surface. Everything inside is trapped. Nothing can escape,
not even light.

It is believed that there will be a marginally trapped surface, separating the
trapped surfaces from the untrapped ones, where the outgoing light rays are in-
stantaneously parallel. In terms of the mean curvature vector field; a codimension
two surface is marginally trapped if and only if its mean curvature vector field is
light-like at each point on the surface.

The surface of a black hole is the marginally trapped surface. As times develops,
the marginally trapped surface generates a hypersurface in space-time, a trapping
horizon.

Although many physicists are interested in marginally trapped surfaces, almost
no classification results on marginally trapped surfaces are known from differential
geometric point of view until the last few years. Moreover, the issue of differentia-
bility of the boundary of the trapped region is still wide open in general relativity
theory. However, for strictly stable outer marginally trapped surfaces, the following
two results were shown in [2]:

(i) Local existence of a trapping horizon; and
(ii) Outgoing light rays are converging just inside and diverging just outside such

a surface.

5. Cosmic censorship hypothesis.

“Stephen Hawking (1942 - ) and Kip Thorne (1940 - ) firmly believe that infor-
mation swallowed by a black hole is forever hidden from the outside universe, and
can never be revealed even as the black hole evaporates and completely disappears
...” [quoted from Hawking]

In general relativity, the cosmic censorship hypothesis (CCH) is a conjecture
about the nature of singularities in space-time.

Singularities that arise in the solutions of Einstein’s equations are typically hid-
den within event horizons, and therefore cannot be seen from the rest of space-time.
Singularities which are not so hidden are called naked.

5.1. Weak cosmic censorship hypothesis. In 1969, R. Penrose formulated the
weak CCH conjecture:

“No naked singularities other than the Big Bang singularity exist in the uni-
verse.”

This hypothesis is not stated in a completely formal way. In a sense it is more
of a research program proposal: part of the research is to find a proper formal
statement that is physically reasonable and that can be proved to be true or false,
and sufficiently general to be interesting.

It is not difficult to construct space-times which have naked singularities, but
which are not “physically reasonable”; the canonical example is given by H. Reissner
and G. Nordstrom (in 1990’s), which contains a naked singularity.

5.2. Strong cosmic censorship hypothesis. Later, R. Penrose reformulated a
stronger version of the cosmic censorship hypothesis (known as the strong cosmic
censorship hypothesis) to exclude these situations.
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Roughly speaking, the strong CCH asserts that

“No singularity is ever visible to any observer”.

In 1991 John Preskill and Kip Thorne bet against Stephen Hawking that the
original weak hypothesis was false. Due to the special situations just mentioned;
they won the bet for a T-shirt to cover the winner’s nakedness.

Hawking later reformulated the bet to exclude those technicalities.

5.3. Penrose’s inequality. The Penrose inequality is a (conjectured) lower bound
for the total mass of a space-time, provided by the area A of an apparent horizon.

In 1973, R. Penrose presented an argument that the total mass of a space-time
which contains black holes with event horizons of total area A should be at least√

A/16π.
An important special case of this physical statement translates into a very beau-

tiful mathematical inequality in Riemannian geometry known as the Riemannian
Penrose inequality [19].

The Riemannian Penrose inequality was first established by G. Huisken and T.
Ilmanen [19] in 1997 for a single black hole and by H. Bray [3] in 1999 for any
number of black holes.

6. Some classification theorems of marginally trapped surfaces.

In this section we present some classification theorems for marginally trapped
surfaces from differential geometric viewpoint.

6.1. The earlier classification result for marginally trapped surfaces. Let
L : M → E4

s be an isometric immersion from a pseudo-Riemannian surface M into
E4

s. Denote by ∆ the Laplacian on M . Then L : M → E4
s is minimal if and only if

L is harmonic, i.e., ∆L = 0. An immersion L : M → E4
s is called biharmonic if

and only if we have ∆2L = 0 (cf. [4]).
As far as I know, the first classification result on marginally trapped surfaces

from differential geometric viewpoint is related with biharmonic surfaces, which
was obtained as follows by Chen and Ishikawa in [9].

Theorem 6.1. Let L : M → E4
1 be a biharmonic surface in Minkowski space-time

E4
1 with flat normal connection. Then L is marginally trapped if and only if up to

rigid motions of E4
1, L : M → E4

1 is given by

L(u, v) = (ϕ(u, v), u, v, ϕ(u, v)),

where ϕ is proper biharmonic function on M , i.e., ∆ϕ 6= 0 and ∆2ϕ = 0.

