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ABSTRACT

Consider three concentric ellipses E i, i = 1,2,3, each defined by a pair of conjugate semi–diameters
taken from a given bundle of three coplanar line segments (where only two of them are permitted
to coincide). In a proof by G. A. Peschka of the Karl Pohlke’s Fundamental Theorem of Axonometry,
a parallel projection of a sphere onto a plane, say E, is adopted to show that a new concentric (to
E i) ellipse E exists, “circumscribing” all E i, i.e. E is simultaneously tangent to all E i⊂E, i = 1,2,3.
Motivated by the above, this paper investigates the plane–geometric problem of determining all
the existing circumscribing ellipses (like E) of E i, i = 1,2,3, exclusively from the Analytic Plane
Geometry’s point of view (unlike the sphere’s parallel projection that requires the adoption of a
three–dimensional space). It is proved that, at most, two circumscribing ellipses (of E i) exist. One
of them is always existing while, under certain conditions, another circumscribing ellipse (of E i),
say E∗ ( 6=E), can also exist. Moreover, in case this second circumscribing ellipse E∗ does not exist,
then a hyperbola (concentric to E i) exists instead, and is (simultaneously) tangent to all E i, i = 1,2,3.
The above results and their calculations are demonstrated by various examples and figures.
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1. Introduction

This work is motivated by a work of Müller and Kruppa [4], where they suggested a proof (out of many in
the literature) of Karl Pohlke’s Theorem, also known as the Axonometry’s Fundamental Theorem. Recalling
Pohlke’s Theorem, we consider a bundle of three arbitrary chosen coplanar line segments, say OP, OQ and
OR, where only one of them can be of zero length (non–degenerated segments). Under the assumption that
the points O,P,Q,R∈E are not collinear (belonging to a plane E), their corresponding line segments, as above,
can always be considered as parallel projections of three other line segments of the three–dimensional space,
say O∗P∗, O∗Q∗ and O∗R∗ respectively, having equal length and being orthogonal with each other; see Fig. 1.
The orthogonal projection can also be considered as a special case of the above parallel projection. For further
reading about Pohlke’s Theorem see also [1] and [6].

The specific method in [4] of the proof of Pohlke’s Theorem (which consists of finding the orthogonal
segments O∗P∗, O∗Q∗ and O∗R∗) is based on the adoption of a parallel projection, say P , applied on an
appropriate sphere S onto plane E (on which OP, OQ and OR lie). The following property of three concentric
ellipses (proven through the use of P ) is stated here as a Proposition, [4, pg. 244]:

Proposition 1.1. Consider four non–collinear points O,P,Q,R on a plane, forming a bundle of three line segments
OP, OQ and OR, where only two of them are permitted to coincide. If the pairs (OP,OR), (OQ,OR) and (OP,OQ) are
considered to be pairs of conjugate semi–diameters defining the ellipses, say E1, E2 and E3 respectively, then a new ellipse
E (concentric to E i) exists and is tangent to all E i, i = 1,2,3.

The use of sphere, for the proving of the above, appears for the first time in a work by J. W. v. Deschwanden
and subsequently by G. A. Peschka in his elementary proof of Pohlke’s Fundamental Theorem of Axonometry;
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Figure 1. Parallel projection for the Pohlke’s Theorem.

see [5]. Under this parallel projection P , a cylindrical surface is created, tangent to sphere S and around its
maximum circle, say k⊂S; see Fig. 2. Hence, k is the contour of sphere S through P , and it is parallel–projected
(via P ) onto an ellipse E of plane E, while the orthogonal line segments O∗P∗, O∗Q∗ and O∗R∗ are parallel–
projected onto radii OP, OQ and OR of the ellipses E i, i = 1,2,3. Therefore E is circumscribing all E i, i = 1,2,3.
According to proof of Proposition 1.1, these ellipses are defined by three pairs of conjugate semi–diameters, or
conjugate radii, (OP,OR), (OQ,OR) and (OP,OQ) respectively, which are parallel projections, through P , of the
corresponding three maximum circles on sphere S. These maximum circles belong to planes (perpendicular to
each other) spanned, respectively, by {O∗P∗,O∗R∗}, {O∗Q∗,O∗R∗} and {O∗P∗,O∗Q∗}. Figure 2 demonstrates
the above projections (used by G. A. Peschka) for the proof of Proposition 1.1.

Figure 2. Pohlke’s Theorem through a parallel–projected sphere onto plane E.

One can notice that the problem in Proposition 1.1 is, by its nature, a plane–geometric (two–dimensional)
problem. Moreover, the question of how many common tangent ellipses circumscribing all E i (like E) exist, is
open. The problem, of finding the E i’s “circumscribing” ellipse E is the problem of finding a “common tangential
ellipse” (c.t.e.) E of all the ellipses E i, i = 1,2,3. A visualization of a c.t.e. is given in Fig. 3. For the topic of
concentric circumscribing (tangent) ellipses see [2] among others.

The present paper, in particular, provides a thorough investigation of the the two–dimensional problem of
finding a c.t.e. of three given concentric ellipses is addressed, where each of these three ellipses is defined by
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Figure 3. A common tangential ellipse E of all E i , i = 1,2,3.

two conjugate radii which belong to a given bundle of three (coplanar) non–degenerated line segments (where
only two of them can coincide). Useful formulas are also provided and various examples demonstrate the
results. Note that Lefkaditis et al. in [3] proposed a construction method of an enveloping ellipse E utilizing
Synthetic Projective Geometry of the Plane. Furthermore, we present also a method which provides (not
some but) all the existing common tangential ellipses of E i, i = 1,2,3. In fact, it is proved that at, most, two
common tangential ellipses can exist. One of them always exists (as it is also expected from the sphere’s
parallel projection P ) while, under certain assumptions, one more c.t.e., say E∗ ( 6= E), can also exist. It is
worth mentioning that, when there is only one c.t.e. of E i (meaning that a second c.t.e. ellipse E∗ does not
exists), then a common tangential hyperbola exists instead, i.e. a hyperbola (concentric to E and E i) which is
(simultaneously) tangent to all E i, i = 1,2,3.

Affine transformations play a key role in this investigation. A study of certain affine transformations is
carried out in Section 2, that helps simplify the corresponding formulations. In Section 3, these transformations
first apply for the special case where one of the ellipses E i is assumed to be a circle, and then the investigation
is generalized for the case where all E i are ellipses in general.

2. Ellipse as an Affinic Circle

In this section, a certain affine transformation is studied transforming circles into ellipses, which is needed for
the development of our study in Section 3. Firstly, we consider the following preliminary Lemma concerning
the rotation of an ellipse around its center.

Lemma 2.1. Let E be an ellipse with principal radii 0 < b < a, centered at the origin O of an orthonormal coordinate
system. The analytical expression of the rotated ellipse Eθ by an angle θ∈[−π, π] around its center O, is then given by

Eθ :
(
a2 sin2θ+b2 cos2θ

)
x2 − (

a2 −b2)
(sin2θ)xy+ (

a2 cos2θ+b2 sin2θ
)
y2 = a2b2. (2.1)

Proof. Consider the canonical form of E : (x/a)2 + (y/b)2 = 1. Then, the result is obtained through the affine
transformation (rotation) Rθ defined by x′ = Rθ(x) := Rθx, where x := (x, y)T ∈R2×1 and x′ := (x′, y′)T ∈R2×1

denote the coordinates’ vectors of points X and X ′, while

Rθ :=
(
cosθ −sinθ
sinθ cosθ

)
∈R2×2

⊥ , (2.2)

is the usual rotation (orthonormal) matrix which defines the rotation X ′ := Rθ(X ) of the Euclidean plane R2 by
an angle θ around its origin O. Thus, applying Rθ to the matrix form of ellipse E, i.e. E : axT = 1, a := (a,b)∈R2,
we obtain the rotated ellipse Eθ := Rθ(E), expressed by (2.1).
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A given circle can be transformed into an ellipse through an axis–invariant affine transformation which
shall be called “axis shear”. Specifically, we shall call “x–shear” the axis shear that preserves the horizontal axis
x′Ox of an given coordinate system (c.s.), while ”y–shear” shall be called the axis shear which preserves the
corresponding c.s.’s vertical axis y′Oy. Hence, the y–shear transforms the orthonormal vector base B = {e1,e2}
into B′ = {u,e2}, while the x–shear transforms the vector base B into B′ = {e1,u}, u∈R2×1 \ {0}, where e1 and
e2 denote the usual orthonormal vectors e1 := (1,0)T and e2 := (0,1)T of R2. Note that the c.s. spanned by the
vector base B is an orthonormal c.s. (o.s.c.). The vector u 6= 0 shall be called as the “shearing vector”, while
the u’s angle (with respect to the adopted o.c.s.) ω := ](e1,u) ∈ (−π, π) shall often be called as the “shearing
angle”. In particular, the x–shear, say Sx, is an affine transformation defined through its matrix representation
x′ = Sx(x) :=Nxx where the transformation matrix Nx is given by

Nx = (e1,u) :=
(
1 ucosω
0 usinω

)
, (2.3)

with ω∈ (−π, π) being the shearing angle of the x–shear Sx. Respectively, the y–shear, say Sy, is defined by
x′ = Sy(x) :=Nyx, where the transformation matrix Ny is given by

Ny = (u, e2) :=
(
ucosω 0
usinω 1

)
, (2.4)

with ω∈(−π, π) being the corresponding Sy’s shearing angle, which is the same as in (2.3) (as Sy is referring to
the same sharing vector u as Sx). The x–, or y–sears, are therefore completely defined through a given shearing
vector u ∈R2×1, i.e. by its length u ∈R+, and its angle ω∈(−π, π) (with respect to some c.s.).

For the ellipse derived from a y–shear of a circle we consider the following. Note that with the term “directive
angle” of an ellipse we shall refer hereafter to the angle formed by the ellipse’s major axis with respect to the
horizontal x′Ox axis of an adopted c.s. In general, the directive angle of an ellipse with respect to a given line
shall refer to the angle between the ellipse’s major axis and this given line.

Lemma 2.2. Let C be a circle of radius ρ > 0 centered at the origin O (of an o.c.s.). The y–sheared circle Sy(C) corresponds
to an ellipse, centered also at the origin O, with analytical expression

Sy(C) :
(
1+u2 sin2ω

)
x2 −u2(sin2ω)xy+u2 (

cos2ω
)

y2 = ρ2u2 cos2ω. (2.5)

where u > 0 and ω∈[−π, π] are the corresponding Sy’s shearing vector length and angle. The principal radii 0 < b < a of
Sy(C) are given by

a,b =
p

2ρu|cosω|√
u2 +1±

p
u4 +1−2u2 cos2ω

, (2.6)

where the minus sign corresponds to the major radius a while the plus sign to the minor radius b. Note that the surface
area of Sy(C) adopts the compact form A = πuρ2|cosω|. Moreover, it holds that |ω| < |θ| where θ is the directive angle of
the ellipse Sy(C), which is given through the Sy(C)’s major axis slope tanθ, by

tanθ = u2 sin2ω

u2 cos2ω−1+
p

u4 +1−2u2 cos2ω
. (2.7)

Proof. For the y–shear Sy, defined by x′ = Sy(x) :=Nyx, with transformation matrix Ny as in (2.4), we have that
x= S−1

y (x′)=N−1
y x′, i.e. (

x
y

)
=: x=N−1

y x′ =
(
(ucosω)−1 0
−tanω 1

)(
x′
y′

)
=

 x′
ucosω

y′− x′ tanω

 , (2.8)

and thus the matrix representation form C : xTx = ρ2 of the circle C : x2 + y2 = ρ2 implies that Sy(C) :
x′T(N−1

y )TN−1
y x′ = ρ2 or, equivalently, Sy(C) : xT(N−1

y )TN−1
y x = ρ2 (as Sy(C) is referred again to the adopted

o.c.s.). Therefore, Sy(C) : x2 + u2(ycosω− xsinω)2 = ρ2u2 cos2ω, and hence (2.5) is obtained. The ellipse Sy(C)
is centered also at the origin O. This is true because x– and y–shears preserve the center O as it belongs both to
the preserved coordinates’ axes x′Ox and y′Oy.

