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ABSTRACT

We exhibit a cocycle in the simplicial de Rham complex which represents the Euler class. As an
application, we construct a Lie algebra cocycle on Lso(4).
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For any Lie group G, we can define a simplicial manifold {VG(*)} and a double complex Q*(NG(x)) on it.
In classical theory, it is well-known that the cohomology ring of the total complex Q*(NG) is isomorphic to
H*(BG) where BG is a classifying space of G, which is not a manifold in general [2] [5] [6].

In [4], Dupont introduced another double complex A**(NG) on NG such that the cohomology ring of its
total complex A*(NG) is also isomorphic to H*(BG). He used it to construct a homomorphism from I*(G),
the G-invariant polynomial ring over Lie algebra G, to H*(BG). By using Dupont’s method, in [8] the author
exhibited cocycles in Q*(NG) which represent the Chern characters. In this paper, we will exhibit cocycles
which represent the Euler classes.

Using a cocycle in *(NG), we can construct a cocycle in the local truncated complex [0, .(NG)] due to
Brylinski [3]. Furthermore, we can obtain a Lie algebra cocycle of a free loop group LG. Following Brylinski’s
idea, we will construct a Lie algebra 2-cocycle on Lso(4) using a cocycle in Q4(NSO(4)).

1. Review of the universal Chern-Weil Theory

In this section we recall the universal Chern-Weil theory following [5]. For any Lie group G, we have
simplicial manifolds NG, NG and simplicial G-bundle v : NG — NG as follows:

qg+1—times

—
NG(Q>:GX'”XG9(917"'agq+1)

g—times

———
NG(q)=Gx -+ xG>(h1, - ,hy):
face operators ¢; : NG(q) - NG(¢—1)

(ha, -, hq) 1 =0
5i(h17"'>hq): <h17"';hihi+1a"'ahq) 1= a"'7q_1
(I’Ll,”' ,hq_l) izq.

We define v : NG — NG as y(go, - ,94) = (9001, 1 §g—194 1)-

For any simplicial manifold X = {X,}, we can associate a topological space || X || called the fat realization.
It is well-known that || 7 || is the universal bundle EG — BG [7].
Now we introduce a double complex associated to a simplicial manifold.
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Definition 1.1. For any simplicial manifold {X,} with face operators {e.}, we define a double complex as
follows:
PI(X) = Q1(X,)

Derivatives are:

ptl
d = Z(fl)iefk d" := (—1)? x the exterior differential on Q*(X,).

IRl
1=0

For NG and NG the following holds [2] [5] [6].

Theorem 1.1. There exist ring isomorphisms
H(Q*(NG)) =2 H*(EQG), H(Q*(NG)) = H*(BG).

Here Q*(NG) and Q*(NG) mean the total complexes.

There is another double complex associated to a simplicial manifold.

Definition 1.2 ([4]). A simplicial n-form on a simplicial manifold {X,} is a sequence {¢"} of n-forms ¢ on
AP x X, such that

(e xid) ¢® = (id x £;) ™Y on AP7! x X,,.

Here &' is the canonical i-th face operator of A?.

Let A™!(X) be the set of all simplicial (k + [)-forms on A? x X, which are expressed locally of the form
Z Qijyevig gy -y (dtil VARERIVAN dtik A dl‘jl VACERIVAN dl‘jl)

where (to,t1,--- ,tp) are the barycentric coordinates in A? and z; are the local coordinates in X,. We define
derivatives as:
d' = the exterior differential on AP

d" := (—1)* x the exterior differential on X,.

Then (A®!(X),d’,d") is a double complex and the following theorem holds.

Theorem 1.2 ([4]). Let A*(X) denote the total complex of A**(X). A map In : A*(X) — Q*(X) defined as In(a) :=
Jan(@larxx,) induces a natural ring isomorphism I} : H(A*(X)) = H(Q*(X)).