6.2. Marginally trapped surfaces with positive relative nullity. For margin-
ally trapped spatial surfaces with positive nullity in the Minkowski space-time E4

1,
we have the following classification result obtained in [12].

Theorem 6.2. Up to Minkowskian motions, there exist two families of marginally
trapped spatial surfaces with positive relative nullity in E4

1:
(1) A surface defined by L(x, y) =

(
f(x), x, y, f(x)

)
, where f(x) is an arbitrary

differentiable function with f ′′(x) being nowhere zero.
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(2) A surface defined by

L(x, y) =

(∫ x

0

r(x)q′(x)dx + q(x)y, y cos x−
∫ x

0

r(x) sin xdx,

y sin x+
∫ x

0

r(x) cos xdx,

∫ x

0

r(x)q′(x)dx + q(x)y

)
,

where q and r are defined on an open interval I 3 0 satisfying q′′(x) + q(x) 6= 0 for
each x ∈ I.

Conversely, every marginally trapped spatial surface with positive relative nullity
in the Minkowski space-time E4

1 is congruent to an open portion of a surface obtained
from the two families.

We also have the following two classification theorems from [12] for marginally
trapped spatial surfaces with positive relative nullity in the de Sitter space-time
S4

1(1) and the anti-de Sitter space-time H4
1 (−1).

Theorem 6.3. Up to rigid motions of S4
1(1), there exist two families of marginally

trapped spatial surfaces with positive relative nullity in the de Sitter space-time
S4

1(1) ⊂ E5
1:

(1) A surface given by

L(x, y) =
(
f(x) cos y, sin x cos y, sin y, cos x cos y, f(x) cos y

)
,

where f is an arbitrary function defined on an open interval I satisfying f ′′+f 6= 0
at each point in I.

(2) A surface given by

L(s, y) =
(
p(s), η1(s), η2(s), η3(s), p(s)

)
cos y

−
(
b−

∫ s

0

r(s)p′(s)ds, ξ1(s), ξ2(s), ξ3(s), b−
∫ s

0

r(s)p′(s)ds
)

sin y,

where b is a real number, p and r are defined on an open interval I 3 0 such that
r is non-constant, η = (η1, η2, η3) is a unit speed curve in S2(1) ⊂ E3 with geodesic
curvature κg = r, and ξ = (ξ1, ξ2, ξ3) is the unit normal of η in S2(1).

Conversely, every marginally trapped spatial surface with positive relative nullity
in the de Sitter space-time S4

1 is congruent to an open portion of a surface obtained
from the two families.

Theorem 6.4. Up to rigid motions of H4
1 (−1) , there exist five families of marginally

trapped spatial surfaces with positive relative nullity in the anti-de Sitter space-time
H4

1 (−1):

(1) L(x, y) =
(
f(x) cosh y, cosh x cosh y, sinh y, sinhx cosh y, f(x) cosh y

)
, where

f(x) is defined on an open interval I such that f ′′(x)− f(x) 6= 0 at each x ∈ I.

(2) L(x, y) =
(
f(x) sinh y, cosh y, cos x sinh y, sin x sinh y, f(x) sinh y

)
, where f(x)

is defined on an open interval I such that f ′′(x) + f(x) 6= 0 at each x ∈ I.

(3) L(x, y) =
(
x2ey, 3ey

2 − 2 sinh y, ey − 2 sinh y, xey, x2ey − ey

2

)
.

(4)L(x, y) =
(
sinh y − x2ey

2 − ey, f(x)ey, xey, f(x)ey, sinh y − x2ey

2

)
, where f(x)

is defined on an open interval I such that f ′′(x) 6= 0 at each x ∈ I.
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(5) A surface defined by

L(s, y) =
(
(p(s), η1(s), η2(s), η3(s), p(s)

)
cosh y

−
(

b−
∫ s

0

r(s)p′(s)ds, ξ1(s), ξ2(s), ξ3(s), b−
∫ s

0

r(s)p′(s)ds

)
sinh y,

where b is a real number, p and r are defined on an open interval I 3 0 such that r
is non-constant, η = (η1, η2, η3) is a unit speed curve in H2(−1) ⊂ E3

1 with geodesic
curvature κg = r, and ξ = (ξ1, ξ2, ξ3) is the unit normal of η in H2(−1).