In order to obtain the principal radii 0 < b < a, the ellipse Sy(C) has to be rotated by its directive angle, say
θ, around its center O until its canonical form is obtained (on the adopted o.c.s.), i.e. until Sy(C) is transformed
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into E y : x̃TD̃x̃ = 1, x̃∈R2×1, where D̃∈R2×2
diag is a real diagonal 2×2 matrix. For this purpose, we consider the

rotation transform
x̃= Rθ(x) :=Rθx, x∈R2×1, (2.9)

with rotation matrix Rθ∈R2×2
⊥ as in (2.2), that provides the ellipse Sy(C), as in (2.5), from its requested canonical

form E y : x̃TD̃x̃= 1, i.e. Rθ(E y)= Sy(C) or E y = R−1
θ

(
Sy(C)

)
. Recall the matrix representation of the ellipse Sy(C)

(mentioned earlier), i.e.
Sy(C) : xTNx= ρ2, N := (N−1

y )TN−1
y ∈R2×2

sym. (2.10)

Then, (2.9) implies that x=R−1
θ

x=RT
θ
x̃=R−θx̃, and by substitution to (2.10), it holds that

E y = R−1
θ

(
Sy(C)

)= (
R−1
θ ◦Sy

)
(C) : x̃TR−θNRθx̃= ρ2. (2.11)

Recall that the inverse of an orthogonal matrix equals to the transpose of the matrix, i.e. M−1 =MT for M∈Rn×n
⊥ ,

n ∈N. By orthogonal decomposition of the symmetric matrix N ∈R2×2
sym we obtain that N = VDVT, where

D := diag(d1,d2)∈R2×2
diag is the spectral matrix of N (i.e. the diagonal 2×2 matrix of the eigenvalues d1 and

d2 of N) and V∈R2×2
⊥ is the orthonormal 2×2 matrix of the eigenvectors corresponding to eigenvalues d1 and

d2. Thus, D=VTNV, and by setting Rθ :=V (i.e. we adopt as orthonormal rotation matrix Rθ the (orthonormal)
eigenvalues matrix V), the relation (2.11) implies the canonical form of Sy(C), i.e. E y : x̃T (

ρ−2D
)
x̃ = 1. Hence,

the major and minor radius of the ellipse E y : (d1 x̃/ρ)2 + (d2 ỹ/ρ)2 = 1 (which are the same for the rotated ellipse
Sy(C)) are then given by a = ρ/

√
max{d1,d2} and b = ρ/

√
min{d1,d2} respectively.

The eigenvalues d1 and d2 of the symmetric matrix N can be calculated through the roots of the N’s
characteristic polynomial PN(d) := |N−dI2|, d∈R, i = 1,2, where I2 being the unitary 2×2 matrix. After some
algebra, we derive that

di = sec2ω

2u2

[(
u2 +1

)+ (−1)i−1
√

u4 +1−2u2 cos2ω
]

, i = 1,2, (2.12)

with 0< (u2−1)2 = u4−2u2+1< u4+1−2u2 cos2ω for every u > 0, and therefore, the requested major and minor
radius of the ellipse Sy(C) correspond to the eigenvalues d2 and d1 respectively (as d1 > d2), and hence given
by (2.6).

Moreover, the non–unitary orthogonal eigenvectors vi = (vi;1,vi;2)T∈R2×1 that correspond to its eigenvalues
di, i = 1,2, i.e. V= (v1,v2)∈R2×2

⊥ , are then calculated through (2.12) and (after some algebra), are found to be

vi =
(
−u2 +1−2u2 cos2ω+ (−1)i−1

p
u4 +1−2u2 cos2ω

u2 sin2ω
,1

)T

, i = 1,2.

Hence, as the major radius a corresponds to the eigenvalue d2 (shown earlier), the directive angle θ of the
ellipse Sy(C) is then of the form θ =∠(e1,v2)= arctan(v2;2/v2;1) and it is given by (2.7).

Notice also the fact that the assumption tanθ < tanω yields, through (2.7), that u2 +1 >
p

u4 +1−2u2 cos2ω,
for ω> 0, which cannot hold (as it would then implies that cos2ω< 0). Therefore, it holds that tanθ > tanω when
ω> 0 while, similarly, tanθ < tanω when ω< 0. Hence |θ| > |ω|.

Working similarly for the x–shear of the circle C, the following holds.

Lemma 2.3. Let C be a circle of radius ρ > 0 centered at the origin O (of an o.c.s.). The x–sheared circle Sx(C) corresponds
to an ellipse, centered also at the origin O, with analytical expression

Sx(C) : u2 (
sin2ω

)
x2 −u2(sin2ω)xy+ (

1+u2 cos2ω
)

y2 = ρ2u2 sin2ω. (2.13)

where u > 0 and ω∈ [−π, π] are the corresponding shearing vector’s length and angle. The principal radii 0 < b < a of
Sx(C) are given by

a,b =
p

2ρu|sinω|√
u2 +1±

p
u4 +1+2u2 cos2ω

, (2.14)

where the minus sign corresponds to the major radius a while the plus sign to the minor radius b. Note that the surface
area of Sx(C) adopts the compact form A = πuρ2|sinω|. Moreover, it holds that |ω| > |θ| where θ is the directive angle of
the ellipse Sx(C), which is given, through the Sx(C)’s major axis slope tanθ, by

tanθ = u2 sin2ω

1+u2 cos2ω+
p

u4 +1+2u2 cos2ω
. (2.15)
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Proof. Similarly to the proof of Lemma 2.2, the x–shear transformation Sx, is defined by the matrix relation
x′ = Sx(x) := Nxx with transformation matrix Nx as in (2.3). Thus, we obtain Sx(C) : xT(N−1

x )TN−1
x x = ρ2, from

which we derive the analytical expression (2.13).
The eigenvalues d1 and d2 of the symmetric matrix N := (N−1

x )TN−1
x ∈R2×2

sym are calculated (after some algebra)
as

di = csc2ω

2u2

[
u2 +1+ (−1)i

√
u4 +1+2u2 cos2ω

]
, i = 1,2, (2.16)

with 0< (
u2 −1

)2 = u4−2u2+1< u4+1+2u2 cos2ω for every u > 0, and therefore the requested major and minor
radius of the ellipse Sx(C) are correspond to the eigenvalues d2 and d1 respectively (as d2 < d1), i.e. a = ρ/

√
d2

and b = ρ/
√

d1, which are given by (2.14).
Moreover, the non–unitary orthogonal eigenvectors vi = (vi;1,vi;2)T∈R2×1 that correspond to its eigenvalues

di, i = 1,2 are then calculated through (2.16) and (after some algebra), are found to be

vi =
(
−1+2u2 cos2ω+ (−1)i−1

p
u4 +1+2u2 cos2ω

u2 sin2ω
,1

)
, i = 1,2.

Hence, as the major radius a corresponds to the eigenvalue d2, the directive angle θ of the ellipse Sx(C) is then
of the form θ =∠(e1,v2)= arctan(v2;2/v2;1) and it is given by (2.15).

Notice that the assumption tanθ > tanω > 0 yields, through (2.15), that u2 −1 >
p

u4 +1+2u2 cos2ω which
cannot hold (as it then yields that cos2ω< 0). Therefore, tanθ < tanω for ω> 0, and respectively, tanθ > tanω for
ω< 0, i.e. |θ| < |ω|.

The following example clarifies the x– and y–shear transformations of a circle, which provides two ellipses
having a common radius. It is also the basis for some other examples provided hereafter.

Example 2.1. Let C be a circle of radius ρ := 10 centered at the origin O of an o.c.s. spanned by the orthonormal
vector base B = {e1,e2}, and its points P,Q∈C, with P(ρ,0), Q(0,ρ), which define C’s orthogonal radii OP and
OQ. These radii can be considering as C’s trivially conjugate radii, with OP⊥OQ and |OP| = |OQ| = ρ = 10. Let
also a third point R with |OR| = r := 15 and angle ](e1,OR)=ω :=π/6 (= 30◦).

The y–shear transformation Sy which transforms point P(ρ,0)∈C into R while preserves point Q∈C, is the
one having shearing vector u= ρ−1OR (of length u = |u| = r/ρ = 3/2 and angle ω= π/6). Indeed, it can be shown
through (2.4) that Sy(Q) = Q and Sy(P) = R, with u and ω values as above. Therefore, the y–sheared circle
corresponds to a concentric ellipse, say E y := Sy(C), for which OR and OQ are its two conjugate radii. The
conjugality of radii OP and OQ is derived from the fact that the y–shear (as well as x–shears) is, in principle, an
affine transformation and, as such, it preserves the parallelism on the plane; see Fig. 4 where the circumscribing
square frame of the circle C is transformed through Sy into a parallelogram circumscribing E y = Sy(C).

Working similarly, the x–shear transformation Sx which transforms Q(ρ,0) ∈C into R while preserves point
P ∈C, is the one having the same shearing vector u as Sy. From (2.3), it holds that Sx(Q) = R and Sx(P) = R.
Thus, the x–sheared circle corresponds to a concentric ellipse, say Ex := Sx(C), for which OR and OP are its two
conjugate radii; see also Fig. 4.

Therefore, the given bundle of the three line segments OP, OQ and OR corresponds to a bundle of three
common (conjugate per pair) radii which define the ellipses Ex, Ey and, trivially, the circle C. In particular, we
may write: Ex = Ex(OP,OR), E y = E y(OQ,OR) and C = C(OP,OQ), meaning that Ex is defined by (its conjugate
radii) OP and OQ, E y is defined by QP and OR, while C is trivially defined by OP and OQ. Figure 4 provides
again a clarification of the above discussion.

For the specific example, the analytical expression of ellipse E y is of the form E y : 25x2−18
p

3xy+27y2 = 2700,
due to (2.5) where it was set u := 3/2, while its principal radii 0 < by < ay are given by ay = 5

2

√
26+2

p
61 ≈

16.1285 and by = 5
2

√
26−2

p
61 ≈ 8.0543, through (2.6). From (2.7), E y’s directive angle θy is then given by

θy = arctan
{p

3
27

(
2
p

61−1
)}≈ 43.1648◦.

The analytical expression of the ellipse Ex is of the form Ex : 9x2 − 18
p

3xy + 43y2 = 900, due to (2.13)
where was also set u := 3/2, while its principal radii 0 < bx < ax are given by ax = 5

2
(p

19+p
7
) ≈ 17.5116

and bx = 5
2
(p

19−p
7
) ≈ 4.2829, through (2.14). From (2.15), the Ex’s directive angle θx is given by θx =

arctan
{p

3
27

(
2
p

133−17
)}≈ 21.2599◦.

Figure 4 visualizes exactly Example 2.1 by depicting the circle C together with its x– and y–shears, i.e. the
ellipses Ex = Sx(C) and E y = Sy(C). The Sx and Sy axis shears (of shearing vector u= ρ−1OR) are also illustrated
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by presenting the square frame around C and its transformed parallelograms, through Sx and Sy, around the
ellipses Ex and E y respectively. The corresponding foci Fx and Fy are also depicted.