Let G denote the Lie algebra of G. A connection on a simplicial G-bundle = : {E,} — {M,} is a sequence of
1-forms {6} on { £, } with coefficients G such that 6 restricted to A? x E, is a usual connection form.
There is a canonical connection § € A}(NG) on v : NG — NG defined as follows:

0|A1’><Né(p) = t000 + -+ tp9p.

Here 0; is defined as 6; = prj0 where pr; : A? x NG(p) — G is the projection into the (i + 1)-th factor of NG(p)
and 6 is the Maurer-Cartan form of G. We obtain also its curvature Q € A%2(NG) on 7 as:

1
Qarxncep) = Blarxnaep) T 5[0|A1”><NG(1))30|A1"><Né(p)]'

Let I*(G) denote the ring of G-invariant polynomials on G. For P € I¥(G), we restrict P(Q) € A?*(NG) to
each A? x NG(p) and apply the usual Chern-Weil theory then we have I (P(Q)) € Q**(NG). In this way we
have a homomorphism I*(G) — H(*(NG)) which maps P € I*(G) to [Ia(P(2))].
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2. The Euler class in the double complex

In this section we exhibit a cocycle in Q*(N.SO(2p)) which represents the Euler class of the universal bundle
ESO(2p) — BSO(2p). Throughout this section, G means SO(2p).
Recall that the polynomial on so(2p) called Pfaffian is defined as follows:

1
PE(4, -, 4) = 220 7rppl D s8n(T)aryr(@) - Ar(ap-1)r(2)-
7'66217

Here a;; is a (¢, j) entry of A € so(2p).

2.1. The cochain on the edge

We first give the cochain in Q27! (NG(1)) which corresponds to the Euler class. This is given by integrating
Pf (Q| a1y nvG (1)) along AL Since Q|a1y ng 1y = —dtr A (o — 01) — tot1 (6 — 61)2, we can see Pf (a1 vaq)) s
equal to

1

Tl > sen(r)((=dty A (6o — 1) — tota (6o — 01)%)r(1)r(2)

T7€G2m
s (=dty A (0o — 01) — tot1 (60 — 01)%)r(2p—1)7(2p))-

We set: B
PF = (00 = 01)2 (1), (2) - (B0 = 01)% (o5 3y 21-2) (B0 = 01) 2k 1) (20)

(B0 = 01)2 okt 1yr(2nr2) - (B0 = 01)2 (2 1)r(2p)-
Then the following equation holds.

1 1 - p B
/Al Pf (Q|A1><NG'(1)) = (—l)pm </O (totl)p 1dt1> Z ZSgn(T)Pf.
TEGzp k=1
Now we obtain the cochain in Q*~1(NG(1)).

Proposition 2.1. The cochain p,, in Q*?~*(NG(1)) which corresponds to the Euler class is given as follows:

1 1 y
1y sgn(7 Pf~
p = (=1) 22p7Ppl 9 1Cp—1 'pTeZGQ ; e

Here PF is defined as:

P} = (h*dh)3<1)7(2) e (hildh)-zz-(Qk—?,)-r(Qk—Q)(hildh)T(Qk—l)T(Qk)(hildh)3(2k+1)r(2k+2) s (hildh)i(Qp—l)T(2p)'

T T

1
Proof. This follows from the equation / (tot1)Ptdt, = _ and ~* Z sgn(7)P* = Z sgn(7)PF.
0 2p—1Cp—1 D

TEGY, TEGy,
0
As a special case of Proposition 3.1, we obtain the following theorem.

Theorem 2.1. In the case of G = SO(2), the cocycle Ey 1 in Q*(NG) which represents the Euler class of ESO(2) —
BSO(2) is given as follows:

Fiy =~ (=(h 'dh)is + (h"'dh)s) € Q1 (SO(2)).

