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ABSTRACT

In this paper, we characterize the solutions of the Fischer-Marsden equation L∗g(λ) = 0 on an
almost CoKähler manifold. We prove that the Fischer-Marsden equation has only trivial solution
on almost CoKähler manifold of dimension greater than 3 with ξ belonging to the (κ, µ)-nullity
distribution and κ < 0.
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1. Introduction

LetM denote the set of Riemannian metrics on a compact orientable manifold (Mn, g) of unit volume and g
be a Riemannian metric on Mn. Let g∗ be any symmetric bilinear form on Mn. Then linearization of the scalar
curvature Lg(g∗) is given by

Lg(g∗) = −∆g(trgg
∗) + div(div(g∗))− g(g∗, Ricg),

where ∆g is the negative Laplacian of g and Ricg is its Ricci tensor. The formal L2-adjoint L∗g of the linearized
scalar curvature operator Lg is defined as

L∗g(λ) = −(∆gλ)g +Hessgλ− λRicg,

where Hessgλ(X,Y ) = g(∇XDλ, Y ) for all vector fields X , Y on Mn. Throughout the paper, we refer the
equation

L∗g(λ) = −(∆gλ)g +Hessgλ− λRicg = 0 (1.1)

as Fischer-Marsden equation and a λ satisfying this equation as Fischer-Marsden solution. In [7], Fischer-
Marsden conjectured that:

A compact Riemannian manifold (Mn, g) that admits a non-trivial solution of the equation L∗g(λ) = 0 is
necessarily an Einstein manifold.

The Riemannian metric g satisfying the equation (1.1) must have constant scalar curvature ( [3] and [7],
p.481). In [12], Shen proved that if a 3-dimensional closed manifold (M, g) with positive scalar curvature has
a non trivial solution to the equation L∗g(λ) = 0 then M contains a totally geodesic 2-sphere. It is interesting to
note that in [6], Corvino proved λ is a nontrivial solution of L∗g(λ) = 0 if and only if the warped product metric
g∗ = g − λ2dt2 is Einstein. Further, in [3] and [7] it is proved that " If a complete Riemannian manifold (M, g)
has a non-trivial solution λ of the equation L∗g(λ) = 0, then the scalar curvature r of g is constant". Moreover,
the authors Patra-Ghosh studied contact metrics that satisfy Miao-Tam critical condition [14]. Recently, Y.
Wang [16] studied the gradient Ricci solitons on (κ, µ)-almost CoKähler manifolds and proved that there exist
no gradient Ricci solitons on a (κ, µ)-almost CoKähler manifold of dimension greater than 3 with κ < 0.
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In particular, Patra-Ghosh [22] proved that if a K-contact metric satisfy the Fischer-Marsden equation
then it is Einstein. This result intrigues us to consider the Fischer-Marsden equation to some other class of
almost contact manifolds. So, we consider the Fischer-Marsden equation on almost CoKähler manifold. The
organization of the paper is as follows. In section 2, we recall some basic definitions and formulas. In section
3, we prove that the Fischer-Marsden equation has only the trivial solution within the framework of an almost
CoKähler manifold whose Reeb vector field ξ belongs to the (κ, µ)-nullity distribution with κ < 0.

2. Almost CoKähler manifold

In this section, we recall some basic definitions and formulas on almost CoKähler manifold which we shall
use to prove our results. A (2n+ 1) dimensional smooth manifold M2n+1 is said to be an almost contact
manifold if it admits a (1, 1)-type tensor field ϕ, a unit vector field ξ (called the Reeb vector field) and a 1-form
η such that

ϕ2X = −X + η(X)ξ, η(ξ) = 1, (2.1)

for any vector field X on M2n+1. From (2.1) it is easy to verify that

ϕ(ξ) = 0, η ◦ ϕ = 0. (2.2)

A Riemannian metric g is said to be an associated (or compatible) metric if it satisfies

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),

for all vector fields X , Y on M2n+1. A Riemannian manifold M2n+1 together with an almost contact metric
structure (ϕ, ξ, η, g) is said to be an almost contact metric manifold. For such a manifold, we can always define
a fundamental 2-form Φ by Φ(X,Y ) = g(X,ϕY ) for all vector fields X , Y on M2n+1. An almost contact metric
manifold is said to be an almost CoKähler manifold if both 1-form η and 2-form Φ are closed. An almost contact
metric structure on M2n+1 is said to be normal if the almost complex structure J on M ×R defined by (e.g., see
Blair [2], p.80)

J(X, fd/dt) = (ϕX − fξ, η(X)d/dt),

where f is a real function on M ×R, is integrable. If in addition the almost contact structure is normal, we say
that M2n+1 is a CoKähler manifold. An almost contact metric manifold M2n+1(ϕ, ξ, η, g) is CoKähler if and
only if ∇ϕ = 0 or, equivalently, ∇Φ = 0.