Figure 4. Circle C and its x– and y–shears Ex and E y.

3. Common Tangential Ellipses

In this section we deliver the main results addressing the problem of finding a common tangential ellipse
around three given“mutually conjugate” ellipses which are described as follows:

Definition 3.1. Three concentric and coplanar ellipses shall called mutually conjugate (with each other) when
each of them is defined by a pair of two conjugate radii taken from a bundle of three given (non–degenerated)
line segments, where only two of these segments are permitted to coincide. These line segments as above shall
called as the three mutually conjugate radii corresponding to the three mutually conjugate ellipses.

Recall Example 2.1 where Ex, E y and C (all centered at O) are indeed three mutually conjugate ellipses
defined by their three given mutually conjugate radii OP, OQ and OR, such that Ex := Ex(OP,OR), E y :=
E y(OQ,OR) and C := C(OP,OQ). Furthermore, we shall extend our investigation, in the sense that we shall
derive (not one but) all the common tangential ellipses (of three given mutually conjugate ellipses) that can
exist. This Section is divided into two sub–Sections regarding the following cases:

• The orthogonal case, in which the existence of the common tangential ellipses of a given circle and two
ellipses, mutually conjugate with each other, is investigated, and

• The general case, based on the orthogonal one, where the existence of the common tangential ellipses
around three given non-circular mutually conjugate ellipses is examined.

Before these subs–Sections we state and prove the following Lemma which is needed for our study. This
Lemma investigates the form of a “tangential ellipse” of a given ellipse E, i.e. a concentric (to E) ellipse, say
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E, which is tangent to E. The ellipses E and E are then intersect with each other at two (in total) distinct
diametrical (contact) points, on which their corresponding two tangent lines coincide.

Lemma 3.1. Consider a tangential ellipse E of a given ellipse E and θ∈[−π, π] be a given angle between the major axes
of E and E. When E’s minor radius b̄ is given, then its corresponding major radius ā satisfies the relation

Aā4 +Bā2 +C = 0, (3.1)

where

A := 4b̄2λ−2 (
b̄2 −a2)

cos2θ+4a2 b̄2 (
λ−2 −1

)
cos4θ, (3.2a)

B := a2 b̄4 (
1−λ−2)

cos2 2θ+2b̄2 (
a4 −λ−2 b̄4)

cos2θ+2b̄2
[
a4 +λ−2 b̄4 −a2 b̄2 (

1+λ−2)]
, (3.2b)

C := a2 b̄6 (
1−λ−2)

sin2 2θ+4a2 b̄4 (
a2 − b̄2)

sin2θ, (3.2c)

with 0 < b < a being the E’s given principal radii and λ being its corresponding aspect ratio, i.e. λ := b/a. The analytical
expression of the requested E, on an o.c.s. spanned by the principal axes of the given ellipse E, is then formulated by

E :
(
ā2 sin2θ+ b̄2 cos2θ

)
x2 − (

ā2 − b̄2)
(sin2θ)xy+ (

ā2 cos2θ+ b̄2 sin2θ
)

y2 = ā2. (3.3)

Proof. We consider the ellipse E centered at the origin O of an o.c.s. which is spanned by its principal axes, i.e.
the E’s major and minor axis are form, respectively, the o.c.s.’s horizontal and vertical axis. Hence, the ellipse
E (in this o.c.s.), adopts its canonical form

E : (x/a)2 + (y/b)2 = 1. (3.4)

The tangential ellipse E of E, which (its major axis) forms a given angle θ with (the major axis of) E, adopts
two diametrical points P and P ′ in common with E. Therefore, E can be expressed in the form of the ellipse
(centered at the origin O) as in (2.1), and thus (3.3) holds, with 0 < b̄ < ā being the E’s principal radii. Notice
that θ is indeed the directive angle of E (with respect to the adopted o.c.s. as above) as it coincides with the
given angle θ between the major axes of E and E).

Assumed now that the E’s minor radius b̄ is given, we shall provide in the following the E’s major axis ā, and
thus the tangential ellipse E of a given ellipse E (in the direction of the given angle θ) can then be calculated
easily though (3.3). Let λ := b/a and λ̄ := b̄/ā be the aspect ratios of the ellipses E and E respectively. We consider
the contact point P(x0, y0)∈E∩E which lies on the o.c.s.’s upper semi–plane, i.e. y0 ≥ 0. Solving (3.4) and (3.3),
with respect to y, we obtain

y0 = yE(x0) := λ

√
a2 − x2

0, x0∈[−a, a], and (3.5a)

y0 = yE(x0) :=
1
2
(
λ̄−2 −1

)
x0 sin2θ+ λ̄−1

√
λ̄−2 b̄2 cos2θ+ b̄2 sin2θ− x2

0

λ̄−2 cos2θ+sin2θ
, (3.5b)

where, for the latter function yE(x0), it is assumed that x0 ∈ [−t, t] with the value t := b̄2 (
λ̄−2 cos2θ+sin2θ

)
.

Equating the right–hand side of (3.5a) and (3.5b), it holds that

λK
√

a2 − x2
0 = Lx0 + λ̄−1 b̄2

√
K − x2

0, (3.6)

where

K := λ̄−2 b̄2 cos2θ+ b̄2 sin2θ = b̄2
[
1+ (

λ̄−2 −1
)
cos2θ

]
> 0 and (3.7a)

L := 1
2 b̄2 (

λ̄−2 −1
)
sin2θ = (

K − b̄2)
tanθ. (3.7b)

In order the curves y = yE(x) and y = yE(x), as defined in (3.5a) and (3.5b), to be tangent to each other at their
common point P(x0, y0) (and hence to have a common tangent line on P), the derivatives of yE = yE(x) and
yE = yE(x) must coincide at x = x0 with x0 satisfying (3.6). The derivative of (3.6), with respect to x = x0, yields

λK
x0√

a2 − x2
0

=−L+ b̄2 x0

λ̄
√

K − x2
0

. (3.8)
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Solving (3.6) and (3.8) in terms of
√

K − x2
0, we get

λλ̄K
b̄2

√
a2 − x2

0 −
Lλ̄x0

b̄2
=

√
K − x2

0 =
λ̄−1 b̄2x0

√
a2 − x2

0

λK x0 +L
√

a2 − x2
0

. (3.9)

By multiplication of the left and right side of (3.9), we obtain the squared middle expression of (3.9) of the form

K − x2
0 =

(
λK

√
a2 − x2

0 −Lx0

)
x0

√
a2 − x2

0

λK x0 +L
√

a2 − x2
0

or

√
a2 − x2

0 =λ
a2 −K

L
x0. (3.10)

Moreover, relation (3.8) can be written as

λK x0 +L
√

a2 − x2
0 = λ̄−1 b̄2x0

√√√√a2 − x2
0

K − x2
0

,

and applying (3.8) to the left hand side of the above we get

λλ̄a2
√

K − x2
0 = b̄2

√
a2 − x2

0, (3.11)

while substituting (3.6) again to the right–hand side of (3.11), we obtain√
K − x2

0 =
b̄2

Lλ̄a2

(
a2 −K

)
x0. (3.12)

Applying (3.10) and (3.12) into (3.6) we have [Kb2 − (
λ̄−1 b̄2)2]

(
a2 −K

)= L2a2, and using (3.7b),

λ2a2K −λ2K2 − (
λ̄−1 b̄2)2 + (

λ̄−1 b̄2a−1)2
K = (

K2 −2Kb̄2 + b̄4)
tan2θ, (3.13)

i.e.
K2b2 (

1+λ−2 tan2θ
)−K

[(
λ̄−1 b̄2)2 +a2b2 +2a2 b̄2 tan2θ

]
+a2 b̄4 (

λ̄−2 + tan2θ
)= 0. (3.14)

Finally, by substitution of (3.7a) into the above (3.14) we obtain the biquadratic polynomial relation (3.1) with
respect of E’s requested major radius ā.

3.1. The orthogonal case

We consider the following lemma which investigates the existence of a c.t.e. of a circle and its two x– and
y–shear transformations.

Lemma 3.2. Let C be a circle of radius ρ > 0 centered at the origin O of an o.c.s. The circle C as well as the ellipses Ex
and E y, produced by x– and y–shears of C with the same given shearing vector u of length u > 0 and angle ω∈ [−π, π],
can always adopt a c.t.e. E in the direction of the vector u (i.e. E’s directive angle is ω). The principal radii 0< b < a of the
requested c.t.e. E are then given by a = ρ

p
u2 +1 and b = ρ, with E’s foci semi–distance (or linear eccentricity) is being

f = uρ, as E is analytically expressed (in the adopted o.c.s.) by

E :
[(

u2 +1
)
sin2ω+cos2ω

]
x2 −u2(sin2ω)xy+

[(
u2 +1

)
cos2ω+sin2ω

]
y2 = ρ2 (

u2 +1
)
. (3.15)

Proof. Consider an orthonormal vector base B of an o.c.s. of origin O and let Sx and Sy be the x– and y–shear
transformations with the same shearing vector (of length u > 0 and angle ω). Then, according to Lemmas 2.3
and 2.2, the x– and y–sheared circles Ex := Sx(C) and E y := Sy(C) are ellipses centered also at O with their
corresponding principal radii 0 < bx < ax and 0 < by < ay given by (2.14) and (2.6). The directive angles
θx,θy∈[−π, π] of the tangential ellipses Ex and E y (with respect to the o.c.s.’s coordinate axes) are then given by
(2.15) and (2.7) respectively. Let also Ex and E y be the (concentric) tangential ellipses of Ex and E y respectively,
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adopted in the same direction as the common shearing vector (i.e. their directive angles are both ω), and having
principal radii 0< b̄x < āx and 0< b̄y < āy respectively.

We are shall now investigate the form of tangential ellipses Ex and E y of Ex and E y in the direction of ω, such
that both Ex and E y are also tangent to the circle C. Thus, their minor radii b̄x = b̄y = ρ, while their directive
angles θ̄x = θ̄y =ω. In order to apply Lemma 3.1, we consider as angle θ (which is the angle between the major
axes of Ex and Ex) the difference θ := θ̄x−θx =ω−θx, while for the angle between (the major axes of) E y and E y
we must consider, respectively, θ := θ̄y −θy =ω−θy.

Let k := b̄x/bx, while λx := bx/ax and λ̄x := b̄x/āx denote the aspect ratios of Ex and Ex respectively. Relation
(3.1), through (3.7a), yields

k2 (
1+λ−2

x tan2θ
)[

1+(
λ̄−2

x −1
)
cos2θ

]2+λ−2
x k2 (

λ̄−2
x + tan2θ

)−[
λ̄−2

x k4+λ−2
x

(
1+2k2 tan2θ

)][
1+(

λ̄−2
x −1

)
cos2θ

]
= 0,

or equivalently,

λ−2
x

(
λ̄−2

x cos2θ+sin2θ
){
λ̄−2

x k4 −
[(
λ̄−2

x +λ−2
x

)
cos2θ+ (

1+ λ̄−2
x λ−2

x
)
sin2θ

]
k2 +λ−2

x

}
= 0.

and hence we derive the following biquadratic polynomial with respect of k,

λ̄−2
x k4 −

[(
λ̄−2

x +λ−2
x

)
cos2θ+ (

1+ λ̄−2
x λ−2

x
)
sin2θ

]
k2 +λ−2

x = 0.