Conversely, every marginally trapped spatial surfaces with positive relative nullity
in the anti-de Sitter space-time H4

1 is congruent to an open portion of a surface
obtained from the five families.

Remark 1. A conformal representation formula of Weierstrass-Bryant type was
obtained in [1] for the class of marginally trapped surfaces M in the Minkowski
space-time E4

1 which satisfy the following two additional conditions:

(a) M has flat normal connection in E4
1, and

(2) M is locally isometric either to a minimal surface in E3 or to a maximal
surface in E3

1.

6.3. Marginally trapped surfaces in Robertson-Walker space-times. For
marginally trapped surfaces in a Robertson-Walker space-time, we have the follow-
ing [13].

Theorem 6.5. Let L4
1(f, c) = I ×f S be a Robertson-Walker space-time which

contains no open subsets of constant curvature. Then L4
1(f, c) does not admit any

marginally trapped surface M with positive relative nullity.

Remark 2. If we do not assume M to have positive relative nullity, there exist
marginally trapped surfaces in Robertson-Walker space-times of non-constant sec-
tional curvature.

6.4. Boost invariant marginally trapped surfaces in E4
1. The boost group in

E4
1 is defined by

G =








cosh θ sinh θ 0 0
sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1


 : θ ∈ R





.

Recently, marginally trapped surfaces in E4
1 invariant under boost group are

classified by Haesen and Ortega [17].

6.5. Marginally trapped surfaces in strictly stationary space-times. A
space-time is called strictly stationary it contains a Killing vector field which is
time-like everywhere.

Mars and Senovilla [23] proved the following non-existence result for strictly
stationary space-time

Theorem 6.6. There do not exist closed marginally trapped surfaces in strictly
stationary space-times.
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6.6. Some other recent classification results. Recently, together with Van der
Veken we have completely classified in [14] marginally trapped surfaces which lie in
a light cones in Minkowski, de Sitter or anti-de Sitter space-times. In particular, we
proved that such marginally trapped surfaces must have parallel mean curvature
vector.

Completely classification of marginally trapped surfaces with parallel mean cur-
vature vector in Minkowski, de Sitter and anti-de Sitter space-times are also ob-
tained in the same article.

Several families of marginally trapped surfaces in Lorentzian complex space forms
have also been classified recently; namely, we are able to achieve the following:

(a) Classification of marginally trapped surfaces in Lorentzian complex plane C2
1;

(b) Classifications of several families of marginally trapped surfaces in Lorentzian
complex projective plane CP 2

1 and in Lorentzian complex hyperbolic plane CH2
1 .

Some of the results for (b) are joint results with F. Dillen in [8] and with I. Mihai
in [11].

6.7. Two challenging open problems on marginally trapped surfaces. The
following two problems are challenging.

Problem 1. Completely classify marginally trapped surfaces in Minkowski, de Sit-
ter, anti-de Sitter and Robertson-Walker space-times.

Problem 2. Completely classify marginally trapped surfaces in CP 2
1 or in CH2

1 .

7. Unified field theory.

A physical field can be thought of as the assignment of a physical quantity at each
point of space-time. For example, on weather forecasts, the wind velocity during a
day over a country is described by assigning a vector at each point of space (with
moving arrows representing the change in wind velocity during the day).

Unified field theory is an attempt to unify all the fundamental forces (gravita-
tion, electromagnetism, weak interaction, strong interaction) and the interactions
between elementary particles into a single theoretical framework. The term was
coined by Einstein who attempted to reconcile the general theory of relativity with
electromagnetism in a single field theory.

However, Einstein’s attempt was unsuccessful!
There is no accepted unified field theory yet, and this remains an open line of

research.
Einstein’s quest proved elusive and a unified field theory, sometimes referred to

as the

“Theory of Everything”,

has remained the holy grail for physicists, the long-sought theory which would
explain the nature and behavior of all matter.
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8. Maxwell equations.

The Maxwell equations describing electromagnetism can be understood to be
the Hodge equations of circle bundle with fiber U(1), or a principal U(1)-bundle
π : P → M.

The electromagnetic field F is a harmonic 2-form in the space Ω2(M) of differ-
entiable 2-forms on the manifold M . In the absence of charges and currents, the
so-called free-field Maxwell equations are

(8.1) dF = 0 and d∗F = 0

where ∗ is the Hodge star operator.