47
b — cos —sinf
~ \sinf cos@

www.iejgeo.com

If we write an element h in SO(2) as



http://www.iej.geo.com

N. Suzuki

then the equation
1, (0 —db
hodh = (d& 0 >

1 de
i —(2d9) = o

holds, so we obtain
Eiq=

2.2. The cochain in QP (NG (p))

p
In QP(NG(p)), QarxnGp) 18 equal to — Zdti A (6 —0;) — Z tit;(0; —0;)?, so the cochain
i 0<i<j<p
Jar PEQlarxnG(p)) In QP(N G (p))which corresponds to the Euler class is given as follows:

1
22p ) Z sen( Zdt A T<1 T2 Zdt M )r(zp 1)r(2p)”

TEG,,

Now
dt; A (90 — 91') =dt; A {(90 — 91) + (91 — 92) + o4 (0im1 — 91)}

and for any differential forms «,3,7 and any integer 0 <k,l,x <p, the equation oA (dt; A (8, —
Ou+1)r(2k—1)r(2k)) A B A (dtj A (O — Oup1)r—1)r20) Ay = —a A (dlj A (0n — Out1) 7 (26—1)7(20)) A B A (dbi A
(02 = Oz11)r(20-1)r(21)) A7 holds, so the terms of these forms cancel with each other in P£(Q[rr« n(p))-
We set:
s :=hy-he_1dhsh7t---hTh

Then we can check that v*¢, = ¢g1(0s_1 — 65)97 ! hence we obtain the following proposition.
Proposition 2.2. The cochain p, in QP (NG (p)) which corresponds to the Euler class is given as follows:

(p+1)
(=)= )p

Hp = P rp (2 Z Z sgn(7)sgn(0) (Yo (1)) r(1)r(2) ** (Po(p))r(2p—1)r(2p)-
06, T€G,,

Using Proposition 3.1 and Proposition 3.2, we obtain the cocycle which represents the Euler class of
ESO(4) — BSO(4) in Q*(NSO(4)).

Theorem 2.2. In the case of G = SO(4), the cocycle which represents the Euler class of ESO(4) — BSO(4) in Q*(NG)
is the sum of the following E1 5 and Es o:

0
o
Eis € Q3(SO()) —L—  Q3(SO(4) x SO(4))
I
Bys € Q2(SO(4) x SO(4)) —L— 0

1 _ _
Ei3= o 6263 sgn(7) (b~ dh) ryr2) (R dR) 5 4

+(h™ dh) (1)7(2)(’1 dh)r(3)7(4))

> sen(r) ((hy ' dha)r1yr(2) (dhohy ) yra
TES,

-1
E =
227 642

+(dh2h2_1)7(1)7(2) (hfldh1)r(3)7(4)) :
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2.3. The cocycle in QPT9(NG(p — q))

Repeating the same argument in section 3.2, we obtain a cocycle in Q**4(NG(p — q)).
We set:

Rij = (pit+ i+ +¢i1)?  (1<i<j<p—gq+1).
Theorem 2.3. The cocycle in QPT4(NG(p —q)) (0 < ¢ <p— 1) which represents the Euler class of ESO(2p) —
BSO(2p) is
Yo 2@ Ry (Pom)r@a
€S, _4,TEGC,,

 (Rigjy)r2p—3)7(2p—2) (Po(p—q) ) 7(2p—1)7(2p))

where Ri; (1 <i < j <p—q+1)areput q-times between ¢,y and @ .41y or the edge in Y, (1) - - - o (p—q) permitting
overlaps and ) means the sum of all such forms. T}]:7 is defined as:

( 1)p+ (p=g)(p=g=1) q)(P q—1)
7—70- P— L
Tp,q - Sgn(T)Sgn(U) 22pﬂ'pp' (/Ap q H 1— 1t] 1 Jdt] VANRERIVAN dtp q>

i<J

where r;; means the number of R;; in each form.