Substituting k = b̄x/bx = ρ/bx (as b̄x = ρ were assumed), the above polynomial (3.16) yields

λ̄−2
x ρ4 −

[
1+ λ̄−2

x λ−2
x − (

λ̄−2
x −1

)(
λ−2

x −1
)
cos2θ

]
ρ2b2

x +λ−2
x b4

x = 0, (3.16)

and solving (3.16) with respect to λ̄−2
x we get

λ̄−2
x = b2

xρ
−2 b2

xλ
−2
x −ρ2 −ρ2 (

λ−2
x −1

)
cos2θ

b2
xλ

−2
x −ρ2 −b2

x
(
λ−2

x −1
)
cos2θ

. (3.17)

From (2.14) we have

b2
xλ

−2
x = 8u4ρ2 sin4ω

δ2
x

(
u2 +1+

p
u4 +1+2u2 cos2ω

) = 2δ−1
x u2ρ2 sin2ω, (3.18)

where
δx := u2 +1−

√
u4 +1+2u2 cos2ω. (3.19)

and thus, by substitution of (3.18) into (3.17) and then applying bx as in (2.14), we obtain

λ̄2
x =

ρ2δx

[
u2 −1+ (

u2 +1−δx
)(

1−2cos2θ
)]

2ρ2u2δx sin2ω−ρ2δ2
x sin2θ−4ρ2u2 sin2ωcos2θ.

(3.20)

Moreover, substituting θx from (2.15) to the relation

cos2θ = 1
1+ tan2(ω−θx)

= (1+ tanωtanθx)2

(1+ tanωtanθx)2 + (tanω− tanθx)2
,

as θ :=ω−θx, we obtain that through (3.19),

cos2θ =
(
2u2 +2−δx

)2(
2u2 +2−δx

)2 + (
tan2ω

)
(2−δx)2

. (3.21)

By substitution of the above cos2θ into (3.20) we obtain (after some algebra) that

λ̄2
x =

δx
(
u2 −1−δx

)[
2

(
u2 +1

)−δx

]2 (
1−sin2ω

)+δx
(
u2 −1+δx

)
(δx −2)2 sin2ω[

δx (δx −2)
(
2u2 sin2ω−δx

)+2u2
[
2

(
u2 +1

)−δx

]2 (
1−sin2ω

)]
(δx −2)sin2ω

. (3.22)
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From (3.19) we have

sin2ω= 1−cos2ω= 1− 1
2 (1+cos2ω)= 1+ 1

4u2 (δx −2)
(
2u2 −δx

)
, (3.23)

as it is easy to see, through (3.19), that 0 < δx < 2 and δx < 2u2. Substituting (3.23) into (3.22), we finally derive
(after a series of simplifications) that λ̄2

x = u2 +1, and hence the major radius of Ex is given by āx = ρ
p

u2 +1, as
b̄x = ρ was assumed.

Working similarly for the case of the tangential ellipse E y we obtain the its aspect ratio

λ̄−2
y = b2

yρ
−2 b2

yλ
−2
y −ρ2 −ρ2(

λ−2
y −1

)
cos2θ

b2
yλ

−2
y sin2θ−ρ2 +b2

y cos2θ
or (3.24)

λ̄2
y =

ρ2δy

[
u2 −1+ (

u2 +1−δy
)(

1−2cos2θ
)]

2ρ2u2δy cos2ω−ρ2δ2
y sin2θ−4ρ2u2 cos2ωcos2θ

, where (3.25)

δy := u2 +1−
√

u4 +1−2u2 cos2ω. (3.26)

Then, after some algebra, it holds also that λ̄2
y = u2 + 1, and hence the major radius of E y is given by

āy = ρ
p

u2 +1, as b̄y = ρ was also assumed.
Therefore, the principal radii of Ex and E y coincide, as āx = āy = ρ

p
u2 +1 and b̄x = b̄y = ρ, and hence the

ellipses Ex and E y are of the same shape. Moreover, as their directive angles θ̄x and θ̄y are both assumed to be
ω, it is clear that Ex = E y. We can then denote with E := Ex = E y the c.t.e. of Ex, E y and C. The directive angle θ
of E is ω and its principal radii 0 < b < a are of the form a = ρ

p
u2 +1 and b = ρ. The foci semi–distance of E is

formulated by f :=
p

a2 −b2 = uρ. The analytical expression of the c.t.e. E is finally given by setting θ :=ω into
(2.1), and thus (3.15) is finally derived.

The following Theorem proves the existence of a c.t.e. of a circle and two ellipses mutually conjugate with
each other.

Theorem 3.1. Consider a circle C of radius ρ > 0 centered at point O, and two ellipses E1 and E2 such that E1, E2
and C correspond to three given mutually conjugate ellipses. Hence, these ellipses are defined by a bundle of three given
mutually conjugate radii, say OP, OQ and OR, such that C = C(OP,OQ), E1 = E1(OP,OR) and E2 = E2(OQ,OR),
with |OP| = |OQ| = ρ and OP⊥OQ, as C is a circle. These radii are fully determined by the given length r = |OR| and
angle ω=](OP,OR)∈ [−π, π]. Then, a common tangential ellipse E, of E1, E2 and C, always exists in the direction of
the non–orthogonal radius OR (i.e. the major radius of E is spanned by OR), while point R is one of the E’s foci. The
principal radii 0 < b < a of E are then given by a =

√
ρ2 + r2 and b = ρ, while its eccentricity and foci semi–distance are

ε= r/
√
ρ2 + r2 and f = r respectively. This c.t.e. E is analytically expressed by

E :
[(
ρ2 + r2)

sin2ω+ρ2 cos2ω
]
x2 − r2(sin2ω)xy+

[(
ρ2 + r2)

cos2ω+ρ2 sin2ω
]

y2 = ρ2 (
ρ2 + r2)

, (3.27)

in an o.c.s. spanned by the orthogonal radii OP and OQ.
The two diametrical (common) contact points T1(x1, y1), x1 > 0, and T ′

1(−x1,−y1) between E1 and its tangential ellipse
E, are then given by

x1 =
√
ρ2 + r2 cos2ω and y1 = r2 sin2ω

2
√
ρ2 + r2 cos2ω

, (3.28)

while their corresponding two common tangent lines t1 and t′1 (at points T1 and T ′
1 respectively) are being parallel to OQ

(which spans the o.c.s.’s vertical axis y′Oy), i.e. t1 : x = x1 and t′1 : x =−x1.
For the two diametrical contact points T2(x2, y2), y2 > 0, and T ′

1(−x2,−y2) between E2 and its tangential ellipse E, we
have

x2 = r2 sin2ω

2
√
ρ2 + r2 sin2ω

and y2 =
√
ρ2 + r2 sin2ω, (3.29)

while their corresponding two common tangent lines t2 and t′2 (at points T2 and T ′
2 respectively) are being parallel to OP

(which spans the o.c.s.’s horizontal axis x′Ox), i.e. t2 : y= y2 and t′2 : y=−y2.
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Finally, for the last two contact points T3(x3, y3) and T ′
3(−x3,−y3) between circle C and its tangential ellipse E, it

holds that
x3 =−ρ sinω and y3 = ρ cosω, (3.30)

while their corresponding two tangent lines t3 and t′3 (at points T3 and T ′
3 respectively) are being parallel to the non–

orthogonal radii OR, as they are given by

t3 : ycosω− xsinω= ρ and t′3 : xsinω− ycosω= ρ. (3.31)

Proof. Consider an o.c.s. with origin O where its horizontal and vertical axes are spanned by the given
orthogonal vectors OP and OQ. Let B = {e1,e2} be the corresponding orthonormal vector base. Hence PB(ρ,0)
and QB(0,ρ). Let Sx be the x–shear transformation with shearing vector u := ρ−1OR, which transforms point
Q ∈C into R. Indeed, from (2.3) and setting u := |u| = r/ρ, we obtain Sx(Q) = R. Notice also that Sx(P) = P (as
the horizontal axis x′Ox is invariant under Sx), and hence P ∈C ∩E1. Therefore, Sx(C) = E1 as the ellipse E1
is (by assumption) defined by its two conjugate radii OP and OR. Let also Sy be the y–shear with the same
shearing vector u which (similarly to Sx) transforms point P ∈C also into R. Indeed, from (2.4) and setting
again u := |u| = r/ρ, we obtain Sy(P) = R. Also Sy(Q) = Q (as the vertical axis y′Oy is invariant under Sy), and
hence Q ∈C∩E2. Thus Sy(C) = E2 as the ellipse E2 (by assumption) is defined by its two conjugate radii OQ
and OR. From the above discussion, point R is an intersecting point of the ellipses E1 and E2, i.e. R∈E1 ∩E2.

The given pairs of line segments (OP,OR) and (OQ,OR) are indeed correspond to pairs of conjugate radii for
E1 and E2 respectively, as these segments are affine transformations (recall Sx and Sy) of the C’s orthogonal
radii OP and OQ. As affinity preserves parallelism, the tangent lines of E1 and E2 at their points P and Q
respectively are parallel to OR, while the tangent lines of E1 and E2 at their point R are parallel to OP and
OQ respectively (because the tangent lines of the circle C at its points P and Q are, trivially, parallel to its
orthogonal radii OQ and OP). Figure 4 clarifies also the above discussion (on which the referred ellipses Ex
and E y correspond to E1 and E2 respectively) as the square frame around C is transformed, through Sx and
Sy, into the parallelograms around E1 and E2.

Lemma 3.2 can now be applied, where we have to replace Ex and E y with E1 and E2 respectively and set
u := r/ρ. Therefore, a c.t.e. E of E1, E2 and C always exists with directive angle ω (in the adopted o.c.s.), and
hence point R lie onto E’s major semi–axis. Moreover, through Lemma 3.2, the foci separation of the c.t.e. E is
then f = 2uρ, i.e. f = 2r = 2|OR| (as u := r/ρ). Thus, the intersection point R∈E1 ∩E2 is indeed a focal point of
the common tangential E. Moreover, the E’s principal radii are then given by a = ρ

p
u2 +1=

√
ρ2 + r2 and b = ρ,

while its eccentricity ε := a−1
p

a2 −b2 = u/
p

u2 +1 = r/
√
ρ2 + r2. The c.t.e. E can then be analytically expressed

(in the adopted o.c.s.) as (3.15), where we set u := r/ρ, and therefore (3.27) holds.
For the calculations of the two contact points T1(x1, y1) and T ′

1(−x1,−y1) between E1 and its tangential ellipse
E, as well as for their corresponding tangent lines t1 and t′1 (at T1 and T ′

1), we consider the following approach.
The analytical expression of E1 is given by (2.13), as E1 = Sx(C), where we set u := r/ρ. Let now x = x0 be a
vertical tangent line of E1 at some point T0(x0, y0)∈E1, y0 > 0. Then, setting x := x0 into (2.13), a trinomial with
respect to y is derived, say η1 = η1(y; x0) = 0. Because we expect η1(y) = 0 to have one real (double) root y = y0
(due to the fact that line x = x0 was assumed to be a tangent line of E1 at T0), its discriminant must be zero, i.e.
4u2 sin2ω

(
u2ρ2 cos2ω+ρ2 − x2

0
)= 0, or equivalently

x0 =±ρ
√

1+u2 cos2ω=±
√
ρ2 + r2 cos2ω,

while setting the x0 value, as above, to the trinomial η(y; x0)= 0, its double real roots would then given by

y0 =± u2ρ sin2ω

2
p

1+u2 cos2ω
= 1

2 x−1
0 r2 sin2ω.

