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ABSTRACT

In this article, we study the tensor product surfaces of two Lorentzian planar, non-null curves to
have pointwise 1-type Gauss map.
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1. Introduction

B. Y. Chen initiated the study of the tensor product immersion of two immersions of a given Riemannian
manifold [7]. This concept originated from the investigation of the quadratic representation of submanifold.
Inspired by Chen’s definition, F. Decruyenaere, F. Dillen, L. Verstraelen and L. Vrancken studied in [9] the
tensor product of two immersions of, in general, different manifolds. Under some conditions, this realizes an
immersion of the product manifold.

Let M and N be two differentiable manifolds and assume that

f : M → Em,

and
h : N → En

are two immersions. Then the direct sum and tensor product maps are defined respectively by

f ⊕ h : M ×N → Em+n

(p, q)→ f(p)⊕ h(q) = (f1(p), . . . , fm(p), h1(q), . . . , hn(q))

and
f ⊗ h : M ×N → Emn

(p, q)→ f(p)⊗ h(q) = (f1(p)h1(q), . . . , f1(p)hn(q), . . . , fm(p)hn(q)) (1.1)

Necessary and sufficient conditions for f ⊗ h to be an immersion were obtained in [10]. It is also proved
there that the pairing (⊕,⊗) determines a structure of a semiring on the set of classes of differentiable
manifolds transversally immersed in Euclidean spaces, modulo orthogonal transformations. Some semirings
were studied in [9].

Let M be a submanifold of a Euclidean space. We denote by G the Gauss map of M , which is defined as in
[5]. In addition the laplacian of G is denoted by ∆G.

If a submanifold M of a Euclidean space has 1- type Gauss map G, then ∆G = λ(G+ C) for some λ ∈ R and
some constant vector C. There are some surfaces, such as the helicoid, catenoid, right cones in E3 and also some
hypersurfaces, the Laplacian of their Gauss map take the form
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∆G = f(G+ C) (1.2)

for some smooth function f on M and some constant vector C. A submanifold with pointwise 1-type Gauss
map is said to be of the first kind if the vector C in (1.2) is the zero vector. Otherwise, a submanifold with
pointwise 1-type Gauss map is said to be of the second kind.

Surfaces in Euclidean spaces and in pseudo-Euclidean spaces with pointwise 1-type Gauss map were
recently studied in [1], [5], [8], [11], [13], [14], [15], [17] and [18].

In [2], Arslan et al. investigated a tensor product surface with pointwise 1-type Gauss map in Euclidean 4-
space E4. In addition tensor product immersions with harmonic Gauss map and tensor product immersions of
two plane curves with pointwise 1-type Gauss map in Euclidean 4- space E4 are studied. Also tensor product
surfaces of a Lorentzian space curve and a Lorentzian plane curve were studied in [12].

In this article, we investigate a tensor product surfaceM which is obtained from two curves. One of them is a
Lorentzian circle and the other is a unit speed curve in E2

1. First, we obtain necessary and sufficient conditions
for being of M with a harmonic Gauss map according to casual characters of the tangent vectors. Further we
investigate tensor product immersions of two Lorentzian plane curves mentioned above with pointwise 1-type
Gauss map of first kind in pseudo-Euclidean 4- space E4

2.
We remark that the notions related with pseudo- Riemannian geometry are taken from [16].

2. Preliminaries

In the present section we give some definitons about Riemannian submanifolds from [4] and [6]. Let ι : M →
En be an immersion from an m−dimensional connected Riemannian manifold M into an n− dimensional
Euclidean space En. We denote by g the metric tensor of En as well as induced metric on M . Let ∇̄ be the Levi-
Civita connection of En and ∇ the induced connection on M . Then the Gaussian and Weingarten formulas are
given by

∇̄XY = ∇XY + h(X,Y ),

∇̄Xξ = −AξX +∇⊥Xξ,

where X,Y are vector fields tangent to M and ξ normal to M , h is the second fundamental form, ∇⊥ is linear
connection induced in the normal bundle T⊥M , called normal connection and Aξ is the shape operator in the
direction of ξ that is related with h by,

< h(X,Y ), ξ >=< AξX,Y > .