Let M2n+1(ϕ, ξ, η, g) be an almost CoKähler manifold. We now define two operators h and l by h = 1
2£ξϕ

and l = R(., ξ)ξ on M2n+1, where R denotes the curvature tensor and £ is the Lie differentiation. These two
symmetric tensors of type (1, 1) satisfy (e.g.,[17],[18],[19])

hξ = h′ξ = 0, T r h = Tr h′ = 0, hϕ = −ϕh, (2.3)

where h′ = h ◦ ϕ. On an almost CoKähler manifold the following formulas are valid (See [17],[18],[19]):

∇Xξ = h′X = hϕX, (2.4)

ϕlϕ− l = 2h2, (2.5)

for any vector field X on M2n+1; where h′ = h ◦ ϕ and l = R(., .)ξ.

A (κ, µ)-contact metric manifold is a generalization of Sasakian and K-contact manifold. In [4], Blair-
Koufogiorgos-Papantoniou introduced and studied the notion of (κ, µ)-nullity distribution on contact metric
manifolds M2n+1(ϕ, ξ, η, g). A contact metric manifold M2n+1 whose curvature tensor satisfies

R(X,Y )ξ = κ{η(Y )X − η(X)Y }+ µ{η(Y )hX − η(X)hY }, (2.6)

for all vector fields X , Y on M2n+1, where h = 1
2£ξϕ (£ denotes the Lie differentiation of ϕ along ξ) and κ, µ

∈ R is known as (κ, µ)-contact manifold. Several authors study the (κ, µ)-contact metric manifold and obtain
some interesting results (e.g., [15], [14]). On the other way, we say that ξ belongs to (κ, µ)-nullity distribution if
the equation (2.6) hold. When κ, µ are smooth functions, it is said that ξ belongs to the generalized (κ, µ)-nullity
distribution.
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3. Main Results

In this section, we study the Fischer-Marsden equation on an almost CoKähler manifold of dimension
greater than 3 with κ < 0. First of all, we have the following

An almost CoKähler manifold M2n+1(ϕ, ξ, η, g) is said to be a (κ, µ)-almost CoKähler manifold if ξ belongs
to the generalized (κ, µ)-nullity distribution, i.e., ξ satisfies

R(X,Y )ξ = κ{η(Y )X − η(X)Y }+ µ{η(Y )hX − η(X)hY }, (3.1)

for vector fields X , Y on M2n+1 and κ, µ are smooth functions on M2n+1. A proper (κ, µ)-almost CoKähler
manifold is a (κ, µ)-almost CoKähler manifold with κ < 0. For more details, we refer the reader to [20, 18]. The
equation (3.1) gives that l = −κϕ2 + µh. In view of this, the Eq. (2.5) reduces to

h2 = κϕ2. (3.2)

To prove our results we require the following lemma.

Lemma 3.1. (Lemma 4.1 of [16]) Let M2n+1(ϕ, ξ, η, g) be a (κ, µ)-almost CoKähler manifold of dimension greater than
3 with κ < 0. Then the Ricci operator Q of M2n+1 is given by

Q = µh+ 2nκη ⊗ ξ, (3.3)

where κ is a non-zero constant and µ is a smooth function satisfying dµ ∧ η = 0. Moreover, the scalar curvature of
M2n+1 is 2nκ.

Next, by using the Ricci operator shown by the above lemma, we obtain the following result to prove our
main theorem.

Lemma 3.2. Let M2n+1(ϕ, ξ, η, g) be an almost CoKähler manifold of dimension greater than 3 with ξ belonging to the
(κ, µ)-nullity distribution and κ < 0. Then we have

(∇XQ)ξ = 2nκh′X −Qh′X, (3.4)

for any vector field X on M2n+1.