Adopting the positive value for x0, from the above relation we obtain

x0 =
√
ρ2 + r2 cos2ω and y0 = r2 sin2ω

2
√
ρ2 + r2 cos2ω

. (3.32)

Similarly, if x = x′0 is now assumed to be also a vertical tangent line of E at some point T ′
0(x′0, y′0)∈E, then by

setting x := x′0 into (3.27), a trinomial with respect also to y is derived, say η′1 = η′1(y; x′0) = 0. As we expect
η′1(y) = 0 to have also one real (double) root y = y′0 (due to the fact that line x = x′0 was assumed to be a tangent
line of E at T ′

0), its discriminant must again be zero. The new calculations yields that x′0 and y′0 expressions are
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exactly the same as x0 and y0 in (3.32), i.e. x′0 = x0 and y′0 = y0. Therefore, the vertical tangent lines of E1 and
E are coincide at point T0 = T ′

0, i.e. the contact point T1(x1, y1) of E1 and E is indeed given by (3.32), where x0
and y0 notations were replaced by x1 and y1 respectively, and hence (3.28) holds. The corresponding tangent
line t1 at point T1 is thus the vertical tangent line x = x1 (= x0 = x′0) which is proved to be a common tangent
line between E1 and E. For clarification see also Fig. 5.

For the two contact points T2(x2, y2), y2 > 0, and T ′
2(−x2,−y2) between E2 and E, as well as for their

corresponding tangent lines t2 and t′2 (at T2 and T ′
2), we consider the analytical expression of E2 given

in (2.5), as E2 = Sy(C), where we also have to set u := r/ρ. Let y = y0 be a horizontal tangent line of E2
at some point S0(χ0,ψ0) ∈ E2, ψ0 > 0. Then, by setting y := ψ0 into (2.5), a trinomial with respect to x is
derived, say η2 = η2(x;ψ0) = 0. Because we expect η2(x) = 0 to have one real (double) root x = χ0 (due to
the fact that line y = ψ0 was assumed to be a tangent line of E2 at S0), its discriminant must be zero, i.e.
4u2 cos2ω

(
u2ρ2 sin2ω+ρ2 − y2

0
)= 0, or equivalently

ψ0 =±ρ
√

1+u2 sin2ω=±
√
ρ2 + r2 sin2ω, (3.33)

while adopting the positive value for ψ0 as above, and setting it to the trinomial η2(x;ψ0) = 0, its double real
root is then given by

χ0 = u2ρ sin2ω

2
√

1+u2 sin2ω
= r2 sin2ω

2
√
ρ2 + r2 sin2ω

. (3.34)

Similarly, if y =ψ′
0 is assumed to be a horizontal tangent line of E at some point S′

0(χ′0,ψ′
0)∈E, ψ′

0 > 0 then, by
setting y :=ψ′

0 into (3.27), a trinomial with respect also to x is derived, say η′2 = η′2(x;ψ′
0) = 0. As we expect the

trinomial η′2(x) = 0 to have one real (double) root x = χ′0 (due to the fact that line y = ψ′
0 was assumed to be a

tangent line of E at S′
0), its discriminant must again be zero. The calculations yield that the values of χ′0 and

ψ′
0 are coincide to the χ0 and ψ0 values as in (3.34), i.e. χ′0 = χ0 and ψ′

0 =ψ0. Therefore, the horizontal tangent
lines of E2 and E are coincide at point S0 = S′

0, i.e. the contact point T2(x2, y2), y2 > 0, between E2 and E is
indeed S0(χ0,ψ0), and hence (3.29) holds. The corresponding tangent line t2 at point T2 is then coincide with
the horizontal tangent line y = y2 (=ψ0 =ψ′

0) which is proved to be a common tangent line of E2 and E. For
clarification see also Fig. 5.

For the last two contact points T3(x3, y3) and T ′
3(−x3,−y3) between circle C and its tangential ellipse E, it

holds that x2
3 + y2

3 = ρ2. Moreover, the slope of diameter T3T ′
3 is given by tan(ω+π/2) = y3/x3. This is due to the

fact that ellipse E is a tangential ellipse to C. Hence, the minor axis of E (orthogonal to the E’s major axis which
forms an angle ω with o.c.s.’s horizontal axis) is assumed to be equal to the radius of C, i.e. ρ = b; see also Fig. 5.
The above two relations imply that

x3 =−y3 tanω and y2
3 = ρ2

1+ tan2ω
= ρ2 cos2ω, (3.35)

and therefore (3.30) is derived. The corresponding two tangent lines t3 and t′3 of C at their contact points T3

and T ′
3 respectively, are given in their usual forms t3 : x3x+ y3 y = ρ2 and t′3 : x3x+ y3 y = −ρ2 (on the adopted

o.c.s.), as they are tangent lines of the circle C, and hence by substitution of (3.30) into them, relations (3.31)
hold. Therefore, the tangent lines t3 and t′3 are parallel to the non–orthogonal radii OR, as their slopes are both
tanω.

Example 3.1. Consider the bundle of three line segments OP, OQ and OR as in Example 2.1, i.e. ρ = |OP| =
|OQ| := 10 and r = |OR| := 15, with OP ⊥ OQ and ω = ](OP,OR) := π/6 (= 30◦). These three given line
segments correspond to three mutually conjugate radii which define three mutually conjugate ellipses such
that E1 = E1(OP,OR), E2 = E2(OQ,OR) and E3 = E3(OP,OQ); see also Fig. 5. Notably, E3 is a circle of radius
ρ = 10 as defined by the pair (OP,OQ) of its orthogonal (and equal) conjugate radii. Consider also point O as
the origin of an o.c.s. with its horizontal and vertical axes spanned, respectively, by orthogonal radii OP and
OQ.

Ellipses E1 and E2 can be expressed as the x– and y–shears of circle E3, with shearing vector u := ρ−1OR of
length u := r/ρ = 1.5. Therefore, E1 and E2 are then given in Example 2.1, where Ex and E y correspond now to
E1 and E2 respectively, while their principal radii 0 < bi < ai, i = 1,2, and their directive angles θi, i = 1,2, are
given respectively by the values of ax, bx, ay, by and θx, θy in Example 2.1. Applying now Theorem 3.1, a c.t.e. E
of the given three mutually conjugate ellipses E i, i = 1,2,3, always exists, and its major axis is spanned by (non–
orthogonal common radius) OR, while point R is being one of its foci. The corresponding E’s principal radii are
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then given by a =
√
ρ2 + r2 = 5

p
13≈ 18.0278 and b = ρ = 10, while eccentricity, foci distance, and surface area are

given, respectively, by ε= 3
13
p

13≈ 0.832, f = 30 and A = 50π
p

13≈ 566.359. As E’s focal point, say F, is identical
to R, then F = R(r cosω, rsinω) = R

(15
2
p

3, 15
2

)
and F ′(− 15

2
p

3,−15
2

)
are then correspond to the two diametrical

foci of E. The analytical expression of c.t.e. E is given, through (3.27), by E : 25x2 −18
p

3xy+43y2 = 5200.
The two contact points T1(x1, y1), y1 > 0, and T ′

1(−x1,−y1) between ellipse E1 and its tangential E, are
calculated through (3.28), i.e. x1 = 5

2
p

43 ≈ 16.394 and y1 = 45
86
p

129 ≈ 5.943, with their corresponding two
tangent lines t1 and t′1 (at their contact points T1 and T ′

1) to be parallel to OQ (which spans o.c.s.’s vertical
axis y′Oy), i.e. t1 : x = x1 = 5

2
p

43 and t′1 : x =−x1 =−5
2
p

43.
The other two contact points T2(x2, y2), y2 > 0, and T ′

2(−x2,−y2) between ellipse E2 and its tangential E, are
calculated through (3.29), i.e. x2 = 9

2
p

13 ≈ 7.7942 and y2 = 25/2 = 12.5, with their corresponding two tangent
lines t2 and t′2 (at their contact points T2 and T ′

2) to be parallel to OP (which spans o.c.s.’s horizontal axis x′Ox),
i.e. t2 : y= y2 = 25/2 and t′2 : y=−y2 =−25/2.

Finally, the last two contact points T3(x3, y3), y3 > 0, and T ′
3(−x3,−y3) between circle E3 and its tangential E,

are calculated through (3.30), i.e. x3 =−5 and y3 = 5
p

3 ≈ 8.6603, with their corresponding two tangent lines t3
and t′3 (at their contact points T3 and T ′

3) obtained through (3.30), i.e. t3 :
p

3y− x = 20 and t′3 : x−p
3y = 20,

which are parallel to the non–orthogonal radii OR, as their slopes are both tan(π/6)=p
3/3.

Figure 5 visualizes exactly Example 3.1 by presenting the three mutually conjugate ellipses E1 = E1(OP,OR),
E2 = E2(OQ,OR) and E3 = E3(OP,OQ), with their defining three given mutually conjugate radii as well as their
foci points. The c.t.e. E of E i, i = 1,2,3, is also presented, together with their six common tangent lines at their
six corresponding contact points. The intersection angles of the ellipses E i, i = 1,2,3, at their common points
P, Q and R, are also denoted, while ϑ :=π/2−ω and ϕ :=](OP,OQ)=π/2.

Figure 5. Graphs of the three mutually conjugate ellipses E i , i = 1,2,3, of Example 3.1, and their c.t.e. E together with their common tangent lines.

Recall Lemma 3.2 where a c.t.e. E of Ex, E y and C was obtained. In the following, the number of all existing
common tangential ellipses (like E) of the ellipses Ex, E y and C is investigated.
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Lemma 3.3. Let C be a circle of radius ρ > 0, centered at the origin O of an o.c.s., while Ex and E y are the x– and
y–shears of C as in Lemma 3.2. There are, at most, two distinct common tangential ellipses, say E and E∗, of Ex, E y and
C, where E is given in (3.27) having directive angle ω (i.e. its major axis is spanned by the shearing vector of length u
that transforms C into Ex and E y), while the second c.t.e. E∗ ( 6=E) have (when it exists) a directive angle θ∗ (with respect
to OP) such that

tanθ∗

tanω
=−1+u2 cos2ω

1−u2 cos2ω
= u2 +1− (

u2 −1
)
tan2ω

u2 −1− (
u2 +1

)
tan2ω

. (3.36)

When ω∈(0, π/2) the second c.t.e. E∗ (of Ex, E y and C) exists if and only if ω∈(0,ω0) where

ω0 :=
{

1
2 arccos

p
2u−2 −u−4, if u ≥p

2/2,
π/2, if u <p

2/2.
(3.37)

Proof. Consider an o.c.s. with origin at the center O of the given circle C. We assume that E∗ is a c.t.e., other
than E, i.e. an ellipse centered at O which is also (simultaneously) tangent to Ex, E y and C. Its principal radii
are denoted with a∗ > b∗ := ρ and its directive angle with θ∗. Therefore, it holds that E∗ = E∗

x = E∗
y, where E∗

x
and E∗

y denote the two tangential ellipses of Ex and E y respectively in the direction of θ∗ and have principal
radii ax > bx := ρ and ay > by := ρ.