The covariant differentiation ∇̄h of the second fundamental form h on the direct sum of the tangent bundle
and the normal bundle TM ⊕ T⊥M of M is defined by

(∇̄Xh)(Y,Z) = ∇⊥Xh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ)

for any vector fields X,Y and Z tangent to M . Then we have the Codazzi equation

(∇̄Xh)(Y, Z) = (∇̄Y h)(X,Z) (2.1)

We denote by R the curvature tensor associated with ∇;

R(X,Y )Z = −∇X∇Y Z +∇Y∇XZ +∇[X,Y ]Z,

and denote by R⊥ the curvature tensor associated with ∇⊥;

R⊥(X,Y )η = ∇⊥Y∇⊥Xη −∇⊥X∇⊥Y η −∇⊥[X,Y ]η

[6].
The equations Gauss and Ricci are given by

< R(X,Y )Z,W >=< h(X,W ), h(Y,Z) > − < h(X,Z), h(Y,W ) > (2.2)
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< R̄(X,Y )η, ξ > − < R⊥(X,Y )η, ξ >=< [Aη, Aξ]X,Y > (2.3)

for any vector fields X,Y, Z,W tangent to M and ξ, η normal vector fields to M .
Let G(m,n) denote the Grassmannian manifold consisting of all oriented m- planes through origin of En.The

Gauss map G : M → G(m,n) of M is a smooth map which carries a point p ∈M into the oriented m− plane
through the origin of En obtained by the parallel translation of the tangent space of M at p in En.

Since G(m,n) is canonically embedded in ΛmEn = EN , N =
(
n
m

)
, the notion of the type of the Gauss

map is naturally defined. If {e1, e2, ..., em} is an oriented orthonormal normal frame on M , then the Gauss
map G : M → G(m,n) ⊂ EN is given by G(p) = (e1Λe2Λ...Λem)(p). The inner product on ΛmEn is defined by
w1 = u1Λu2Λ...Λum, w2 = v1Λv2Λ...Λvm

< w1, w2 >= det < ui, vj > . (2.4)

For n = 4, an orthonormal basis of Λ2E4 with respect to this inner product is the set

{eiΛej | 1 ≤ i < j ≤ 4}.

For any real function f on M, the Laplacian of f is defined by

∆f = −
∑

εi
i

(∇̄ei∇̄eif − ∇̄∇ei
eif) (2.5)

3. Tensor product surfaces with finite type Gauss map

In the following section, we will consider the tensor product immersions which is obtained from two
Lorentzian planar curves (for geometry of tensor product surfaces of Lorentzian planar curves see [3]).

Let c1 : R→E2
1 and c2 : R→E2

1 be two Lorentzian curves. Put c1(t) = (α1(t), α2(t)) and c2(s) = (β1(s), β2(s)).
Then by considering (1.1) their tensor product surface is given by

x = c1 ⊗ c2 : R2 → E4
2

x(t, s) = (α1(t)β1(s), α1(t)β2(s), α2(t)β1(s), α2(t)β2(s)). (3.1)

The metric tensor on E2
1 and E4

2 is given by
g = −dx21 + dx22

and from [12],

g = dx21 − dx22 − dx23 + dx24, (3.2)

respectively.
If we take c1 as a Lorentzian unit circle c1(t) = (sinh t, cosh t) and c2(s) = (α(s), β(s)) is a spacelike or timelike

curve with unit speed then from (3.1) the surface patch becomes

M : x(t, s) = (α(s) sinh t, β(s) sinh t, α(s) cosh t, β(s) cosh t) (3.3)

An orthonormal frame tangent to M with respect to (3.2) is given by

e1 =
1

‖c2‖
∂x

∂t

=
1

‖c2‖
(α(s) cosh t, β(s) cosh t, α(s) sinh t, β(s) sinh t),

e2 =
∂x

∂s

= (α
′
(s) sinh t, β

′
(s) sinh t, α

′
(s) cosh t, β

′
(s) cosh t).

Also, the normal space of M is spanned by
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n1 =
1

‖c2‖
(β(s) cosh t, α(s) cosh t, β(s) sinh t, α(s) sinh t),

n2 = (β
′
(s) sinh t, α

′
(s) sinh t, β

′
(s) cosh t, α

′
(s) cosh t),

where

g(e1, e1) = −g(n1, n1) = −g(c2(s), c2(s))

‖c2‖2
= ε1,

g(e2, e2) = −g(n2, n2) = g(c
′

2(s), c
′

2(s)) = ε2

and ε1 = ∓1, ε2 = ∓1.
By covariant differentiation with respect to e1 and e2 a straightforward calculation gives

∇̄e1e1 = aε2e2 − bε2n2
∇̄e1e2 = −aε1e1 − bε1n1
∇̄e1n1 = −bε2e2 + aε2n2
∇̄e1n2 = −bε1e1 − aε1n1

(3.4)

∇̄e2e1 = −bε1n1
∇̄e2e2 = −cε2n2
∇̄e2n1 = −bε1e1
∇̄e2n2 = −cε2e2

(3.5)

where a, b and c are Christoffel symbols and as in follows

a = a(s) =
ββ

′ − αα′

‖c2‖2
, (3.6)

b = b(s) =
α

′
β − αβ′

‖c2‖2
, (3.7)

c = c(s) = α
′
β

′′
− α

′′
β

′
. (3.8)

Corollary 3.1. If b = 0 then c is also zero.