Proof: Replacing ξ by X in (3.3) yields Qξ = 2nκξ. Taking covariant derivative of this along an arbitrary
vector field X on M2n+1 we have

(∇XQ)ξ +Q(∇Xξ) = 2nκ∇Xξ.

Making use of (2.4) we complete the proof.

Now, we deduce the expression of the curvature tensor which will help to prove of our main theorem in this
section.

Lemma 3.3. Let (g, λ) be a non-trivial solution of the Fischer-Marsden equation

− (∆gλ)g +Hessgλ− λRicg = 0, (3.5)

on an almost CoKähler manifold M2n+1(ϕ, ξ, η, g). Then the curvature tensor R on M2n+1 can be expressed as

R(X,Y )Dλ = (Xλ)QY − (Y λ)QX + λ{(∇XQ)Y − (∇YQ)X}
− κ{(Xλ)Y − (Y λ)X}, (3.6)

for all vector fields X , Y on M2n+1, where D is the gradient operator with respect to g.

Proof: Tracing the equation (3.5) and then using the value of scalar curvature (from lemma 3.1) we obtain
4gλ = −κλ. Thus, equation (3.5) can be exhibited as

∇XDλ = λ{QX − κX}, (3.7)
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for any vector field X on M2n+1. Taking covariant differentiation of (3.7) along an arbitrary vector field Y on
M2n+1, we obtain

∇Y (∇XDλ) = (Y λ)QX + λ{(∇YQ)X +Q(∇YX)}
− κ{(Y λ)X + λ∇YX},

for any vector field X on M2n+1. Applying the last equation and (3.7) in the well known expression of the
curvature tensor R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ], we complete the proof.

Finally, we may state our main theorem and present the detailed proof as follows.

Theorem 3.1. The Fischer-Marsden equation has only the trivial solution on almost CoKähler manifold of dimension
greater than 3 with ξ belonging to the (κ, µ)-nullity distribution and κ < 0.

Proof: Taking scalar product of the equation (3.6) with ξ and recalling Qξ = 2nκξ we have

g(R(X,Y )Dλ, ξ) = (2n− 1)κ{(Xλ)η(Y )− (Y λ)η(X)}
+λ{g(Y, (∇XQ)ξ)− g(X, (∇YQ)ξ)}.

Making use of (2.3), (3.4), the last equation reduces to

g(R(X,Y )Dλ, ξ) = (2n− 1)κ{(Xλ)η(Y )− (Y λ)η(X)}
+λ{g(X,Qh′Y )− g(Qh′X,Y )}, (3.8)

for all vector fields X , Y on M2n+1. Moreover, setting X = ϕX and Y = ϕY in the last Eq. and noting that
g(R(ϕX,ϕY )Dλ, ξ) = 0 (it follows from (3.1)) and hϕ = −ϕh we have

λ{g(ϕX,Qh′ϕY )− g(Qh′ϕX,ϕY )} = 0,

for all vector fields X , Y on M2n+1. Making use of (3.3) and hϕ = −ϕh we have λµh2ϕ2X = 0 for any vector
field X on M2n+1. By virtue of (2.1) and (3.2), the last equation gives κ2λµϕ2X = 0 for any vector field X on
M2n+1. Since κ < 0, we have λµ = 0. Thus, we have either µ 6= 0, or µ = 0. First case gives the trivial solution.
Therefore, for later case, we substitute X by ξ in (3.8) and then making use of (2.2), (2.3), Qξ = 2nκξ yields

g(R(ξ, Y )Dλ, ξ) = (2n− 1)κ{(ξλ)η(Y )− (Y λ)},

for any vector field X on M2n+1. Setting X = ξ in the Eq. (3.1) and then taking scalar product of the resulting
Eq. with Dλ and using hξ = 0 gives

g(R(ξ, Y )Dλ, ξ) = κg(Dλ− (ξλ)ξ, Y ) + µg(Dλ, hY ),

for any vector field X on M2n+1. Combining last two equations we have

2nκ(Dλ− (ξλ)ξ) + µhDλ = 0.

In this case µ = 0, so the last Eq. gives κ(Dλ− (ξλ)ξ) = 0. As κ < 0, so from preceding Eq. we infer that
Dλ = (ξλ)ξ. Taking covariant differentiation of the last Eq. along an arbitrary vector field X on M2n+1 together
with (2.1), (2.4) entails that

∇XDλ = X(ξλ)ξ + (ξλ)h′X.