The aspect ratio of the tangential ellipse E∗
x (= E∗) of Ex, can be obtained through the angle, say θ, between

(the major axes of) Ex and its tangential E∗
x , i.e. θ := θ∗ − θx, as we did similarly in the proof of Lemma 3.2

(where had set θ :=ω−θx). Firstly, the relation (2.15) can be expressed in terms of δx, as in (3.19). In particular,
from (3.19), it holds that

cos2ω= 1
2 (1+cos2ω)= 1

4 u−2(δx −2)
(
δx −2u2)

, (3.38)

as 0< δx < 2 and δx < 2u2, and applying (3.38) into (2.15), we obtain

tanθx =
√√√√ δx

(
2u2 −δx

)
(2−δx)

(
2u2 +2−δx

) , (3.39)

as also δx < 2
(
u2 +1

)
. Substituting then (3.39) into

cos2θ = 1
1+ tan2(θ∗−θx)

= (1+ tanθ∗ tanθx)2

(1+ tanθ∗ tanθx)2 + (tanθ∗− tanθx)2
,

we obtain (after some algebra) that

cosθ =
√
δx

(
2u2 −δx

)
sinθ∗+

√
(2−δx)

(
2u2 +2−δx

)
cosθ∗

2
√

2u2 +2−δx
. (3.40)

The aspect ratio λ∗
x of E∗

x can then be obtained from (3.20) where θ := θ∗−θx. In particular, applying (3.23) into
(3.20), it holds that

λ∗
x

2 =
2δx

[
1−u2 + (

u2 +1−δx
)(

1−2cos2θ
)]

(
δx −2cos2θ

)[
4u2 − (δx −2)

(
δx −2u2

)]+2δ2
x sinθ

,

and then, through (3.40), we derive that

λ∗
x

2 =
2

(
1−u2)+[

δx
(
δx −2u2 −2

)+2
(
u2 +1

)]
cos2θ∗+ηx sin2θ∗

2
[
δx

(
δx −2u2 −2

)+2
(
u2 +1

)]
cos2θ∗+ηx sin2θ∗

, (3.41)

where ηx :=
√
δx(2−δx)

(
2u2 −δx

)(
2u2 +2−δx

)
or, by substitution of δx as in (3.19), ηx = u2p2(1−cos4ω) =

u2|sin2ω|.
Similarly to the case of the tangential ellipse E∗

x as above, we now consider as angle θ between (the major
axes of) E y and E∗

y, the difference θ := θ∗−θy. In particular, from (3.26), it holds

cos2ω= 1
2 (1+cos2ω)= 1

4 u−2δy
(
2u2 +2−δy

)
, (3.42)
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as it is easy to see, through (3.26), that 0< δy < 2
(
u2 +1

)
. Applying (3.42) into (2.7), we obtain

tanθy =
√√√√ (2−δy)

(
2u2 +2−δy

)
δy

(
2u2 −δy

) , (3.43)

as 0< δy < 2 and δy < 2u2 also hold. Substituting then (3.43) into

cos2θ = 1
1+ tan2(θ∗−θy)

= (1+ tanθ∗ tanθy)2

(1+ tanθ∗ tanθy)2 + (tanθ∗− tanθy)2
,

we obtain (after some algebra) that

cosθ =
√

(2−δy)
(
2u2 +2−δy

)
sinθ∗+

√
δy

(
2u2 −δy

)
cosθ∗

2
√

u2 +1−δy

. (3.44)

The aspect ratio λ∗
y of E∗

y can then be obtained from (3.25) where θ := θ∗−θy. In particular, applying firstly (3.42)
into (3.25), it holds that

λ∗
y

2 = u2 −1+ (
u2 +1−δy

)(
1−2cos2θ

)
2

(
δy −u2 −1

)
cos2θ+δy

(
2u2 +2−δy

) ,

and then, through (3.44), we derive that

λ∗
y

2 =−
2

(
u2 −1

)+[
δy

(
δy −2u2 −2

)+2
(
u2 +1

)]
cos2θ∗−ηy sin2θ∗

2
[
δy

(
δy −2u2 −2

)+2
(
u2 +1

)]
sin2θ∗+ηy sin2θ∗

, (3.45)

where ηy :=
√
δy(2−δy)

(
2u2 −δy

)(
2u2 +2−δy

)
.

We assumed earlier that E∗ = E∗
x = E∗

y so that ellipse E∗ can be another c.t.e. (besides E) of Ex, E y and C.
Thus, the aspect ratios in (3.41) and (3.45) must coincide to the E∗’s aspect ratio λ∗ :=λx =λy, as the minor radii
of E∗

x and E∗
y must be equal with C’s radius ρ as assumed, i.e. as bx = by = ρ. Writing the equation λx

2 −λy
2 = 0

in terms of tanθ∗, through (3.41) and (3.45), we obtain the trinomial expression

Atan2θ∗+Btanθ∗+Γ= 0, (3.46)

where the coefficients A, B and Γ are given by

A := − (δx −2)
(
δx −2u2)[

δy
(
δy −2u2 −2

)+2
(
u2 +1

)]
, (3.47a)

B := 2ηx

[
4u2 −δy

(
2u2 +2−δx

)]−ηy

[
4u2 −δx

(
2u2 +2−δx

)]
, (3.47b)

Γ := (δy −2)
(
δy −2u2)[

δx
(
δx −2u2 −2

)+2
(
u2 +1

)]
. (3.47c)

Notice that the trinomial with respect to tanθ∗ (3.46) has two, at most, real roots and one of which is expected
always to be tanω, because in the direction of angle ω the c.t.e. E (of Ex, E y and C), as in (3.27), always exists
(recall Lemma 3.2) with aspect ratio λ=

p
u2 +1. Therefore, assuming that there exists another tangential ellipse

E∗ 6=E (of Ex, E y and C), the trinomial (3.46) implies that

tanω= 1
2A

(
−B±

√
B2 −4AΓ

)
, tanθ∗ = 1

2A

(
−B∓

√
B2 −4AΓ

)
or

tanθ∗ =−B
A − tanω. (3.48)

By setting θ∗ :=ω into the trinomial (3.46), it holds that −Btanω=Γ+Atan2ω, and then using of (3.48) we obtain
an alternative form of (3.48), i.e.

tanθ∗ tanω= Γ
A . (3.49)

Moreover, the coefficients A and Γ, as in (3.47a) and (3.47c), can be simplified in the forms of

A=−8u2 (
1−u2 cos2ω

)
cos2ω and Γ= 8u2 (

1+u2 cos2ω
)
sin2ω, (3.50)
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by substitution of δx as in (3.19). Relation (3.49) finally yields (3.36), through (3.50).
When E∗ is an ellipse (of direction angle θ∗ 6= ω), the value λ∗ := λx would then correspond to aspect ratio

of ellipse E∗, and hence R+ 3λ∗ ≤ 1, while the value a∗ := ax = bx/λx = ρ/λ∗ provides E∗’s major radius (as
ρ is always assumed to be E∗’s minor radius). Recall that always ax ≥ bx when the values ax and bx are
real and given by (2.14). Hence, the real–valued ratio λx := bx/ax cannot be greater than 1 or, equivalently,
the ratio in (3.41) cannot be > 1. However, if the (real–valued) ratio as in (3.41) is found to be negative, i.e.
λ∗2 (:= λ2

x) < 0, then a∗2 = ρ2/λ∗2 < 0, which is equivalent to the fact that the E∗ is shaped now by a hyperbola
E∗ : ( ỹ/ρ)2 − (x̃/|a∗|)2 = 1, x̃, ỹ∈R (in some o.c.s.) instead of an ellipse (tangential to Ex, E y and C).

Therefore, E∗ is indeed a c.t.e. of Ex, E y and C, if and only if (iff) the ratio in (3.41) is equal or lower than 1
or, equivalently, rewriting (3.41) in terms of tanθ∗, iff

λ∗2 = 4−δx
(
2u2 +2−δx

)+2ηx tanθ∗− (2−δx)
(
2u2 −δx

)
tan2θ∗

2δx
(
δx −2u2 −2

)+4
(
u2 +1

)+2ηx tanθ∗
≤ 1.

By substitution of ηx = u2|sin2ω| (shown earlier) and δx, as in (3.19), the above condition is equivalent to

1−u2 +2u2 cos2ω+u2|sin2ω|tanθ∗

1−u2 +u2 cos2ω+u2|sin2ω|tanθ∗−u2 cos2ωtan2θ∗
≥ 1. (3.51)

Otherwise, if the ratio as in (3.51) is negative, E∗ is then being a hyperbola which is (simultaneously) tangent
and concentric to Ex, E y and C.

The iff condition (3.51) can be simplified. In particular, when the denominator of the ratio in (3.51) is assumed
to be negative, then (3.51) implies that u2 cos2ω

(
1+ tan2θ∗

)≤ 0, which cannot hold, and thus the denominator
in (3.51) must always be positive. Therefore the condition (3.51) is equivalent to

u2 cos2ωtan2θ∗− (sgnω)(sgncosω)u2 sin2ωtanθ∗+u2 sin2ω−1< 0,

where sgn(·) denotes the usual sign operator, or using (3.36),{
2s

[(
1+u2)2 −4u4 cos4ω

]
+ (

1+u2 +2u2 cos2ω
)2

}
u2 sin2ω− (

1−u2 sin2ω
)(

1+u2 −2u2 cos2ω
)2 < 0, (3.52)

where s := (sgnω)sgn
(
π
2 −|ω|). When ω∈(0, π/2), the condition (3.52) is then reduced, as s = 1, to

1−2u2 +u4 cos2 2ω> 0, (3.53)

which is equivalent to ω∈ (0,ω0), with ω0 as in the first branch of (3.37), provided that u ≥ p
2/2. However, if

u <p
2/2 is assumed, the condition (3.52) always holds for any angle such that s = 1. Hence ω∈(0, π/2).

Using the above Lemma 3.3 it can now be shown that, under certain conditions, a second c.t.e. of three
mutually conjugate ellipses, with one of them being a circle, also exists.

Theorem 3.2. Consider a circle C of radius ρ > 0 centered at O, and two ellipses E1 and E2, all three being mutually
conjugate, i.e. E1, E2 and C are defined by a bundle of three given line segments (corresponding th their mutually
conjugate radii) OP, OQ and OR, such that E1 = E1(OP,OR), E2 = E2(OQ,OR) and C = C(OP,OQ). Let r := |OR|
and ω :=∠(OP,OR). Then, at most, two common tangential ellipses of E1, E2 and C can exist. That is, besides the always
existing c.t.e. E (which its major axis is spanned by the non-orthogonal segment OR of the bundle, recall Theorem 3.1),
a second c.t.e. E∗ ( 6=E) can also exist, and when it does its major axis forms an angle θ∗ with OP (i.e. θ∗ is the directive
angle of E∗ with respect to OP), and is given by

tanθ∗

tanω
=−ρ

2 + r2 cos2ω
ρ2 − r2 cos2ω

=−ρ
2 + r2 + (

ρ2 − r2)
tan2ω

ρ2 − r2 + (
ρ2 + r2

)
tan2ω

, (3.54)

The second c.t.e. E∗ (of E1, E2 and C) with ω∈(0, π/2), exists if and only if ω∈(0,ω0) where

ω0 :=
1

2 arccos
(
ρr−2

√
2r2 −ρ2

)
, if r ≥ ρp2/2,

π/2, if r < ρp2/2.
(3.55)
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Equivalently assumed that ω∈(0, π/2), the second c.t.e. E∗ exists if and only if r/ρ∈(0, u−)∪ (u+, +∞), where

u± := (sec2ω)
p

1±sin2ω. (3.56)

The principal radii 0< b∗ < a∗ of E∗ are then given by

a∗ =
√√√√ (

ρ2 − r2
)(
ρ4 − r4 cos2 2ω

)(
ρ2 − r2 cos2ω

)2 −4ρ2r2 sin2ω
and b∗ = ρ, (3.57)

while E∗ is analytically expressed, on an o.c.s. spanned by orthogonal radii OP and OQ, as

E∗ :
[
a∗2 (

ρ2 + r2 cos2ω
)2

tan2ω−ρ2 (
ρ2 − r2 cos2ω

)2 ]
x2 +

[
a∗2 (

ρ2 − r2 cos2ω
)2 +ρ2 (

ρ2 + r2 cos2ω
)2

tan2ω
]

y2+
2

(
ρ2 −a∗2)(

ρ4 − r4 cos2 2ω
)
(tanω)xy= ρ2a∗2

[(
ρ2 − r2 cos2ω

)2 + (
ρ2 + r2 cos2ω

)2
tan2ω

]
. (3.58)

Proof. Note that |OP| = |OQ| = ρ and OP⊥OQ as C is a circle of radius ρ > 0. Consider an o.c.s. with origin at
C’s center O, with its horizontal and vertical axes spanned by the orthogonal radii OP and OQ respectively. Let
B = {e1,e2} be the o.c.s.’s orthonormal vector base.