By using Corollary 3.1 and the equalities (3.4) and (3.5) we obtain following corollary.

Corollary 3.2. M is a totally geodesic surface in E4
2 if and only if b = 0.

From (3.4) and (3.5), the induced covariant differentiation on M as in follows,

∇e1e1 = aε2e2,
∇e1e2 = −aε1e1,
∇e2e1 = 0,
∇e2e2 = 0.

 (3.9)

∇⊥e1n1 = aε2n2,
∇⊥e1n2 = −aε1n1,

 (3.10)

∇⊥e2n1 = 0,
=

∇⊥e2n2 0,

 (3.11)

where the equalities (3.10) and (3.11) define the normal connection on M .

Lemma 3.1. Let x = c1 ⊗ c2 be a tensor product immersion of a circle c1 and unit speed non-null curve c2 in E2
1 . Then

we have,

An1
=

[
0 bε1
bε2 0

]
, An2

=

[
bε1 0
0 cε2

]
.
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For our goal in this paper, we must calculate the Laplacian of Gauss map. From (2.5) we have following
equality

∆G = (2b2ε2 + b2ε2 + c2ε2)e1Λe2 + (−2abε2 + acε1 − c′)e1Λn2
= +(−3abε2 + b′ε1ε2)e2Λn1 + (2b2ε2 + 2bcε1)n1Λn2.

}
(3.12)

We suppose that the Gauss map of M is harmonic, i.e., ∆G = 0. From (3.12) we get

2b2ε2 + b2ε2 + c2ε2 = 0,
−2abε2 + acε1 − c′ = 0,
−3abε2 + b′ε1ε2 = 0,

2b2ε2 + 2bcε1 = 0.

 (3.13)

By using (3.13), we obtain that ∆G = 0 if and only if b = 0. Thus, by considering Corollary 3.2 we get the
following theorem.

Theorem 3.1. Let M ⊂ E4
2 be a tensor product surface of a Lorentzian plane circle c1 centered at the origin with a unit

speed curve c2 in E2
1. Then the Gauss map of M is harmonic if and only if M is a totally geodesic surface in E4

2.

Let M has pointwise 1-type Gauss map, i.e., ∆G = f(G+ C) and

C = λ12e1Λe2 + λ13e1Λe3 + λ14e1Λe4 + λ23e2Λe3 + λ24e2Λe4 + λ34e1Λe2, (3.14)

where e3 = n1, e4 = n2. Because of the set {eiΛej | 1 ≤ i < j ≤ 4} is an orthonormal basis of Λ2E4, we have the
followings,

2b2ε2 + b2ε2 + c2ε2 = f(1 + λ12)
−2abε2 + acε1 − c′ = fλ14
−3abε2 + b′ε1ε2 = fλ23

2b2ε2 + 2bcε1 = fλ34

 (3.15)

λ13 = λ24 = 0 (3.16)

By considering (2.2) and (2.3), we see that Gauss and Ricci equations ofM are identical and they are obtained
as in follows,

a′ − a2ε1 = b2ε1 − bcε2. (3.17)

On the other hand, Codazzi equation of M is

b′ = 2abε1 − acε2 (3.18)

Thus we give the following theorem.

Theorem 3.2. If M is a tensor product surface of a Lorentzian circle and a non-null unit speed curve in E2
1 then the

Christoffel symbols of M satisfy the following Riccati equation

(a+ b)
′

= ε1 (a+ b)
2 − cε2 (a+ b) .

From (1.2), (3.15), (3.16), (3.17) and (3.18) we obtain following theorem.

Theorem 3.3. Let M ⊂ E4
2 be a tensor product surface of a Lorentzian plane circle c1 centered at the origin with a unit

speed curve c2 in E2
1. Then we have the followings:

i) If ε1 = ε2, M doesn’t have pointwise 1-type Gauss map of first kind.
ii) If ε1 = −ε2 = 1, M has pointwise 1-type Gauss map of first kind if and only if

b = c = λ(β2 − α2)−3/2

a′ − a2 = 2b2

iii) If ε1 = −ε2 = −1, M has pointwise 1-type Gauss map of first kind if and only if

b = c = λ(α2 − β2)3/2

a′ + a2 = −2b2
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