Making use of this in the Eq. (3.7), we can find

λQX = X(ξλ)ξ + (ξλ)h′X + κλX,

for any vector field X on M2n+1. Comparing the value of QX from relation (3.3) and the last Eq., we compute

κλX + (ξλ)h′X − λµhX − 2nκλη(X)ξ +X(ξλ)ξ = 0,

for any vector field X on M2n+1. Tracing this over X we have

(2n+ 1)κλ− 2nκλ+ ξ(ξλ) = 0. (3.9)
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Substituting X by ξ in (3.7) and then taking scalar product with ξ yields ξ(ξλ) = 2nκλ− κλ, which together
with the Eq. (3.9) gives 2nκλ = 0. As κ < 0, from last Eq. we infer that λ = 0. This completes the proof.

Note that if we consider κ and µ as smooth functions instead of constants then, the lemma 3.1 is true for
manifold M2n+1 of dimension greater than or equal to 3 (see [20]) and therefore the scalar curvature of M2n+1

is 2nκ (from lemma 3.1). Since the metric g satisfying the equation (1.1) must have the constant scalar curvature
(see [3] and [7], p.481), we can conclude κ is constant. Hence the lemma 3.2 is also applicable. Then, from
theorem 3.1 we have

Corollary 3.1. Let M2n+1(ϕ, ξ, η, g), n > 1, be a (κ, µ)-almost CoKähler manifold with κ < 0. Then the Fischer-
Marsden equation has only the trivial solution on M2n+1.

Proof: Proceeding same as theorem 3.1, we have λµ = 0. Suppose λ 6= 0 in some open set O of M2n+1. Then
µ = 0 on O. Following the proof of the above theorem we conclude that λ = 0 on O. Hence λ = 0 on M2n+1.
This completes the proof.

Acknowledgments

The author D. S. Patra is financially supported by the Council of Scientific and Industrial Research, India
(grant no. 17-06/2012(i)EU-V).

References

[1] Besse, A., Einstein manifolds. Springer-Verlag, New York, 2008.
[2] Blair, D. E., Riemannian geometry of contact and symplectic manifolds. Birkhauser, Boston, 2002.
[3] Bourguignon, J. P., Une stratifcation de l’espace des structures riemanniennes. Compositio Math., 30 (1975), 1-41.
[4] Blair, D. E., Koufogiorgos, T. and Papantoniou, B. J., Contact metric manifolds satisfying a nullity condition. Israel J. of Math., 91 (1995),

189-214.
[5] Cernea, P. and Guan, D., Killing fields generated by multiple solutions to the Fischer-Marsden equation. International Journal of Math., 26

(2015), 93-111.
[6] Corvino. J., Scalar curvature deformations and a gluing construction for the Einstein constraint equations. Commun. Math. Phys., 214

(2000), 137-189.
[7] Fisher A. and Marsden. J., Manifolds of Riemannian metrics with prescribed scalar curvature. Bull. Am. Math. Soc., 80 (1974), 479-484.
[8] Kobayashi, O., A Differential Equation Arising From Scalar Curvature Function. J. Math. Soc. Japan, 34 (1982), 665-675.
[9] S. B. Myers: Connections between differential geometry and topology. Duke Math. J., 1 (1935), 376-391.

[10] Obata, O., Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan, 14 (1962), no. 3, 333-340.
[11] Olszak, Z., On contact metric manifolds. Tohoku Math. J., 31 (1979), 247-253.
[12] Shen, Y., A note on Fischer-Marsden’s conjecture. Proc. Am. Math. Soc., 125 (1997), 901-905.
[13] Tanno, S., The topology of contact Riemannian manifolds. Illinois J. Math., 12 (1968), 700-717.
[14] Patra, D. S. and Ghosh, A., Certain contact metrics satisfying Miao-Tam critical condition. Ann. Polon. Math., 116 (2016), no. 3, 263-271.
[15] Sharma, R., Certain results on K-contact and (k, µ)-contact manifolds. J. Geom., 89 (2008), no. (1-2), 138-147.
[16] Wang, Y., A Generalization of the Goldberg Conjecture for CoKähler Manifolds. Mediterr. J. Math., 13 (2016), 2679-2690.
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