Similar to the (beginning of the) proof of Theorem 3.1, by setting u := r/ρ the ellipses Ex and E y of Lemma 3.3
are now correspond to the ellipses E1 and E2, while the line segments OP, OQ and OR, indeed, define the
three mutually conjugate ellipses as E1 = E1(OP,OR), E2 = E2(OQ,OR) and C = C(OP,OQ), and hence being
three mutually conjugate radii of E1, E2 and C. Moreover, Lemma 3.3 implies that, at most, two common
tangential ellipses of E1, E2 and C can exist. Notably, a c.t.e. E in the direction of OR, always exists and it is
analytically expressed (in the adopted o.c.s.) by (3.27), while a second c.t.e. E∗ ( 6=E), can also exist if and only
if ω=](OP,OR)∈(0,ω0), with ω0 as in (3.55), as directly derived form Lemma 3.3 by setting u := r/ρ.

Recalling the inequality (3.53), the second c.t.e. E∗ ( 6=E) can also exist, assumed that ω∈(0, π/2), when 1−2u2+
u4 cos2 2ω> 0, which is equivalent (by solving the inequality with respect to u) to r/ρ = u∈(0, u−)∪(u+, +∞) with
u± as in (3.56).

The major radius a∗ of the second c.t.e. E∗ (when E∗ exists) is then given by a∗ = b∗/λ∗ = ρ/λ∗ (as its minor
radius b∗ = ρ), where the E∗’s aspect ratio λ∗ (:=λx =λy) is obtained through (λ∗)−2 = ` where ` being the ratio
in (3.51). By substitution of tanθ∗, as in (3.54), into (3.51) we have

λ∗2 =
(
u2 cos2ω−1

)2 −4u2 sin2ω(
u2 −1

)(
u4 cos2 2ω−1

) , (3.59)

and by setting u := r/ρ, the major radius a∗ = ρ/λ∗ as in (3.57) is obtained. Moreover, E∗ can then be analytically
expressed (in the orthonormal vector base B) by (2.1), where we must set ω := θ∗, a := a∗, b := b∗ = ρ and
u := r/ρ. Hence, (3.58) is finally derived by the substitution of θ∗ as in (3.54).

The following Example demonstrates a case of non–existent second c.t.e. of three mutually conjugate ellipses
with one of them is being a circle. A common tangential hyperbola is calculated instead.

Example 3.2. Recall the bundle of the three given line segments OP, OQ and OR, as given in Example 3.1,
which define the three mutually conjugate ellipses E1 = E1(OP,OR), E2 = E2(OQ,OR) and E3 = E3(OP,OQ),
with E3 being a circle of radius ρ > 0. Then, a c.t.e. E of these ellipses exists in the direction of the non–
orthogonal segment OR having point R as one of its foci; see also Fig. 5. According to Theorem 3.2, a second
c.t.e. E∗ (6=E) of E i, i = 1,2,3, can exist iff ω∈ (0,ω0). However, this is not the case here. Indeed, calculating
θ∗ as in (3.54) and ω0 as in (3.55), it holds that π/2 > π/6 =: ω = ](OP,OR) > ω0 = 1

2 arccos
(2

9

p
14

) ≈ 16.8744◦

(which cannot hold), while 15 =: r > ρ/
p

2 = 5
p

2 ≈ 7.0711, i.e. 30◦ =: ω∉ (0,ω0) ≈ (0, 16.8744◦). Therefore, the
ellipse E is the only c.t.e. of E i, i = 1,2,3, that exists. Moreover, the analytical expression (in the adopted
o.c.s.) of E∗, as in (3.58), implies, through ρ := 10 and r := 15, that E∗ : −313x2 +306

p
3xy+226y2 +34000 = 0,

which is clearly a hyperbola as it is expected. This is because the above condition of ω (suggested by
Theorem 3.2) does not fulfilled, as 30◦ ∉ (0, 16.8744◦), which means that the ratio in (3.51) must be < 1, i.e.
E∗’s aspect ratio λ∗∈C. Indeed, the above can be confirmed calculating the values of a∗ and b∗, as in (3.57), i.e.
a∗ = 5

143
p

12155i ≈ 3.8549i and b∗ = ρ = 10. From the above expression for E∗ we conclude that the canonical
form of the hyperbola E∗ can be written as E∗ : (x̂/ρ)2 − ( ŷ/|a∗|)2 = 1, x̂, ŷ ∈R, as 0 < |a∗| < ρ, and hence the
(major) semi–axis length of hyperbola E∗ (which is the minimum distance of E∗ from its center) is then ρ while
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its imaginary (or minor) semi–axis length is then |a∗| = 5
143

p
12155. The directive angle of the hyperbola E∗

with respect to OP (i.e. the angle of its (major) axis with respect to the horizontal axis of the adopted o.c.s.) is
then given by θ∗−π/2 where θ∗ as in (3.54), i.e. θ∗ = arctan

(17
3
p

3
)− π

2 ≈ −5.8175◦. This is so, because in case
E∗ was an ellipse, the value of tanθ∗ given in (3.54) corresponds to the slope of E∗’s major axis , while in the
present hyperbola case, the value of tanθ∗ corresponds to the slope of E∗’s imaginary (minor) axis, as E∗ is
now expressed by E∗ : −(x̃/|a∗|)2 + ( ỹ/ρ)2 = 1 where 0 < |a∗| < ρ. Thus, due to the orthogonality of the principal
axes, we have to subtract π/2 from the value of θ∗ as in (3.54).

Figure 6 visualizes exactly Example 3.2, by presenting the three mutually conjugate ellipses E1 = E1(OP,OR),
E2 = E2(OQ,OR) and E3 = E3(OP,OQ) as well as their c.t.e. E, exactly as in Fig. 5, together with their common
tangential (c.t.) hyperbola E∗ of E i, i = 1,2,3.

Figure 6. Graphs of the three mutually conjugate ellipses E i , i = 1,2,3, as in Example 3.2, together with their c.t. ellipse E and c.t. hyperbola E∗.

The following Example demonstrates the existence of a second c.t.e. of three mutually conjugate ellipses with
one of them being a circle.

Example 3.3. Consider a bundle of three given line segments OP, OQ and OR as in Example 3.1, or 3.2, where
this time OR’s length is set to be the one–third of the OP’s length, i.e. r = |OR| := |OP|/3 = 5. Recall from
Example 3.1 that ρ = |OP| = |OQ| := 10 with OP ⊥OQ and ω = ](OP,OR) := π/6 (= 30◦). These line segments
are considered to be the three mutually conjugate radii that define three mutually conjugate ellipses, i.e.
E1 = E1(OP,OR), E2 = E2(OQ,OR) and E3 = E3(OP,OQ). Note that E3 is a circle of radius ρ > 0. Consider
also (as in Example 3.1) an o.c.s. spanned by the orthogonal radii OP and OQ. Similarly to the Example 2.1,
the analytical expressions of the ellipses E1 and E2 are then given by (2.13) and (2.5) respectively, where Sx(C)
and Sy(C) correspond now to E1 and E2 respectively, with u := r/ρ = 1/2, i.e. E1 : x2 −2

p
3xy+19y2 = 100 and

E2 : 17x2−2
p

3xy+3y2 = 300, while E3 corresponds to the circle E3 : x2+y2 = 100. A c.t.e. E of E i, i = 1,2,3, exists
and its major axis is spanned by the non–orthogonal radius OR, while point R being one of its foci; see Fig. 7.
The analytical expression (on the adopted o.c.s.) is given, through (3.27), by E : 17x2−2

p
3xy+19y2 = 2000. As far

as the additional c.t.e. of E i, i = 1,2,3, is concerned, it holds that 1/2= r/ρ∈(0, u−)≈ (0, 0.732), as π/6=:ω∈(0, π/2).
Therefore, from Theorem 3.2, we conclude that (unlike Example 3.2) there exist two, in total, common tangential
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ellipses, E and E∗, of the three mutually conjugate ellipses E i, i = 1,2,3. The existing second c.t.e. E∗ has then
principal radii 0 < b∗ < a∗ and directive angle θ∗ given, through (3.57) and (3.54), by a∗ = 5

11
p

77 ≈ 11.9659,
b∗ = 10 and θ∗ = −arctan

(3
7
p

3
) ≈ −36.5868◦, while, through (3.58), its analytical expression is of the form

E∗ : 203x2 +42
p

3xy+225y2 = 25200.

The following Fig. 7 is an exact visualization of Example 3.3, by presenting the three mutually conjugate
ellipses E1 = E1(OP,OR), E2 = E2(OQ,OR) and E3 = E3(OP,OQ) together with their foci, as well as their two
(in total) common tangential ellipses E and E∗. The intersection angles between the ellipses E i, i = 1,2,3 at
their points P, Q and R are also depicted.

Figure 7. Graphs of the three mutually conjugate ellipses E i , i = 1,2,3, as in Example 3.3, together with their two common tangential ellipses E and E∗.

3.2. The general case

We shall now extend the results of the orthogonal case, as discussed in sub–Section 3.1, to the general case
of three mutually conjugate ellipses (including the case where none of them is a circle).

From the orthogonal case, investigated in Theorem 3.1, we concluded that there always exists a c.t.e. around
three given mutually conjugate ellipses, when one of them is a circle. The tangential ellipse E can then be
considered as a “primary” c.t.e., while any other c.t.e. that might exist can be considered as a “secondary” c.t.e.
(of E i, i = 1,2,3). Having the above in mind, we consider the following definitions.

Definition 3.2. Let E i, i = 1,2,3, be three mutually conjugate ellipses. We can always consider a coordinate
system in which one of the ellipses is expressed as a circle, and hence two of their three mutually conjugate
radii, which define E i, i = 1,2,3, are of equal length and orthogonal with each other. A c.t.e. E of E i, i = 1,2,3,
shall then be called primary when its major semi–axis coincides with the non–orthogonal radius from the
corresponding three mutually conjugate radii (defining E i, i = 1,2,3).

Definition 3.3. Any other non–primary c.t.e. of E i, i = 1,2,3, shall be called as a secondary c.t.e. of E i, i = 1,2,3.
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Before we proceed with the main Theorem, a special cyclic sum notationS is introduced here. In particular,
the following form of “multiple” cyclic sums shall be used, i.e.

S
p,q,r
ϕ,ϑ,ω

f (p, q, r; ϕ,ϑ,ω) := f (p, q, r; ϕ,ϑ,ω)+ f (q, r, p; ϑ,ω,ϕ)+ f (r, p, q;ω,ϕ,ϑ).

The cyclic sum as above refers to a three–termed sum of the variable–depending expression f , where the
summation is simultaneously cycle through the three values p, q, r and ϕ,ϑ,ω, i.e. according to the scheme of
indexes’ sequence: p

ϕ
→→

q
ϑ
→→r
ω
→→

p
ϕ
→→ · · · .

The following main Theorem investigates the existence of common tangential ellipses around three mutually
conjugate ellipses, and therefore extends Peschka’s Proposition 1.1. It also provides a plane–geometric proof of
it.