9. Kaluza-Klein theory.

Shortly after the publication of Einstein’s theory of General Relativity, T. Kaluza
(1885 - 1954) noticed in 1919 that when he solved Einstein’s equations using five
dimensions, Maxwell’s equations for electromagnetism emerged spontaneously.

Kaluza wrote to Einstein who encouraged him to publish. This very influential
Kaluza’s 7 pages paper was published in 1921 ([20]).

In order to explain why the extra 5th dimensional is unobservable, Oskar Klein
(1894 - 1977) suggested in 1926 that this extra 5th dimension would be compactified
and unobservable on experimentally accessible energy scale.

Klein proposed that the 4th spatial dimension is curled up in a circle of very small
radius, so that a particle moving a short distance along that axis would return to
where it began. However, Kaluza and Klein’s work was neglected for many years
as attention was directed towards quantum mechanics.

This idea that fundamental forces can be explained by additional dimensions did
not re-emerge until string theory was developed in 1960’s. This strategy of using
higher dimensions to unify different forces is now a very active area of research in
particle physics (also known as high energy physics).

This idea of compactifying the extra dimension has also dominated the search
for a unified theory and led to many new development in string theory; for instance,
it leads to the 10D string theory and more recently 11D superstring M-theory.
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10. Geometric interpretation of Kaluza-Klein theory.

The Kaluza-Klein theory is striking because it has a particularly elegant pre-
sentation in terms of differential geometry. In a certain sense, it looks just like
ordinary gravity in free space, except that it is phrased in 5D instead of 4D.

To build the Kaluza-Klein theory from differential geometric viewpoint, one picks
an invariant metric on the circle S1 that is the fiber of the U(1)-bundle of electro-
magnetism. An invariant metric g∗ is simply one that is invariant under rotations
of the circle.

Suppose this metric gives the circle S1 a total length Λ, then considers metrics
on the bundle P that are consistent with both the fiber metric, and the metric on
the underlying 4D space-time M so that π : P → M is a Riemannian submersion.

The original Kaluza-Klein theory identifies Λ with the fiber metric g55, and
allows Λ to vary from fiber to fiber. In this case, the coupling between gravity and
the electromagnetic field is not constant, but has its own dynamical field, known
as the radion in physics.

In the formation given above, the extra 5th dimension in Kaluza-Klein theory
can be understood to be the circle group U(1), as electromagnetism can essentially
be formulated as a gauge theory on a circle bundle with gauge group U(1). Once
this geometrical interpretation of Kaluza-Klein theory is understood, it is relatively
straightforward to replace U(1) by a general Lie group. Such generalizations are
often called Yang-Mills theories.

11. Several recent approaches to Kaluza-Klein theory.

In recent years, several different approaches to Kaluza-Klein theory have also
been developed, instead of compactifying the extra dimensions.

11.1. Randall and Sundrum’s approach. There is an approach of Kaluza-Klein
theory proposed by Lisa Randall (1962 - ) and Raman Sundrum (1963 - ). Randall
and Sundrum’s two very influential articles were published in 1999:

1. Large mass hierarchy from a small extra dimension, Phys. Rev. Letters 83
(1999), 3370-3373.

2. An alternative to compactification, Phys. Rev. Letters 83 (1999), 4690-4693.

Randall-Sundrum’s model attempts to address the hierarchy problem:

“Why is gravity so puny, so many billion on billions of times weaker compared
with the other forces-electromagnetism and the weak and strong nuclear forces?”

In Randall-Sundrum’s articles, they suggested that our Universe might have
evolved differently in the beginning than it did later. Rather than invoking super-
symmetry (interchanges bosons and fermions) that argues for the existence of as yet
undetected partners (fermions) to all the known particles. Randall and Sundrum
proposed that gravity could reside on a different brane than ours, one separated
from us by a 5D space-time in which the extra dimension is 10−31 cm wide.

In their model, Randall and Sundrum proposed that all forces and particles stick
to our 3-brane except gravity, which is concentrated on the other brane and is free
to travel between them across space-time. By the time gravity gets to us gravity is
weak; in the other brane it is strong, on a par with the three other forces.
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In Randall-Sundrum’s models, the warping of the extra dimension is analogous
to the warping of space-time in the vicinity of a black hole. This warping, or red-
shifting, generates a large ratio of energy scales so that the natural energy scale at
one end of the extra dimension is much larger than at the other end.