Main Theorem. Consider three mutually conjugate ellipses E i, i = 1,2,3, defined by a bundle of three given
line segments which correspond to E i’s three mutually conjugate radii. These given radii, say OP, OQ and
OR, are determined by their lengths p, q, r > 0 respectively, and the two angles ϕ := ](OP,OQ) ∈ (0, π) and
ω :=](OP,OR)∈(0, π). Let also ϑ :=∠(OR,OQ)∈(0, π)=ϕ−ω. Then, there always exists a primary c.t.e. E of E i,
i = 1,2,3, with their corresponding common tangent lines, between each E i, i = 1,2,3, and their c.t.e. E, being
parallel to each of the three given conjugate radii. Moreover, a unique secondary c.t.e. E∗ ( 6=E) of E i, i = 1,2,3,
with ϕ>ω, can exist if and only if

S
p,q,r
ϕ,ϑ,ω

p4q2 sin2ϕ
(
q2 sin2ϕ−2r2 sin2ω

)> 0, (3.60)

or when it holds
2r2 (

p2 sin2ω+ q2 sin2ϑ
)< p2q2 sin2ϕ. (3.61)

In case one of the mutually conjugate ellipses is reduced to a circle (and therefore two out of three E i’s mutually
conjugate radii are orthogonal and have equal length), then the foci of the primary c.t.e. E coincide with the
end points of the non–orthogonal diameter of the three mutually conjugate diameters (spanned by the three
given mutually conjugate radii) which define E i, i = 1,2,3.

Proof. Consider an o.c.s. where its horizontal and vertical axes are spanned by radii OP and OQ′ respectively,
where OQ′⊥OP and |OQ′| = |OP|. Hence, the corresponding orthonormal vector base is given by B := {

e1 :=
OP/|OP|, e2 := OQ′/|OQ′|}, i.e. PB(p,0) and Q′

B
(0, p), or simply P(p,0) and Q′(0, p). For point Q it then holds

that Q(qcosϕ, qsinϕ). Let also E1 := E1(OP,OR), E2 := E2(OQ,OR) and E3 := E3(OP,OQ) be three mutually
conjugate ellipses defined by their corresponding three mutually conjugate radii OP, OQ and OR. As pointed
out in Definition 3.2, a new c.s. can be adopted so that one of the ellipses E i can be expressed as a circle. Without
loss of generality, we may choose the c.s. in which ellipse E3 is expressed as circle C(O, p). It then holds that
OP ⊥OQ and |OP| = |OQ|, i.e. ϕ = π/2 and p = q. Hence, Theorem 3.1 can be applied in order to derive the
primary c.t.e. E of E i, i = 1,2,3. Moreover, due to the fact that 0 < ϑ = ϕ−ω, or ω < ϕ, the given radius OR
lies “between” OP and OQ, as ω∈ (0, ϕ) ⊂ (0, π); see also Fig. 5 where OR lies between OP and OQ. Therefore,
Theorem 3.2 can also be applied in order to derive the secondary (if any) c.t.e E∗ of E i, i = 1,2,3.

For the construction of this new c.s., in which E3 corresponds to circle C(O, p), we consider the following:
Let C be a circle of radius p centered at O, and its points P(p,0) and Q′(0, p). Let Sx : x′ = Nux be a x–
shear transformation with shearing vector u := p−1OQ in the initially adopted o.c.s. (of vector base B).
Then, Sx transforms point the Q′(0, p) into Q(qcosϕ, qsinϕ). Indeed, substituting the shearing vectors’ length
u := |u| = q/p and its angle ω :=ϕ into (2.3), the x–shear transformation matrix is then given by

Nu =
(
1 ucosω
0 usinω

)
=

(
1 q

p cosϕ

0 q
p sinϕ

)
, (3.62)

and hence it can be easily verified that Sx(Q′) = Q. Moreover, it holds that Sx(P) = P, as the horizontal axis
x′Ox (in B) is an Sx–invariant. Therefore, the x–sheared circle C, i.e. Sx(C), is essentially the ellipse E3, as the
orthogonal pair of radii (OP,OQ′) is transformed into the pair of conjugate radii (OP,OQ) which define ellipse
E3, as E3 = E3(OP,OQ) is assumed, i.e. Sx(C)= E3 with P∈E3 ∩E1 and Q∈E3 ∩E2.

Consider now a new vector base, say B′, in which ellipse E3 is expressed as circle C(O, p) or, equivalently,
OP⊥B′ OQ and |OP|B′ = |OQ|B′ . Essentially, the affine transformation Sx (as defined above) corresponds to a
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vector base change, from B to B′, of the form x=Nux′, in which PB′ (p,0) and QB′ (0, p). The length r′ := |OR|B′
and angle ω′ := ]B′ (OP,OR) can now be calculated in order to use them instead of values r := |OP| and
ω := ](OP,OR), for the application of Theorems 3.1 and 3.2. The components’ vector r of OR is also given,
in the initial vector base B, by r = (r1, r2)T := (r cosω, rsinω)T ∈R2×1. When OR is expressed in B′, its new
components’ vector, say r′, is then given by r′ = (r′1, r′2)T := (r′ cosω′, r′ sinω′)T∈R2×1. Applying the vector base
change x=Nux′ on the vector r, we obtain that r=Nur′, or

(
r′1, r′2

)T = r′ =N−1
u r= r(cscϕ)

(
sin(ϕ−ω), p

q sinω
)T

, (3.63)

and thus r′ = |OR|B′ = |r′|B′ =
√

r′21 + r′22 , while OR’s corresponding angle ω′ is then given by ω′ =]B′ (OP,OR)=
arctan(r′2/r′1)∈(−π, π). Therefore, from (3.63), we derive after some algebra, that

r′ = r
q (cscϕ)

√
p2 sin2ω+ q2 sin2ϑ and ω′ = arctan

(
psinω
qsinϑ

)
. (3.64)

Recall the mutually conjugate ellipses E1 = E1(OP,OR), E2 = E2(OQ,OR) and E3 = E3(OP,OQ), with
PB′ (p,0), QB′ (0, p) and RB′

(
r′1, r′2

)
. Therefore, in vector base B′, where the ellipse E3 corresponds to circle

C(O,ρ), Theorem 3.1 can be applied, and hence the primary c.t.e. E of E i, i = 1,2,3 (as in Definition 3.2), always
exists. Recalling Theorem 3.1, the non–orthogonal radii OR coincides with E’s major semi–axis, while the foci
of E are essentially the end points of (non–orthogonal) diameter spanned by radius OR. In vector base B′,
Theorem 3.1 shows also that each pair of (diametrical) common tangent lines (ti, t′i) between ellipse E i and its
primary c.t.e. E, for i = 1,2,3, are being parallel to each of the three given mutually conjugate radii OP, OQ
and OR. In particular, t1 and t′1 are parallel to OQ, t2 and t′2 are parallel to OP, while t3 and t′3 are parallel to
OR. Therefore, as Sx preserves parallelism, we conclude that also in the initially adopted vector base B the
common tangent lines between each E i and E are parallel to each (of the three) mutually conjugate radii that
define E i, i = 1,2,3.

Moreover, according to Theorem 3.2 and Definition 3.3, a secondary c.t.e. E∗ of E i, i = 1,2,3, exists under
certain conditions. This secondary tangential E∗ —when exists— is also unique, i.e. it is the only non–primary
c.t.e. of E i, i = 1,2,3. Recall that a second tangential E∗ (6=E) can exist, iff (3.53) holds, i.e. iff

p4 −2p2r′2 + r′4 cos2 2ω′ > 0, (3.65)

where we have set u := r′/p and ω :=ω′ (as values r and ω in (3.53) correspond now to values r′ and ω′ in vector
base B′). Thus, applying (3.64) into (3.65) we derive (after some algebra) the equivalent condition

p4q2 sin2ϕ
(
2r2 sin2ω− q2 sin2ϕ

)+q4r2 sin2ϑ
(
2p2 sin2ϕ− r2 sin2ϑ

)+r4 p2 sin2ω
(
2q2 sin2ϑ− p2 sin2ω

)< 0, (3.66)

which can be written in the compact cyclic sum form of (3.60).
Inequality (3.65) holds trivially for every ω′∈(0, π) if r′ < p/

p
2, i.e. if p4−2p2r′2 > 0. That is, when p >p

2r′ or,
equivalently through (3.64), when (3.61) holds, then general condition (iff) (3.65) also holds for every ω′∈(0, π).
Therefore, the unique secondary tangential ellipse E∗ also exists when (3.61) is assumed.

The following Example shows the use of conditions (3.60) and (3.61) for concluding the existence or not of a
secondary c.t.e. E∗.

Example 3.4. Recall Example 3.1, where it was shown that there is only one c.t.e. of three mutually conjugate
ellipses E i, i = 1,2,3, i.e. the primary c.t.e. E (as expected). Setting now ϕ = ](OP,OQ) := π/2 into the special
(if) condition (3.61), as well as p = q := ρ = 10, r := 15 and ω = ](OP,OR) := π/6, we derive that (3.61) yields
−35000> 0 which cannot hold. As the condition in (3.61) is not an “if and only if” condition, we cannot conclude
the non–existence of a secondary c.t.e. E∗. Moreover, by substitution of the above values into the condition as
in (3.60), we derive that 223437500 < 0 which also cannot hold, but this time we can safely conclude that the
second c.t.e. does not exist, as (3.60) is an iff condition. The special condition (3.61) can, however, determine the
existence of the second c.t.e. E∗ of E i, i = 1,2,3, as in Example 3.3. Indeed, setting ϕ := π/2, ω := π/6, p = q := 10
and r := 5 into (3.61), it is obtained that 5000 > 0 which holds, and hence E∗ exists. This also can be confirmed
by calculating the general (iff) condition (3.60) which then implies that −5156250< 0 which also holds.

Finally, we point out that the analytical expressions of the two common tangential ellipses E and E∗, can be
calculated (in the vector base B′) by setting r := r′ and ω :=ω′ both into (3.27) and (3.58) respectively, where r′
and ω′ are as in (3.64).
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Discussion

Consider the problem of finding a concentric common tangent ellipse around three given coplanar and
concentric ellipses, say E i, i = 1,2,3, each one defined by a pair of two conjugate semi–diameters which are
taken from a bundle of three given line segments. This plane–geometric problem was first stated and addressed
by G. A. Peschka in [5], in his proof of Pohlke’s Fundamental Theorem of Axonometry. However, his proof is
based on a parallel projection of an appropriate sphere S onto E i’s common plane, sayE. Indeed, these mutually
conjugate ellipses E i, i = 1,2,3, correspond to the parallel projections of three maximum circles of the sphere S
(lying on three planes orthogonal with each other). According to [4, 5], the common tangential ellipse, say E, of
all E i, i = 1,2,3, is then the parallel projection of the sphere’s contour onto E. This parallel projection method
has been used in literature for the proof of Pohlke’s Fundamental Theorem of Axonometry.

With this present paper, the above “Peschka’s problem”, which is a plane–geometric problem, is addressed
exclusively in terms of Analytic Plane Geometry, while it was also thoroughly investigated. Moreover, not
only did it was found that a common tangent ellipse (around three given mutually conjugate ellipses, as E i,
i = 1,2,3) always exists, but also found all the existed concentric and tangent ellipses around three given
mutually conjugate ellipses. It was proved that there exist two, in total, c.t.e.: the primary one E (which
corresponds to the parallel–projected contour of sphere S as above), and the secondary one E∗ ( 6=E) which exists
under certain conditions. When the secondary c.t.e. E∗ does not exist, then a (concentric to E i) hyperbola exists
instead, with its two branches being tangent to all three given mutually conjugate ellipses E i, i = 1,2,3. The
provided examples and figures were demonstrating these results.
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