Mathematically, their warping metric tensor is given by

(11.1) g =
1

k2y2
(dy2 +

4∑

ij=1

ηijdxidxj),

where k is some constant and ηij has “−+++” signature. This space has boundaries

at y =
1
k

and y =
1

Wk
, with 0 ≤ 1

k
≤ 1

Wk
where k is around the Planck scale

(1.616× 10−35 m) and W is the warping factor.
The Randall-Sundrum scenario has gained a lot of support since 1999 from

physics community.

11.2. Ideal imbedding of Robertson-Walker space-times. In applications of
the embedding theorems one often starts from a given metric and looks for the
imbedding space with the minimal dimension or one puts restrictions on the source
type.

In [18], S. Haesen and L. Verstraelen provided a different approach by putting
a restriction type of ideal imbedding (in the sense of [7]). They proved that the
de Sitter space-times, a Robertson-Walker space-times and some anisotropic per-
fect fluid metrics can be ideally imbedded in some 5-dimensional pseudo-Euclidean
space.

11.3. Space-time-matter theory. Another variant of Kaluza-Klien theory is the
Space-Time-Matter theory (STM -theory for short) or induced matter theory, chiefly
promulgated by Paul Wesson and other members of the so-called 5D Space-Time-
Matter Consortium.

The Space-Time-Matter theory, introduced by P. Wesson and J. Ponce de Leon
in 1992, tries to give a geometric explanation for the occurrence of matter in our
Universe by referring to a higher dimension.

In this version of the theory, it is noted that solutions to the 5D Ricci-flat
equation:

RAB = 0
may be re-expressed so that in four dimensions, these solutions satisfy Einstein’s
equation:

Rij − 1
2
gijR = kTij

with the precise form of the Tij following from the Ricci-flat condition on the 5D
space. The energy-momentum tensor Tij is normally understood to be due to
concentrations of matter in 4D space.

The above result can be interpreted as saying that

“4D matter is induced from geometry from a Ricci-flat 5D space”.

In the STM -theory, matter is introduced by an extra 5th dimension which is in
some case timelike and in an other spacelike, depending on the 4D metric under
consideration. However, it is inclined in physics to think that matter should be
neither. Therefore, it is natural to seek another approach than STM -theory that if
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the matter is introduced by an extra 5th dimension, the matter would be neutral,
neither space-like nor time-like.

11.4. My own small attempt. In [5], I proved that Robertson-Walker space-times
can be realized as affine hypersurfaces in such way that the induced affine metric
is exactly the Lorentzian metric of the space-times (see [5] for details).

This realization allows us to regard the curved Robertson-Walker space-times in
a flat 5D affine space (instead of a 5D Ricci-flat space via STM -theory).

Via the realizations, matters, if they were induced from the extra dimension will
be neutral, neither space-like or time-like (contrast to STM -theory). Moreover,
the extra 5th dimension is always unobservable since the 5D affine space does not
equip with any metric. This allows us to avoid the compactification of the extra
5th dimension into tiny circle as proposed by O. Klein. Also, the realization allows
us to investigate geometry and physics of space-times using affine invariants.

A natural challenging open question is the following:

Problem 3. How to relate physics qualities with the affine invariants on the space-
time induced from the 5D flat affine space via the realization?

References

[1] Aledo, J. A., Gálvez, J. A. and Mira, P., Marginally trapped surfaces in L4 and an extended
Weierstrass-Bryant representation. Ann. Global Anal. Geom. 28 (2005) , 395–415.

[2] Andersson, L., Mars, M. and Simon, E., Local existence of dynamical and trapping horizons,
Phys. Rev. Letters 95 (2005), 111102-(1-4).

[3] Bray, H., Proof of the Riemannian Penrose inequality using the positive mass theorem, J.
Differential Geom. 59 (2001), 177–267.

[4] Chen, B. Y., A report on submanifolds of finite type. Soochow J. Math. 22 (1996), 117–337.
[5] Chen, B. Y., Realizations of Robertson-Walker space-times as affine hypersurfaces, J. Phys.

A, 40 (2007), 4241–4250.
[6] Chen B. Y., Classification of marginally trapped Lorentzian flat surfaces in E4

2 and its appli-
cation to biharmonic surfaces. J. Math. Anal. Appl. 340 (2008), 861–875.

[7] Chen B. Y., δ-invariants, inequalities of submanifolds and their applications, Topics in Dif-
ferential Geometry (edited by A. Mihai, I. Mihai and R. Miron), Editura Academiei Române,
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