Theorem 2.4. In the case of G = SO(6), the cocycle which represents the Euler class in QS(NG) is the sum of the
following E 5, Eo 4 and E3 3:

0
By € (G) —4— (NG(2))

E274 S Q4(NG(2)) Em— Q4(NG(3))

Td/l
B3z € B(NGB3) —2— 0

-1
Ei 5= 2618073 Z sgn(T)((h dh) (1)7(2)(h dh)r(3)7(4)(h dh)f(5)f(6)
T7€66

+(h7 dh)(1yr(2) (R dR)2 gy (R dR) 2 (5)7(6)
+(h ) r(1)yr(2) (R AR 2 (3)7(a) (B dR)2 (51 6))

1
Eya = 55— D seu(n)
T7€G¢

<(hfldh1)7(1>r<2> (dhohy ) z(3)r(a):

(2h;1dh1h;1dh1 + 2dhohy ' dhohy ' + hy'dhydhohy ' + dhghglhfldhl) e
7(5)7(6

+(hi'dhi), 1)7(2)(% dhyhitdhy + 2dhohy P dhohy

+hdhidhohy ' + dhghglhl_ldh1> (dhahy ™) (s (6)

7(3)7(4)

+(2h;1dh1h;1dh1 + 2dhahy 'dhohy ' + by tdhydhahy t + dhzhglhfldhl) )
T(1)7(2

(R ) r(3yr(a) (dhahy ) 2 (5)r(6)
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—(dhahy ')z (1yr(2)(hy ' dhi)z(3yr(a)-

(2h;1dh1h;1dh1 + 2dhohy ' dhohy ' + by 'dhidhohyt + dhghglhfldhl) .
7(5)7(6

—(dhah3 )7 (1yr(2) (2h1‘1dh1h1‘1dh1 + 2dhahy tdhohy !

+hy 'dhydhohy ! +dh2h51h;1dh1) “ (4)(h;1dh1)7(5)7(6)

T

_ (th_ldhlhl_ldhl =+ 2dh2h2_1dh2h2_1 + hl_ldhlthh;l + thhQ_Ihl_ldhd) (1) (2)

.(dhzh;)T(g)T(@(hl1dh1)7(5>T<6)>-

1
B33 = 26 . 6273 Z sgn(7)-
T€EGH

((h11dh1)‘r(l)‘r(2) (dhahy ') (3yr(ay (hadhshs ' hy ) o (5)-(6)

—(dhahy )71y (2) (hy ' dha) r3)r () (hadhshy P hy b 5y (6)
—(hy 'dh1) 7 (1yr(2) (hadhshs ' ha ') 1 (3)7(a) (dh2hs ') (5)7(6)
+(hadhshy " hy ') r1yr2) (hy H b)) 3)r ) (dh2hs ) 5)76)
+(dhahy ') 7 (1)r(2) (hadhahy  hy )2 (s)ra) (BT dha) 25y (6)

—(hadhsh3 ' h3 ") 1) (2) (dh2h21)7(3)7(4)(h11dh1)7’(5)‘r(6))~

3. The cocycle in a local truncated complex

We recall the filtered local simplicial de Rham complex due to Brylinski [3].

Definition 3.1 ([3]). The filtered local simplicial de Rham complex F?Q;’"(NG) over a simplicial manifold NG

is defined as follows:

FPQIS (NG) = hgnle\/CGr Q(V) ifs>p
o 0 otherwise.

Let FPQ*(NG) be a filtered complex

Q°(NG(r)) ifs>p
0 otherwise

FPQ™(NG) = {

and [0.,Q*(NG)] a truncated complex

0 ifs>p

[o<p 2 (NG)] = {Q(S'(Ng(r)) otherwise.

Then there is an exact sequence:
0— FPQ"(NG) —» Q" (NG) = [0, (NG)] = 0

which induces a boundary map 3 : H/(NG, [0<,Q..]) = HPL(NG, [FPQ; ).

Let p1 + -+ fip, fip—g € QPTI(NG(p — q)) be a cocycle in Q??(NG). Using this cocycle, we can construct a

cocycle nin [0, . (NG)] in the following way.
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We take a contractible open set U C G containing 1. Using the same argument in [5], we can construct
mappings {o; : Al x U' = U}y<; inductively with the following properties:
(D) oo(pt) = 1;
@)
oi—1(to, -+ s ti—i;s€i(he, - ) ifj>1

I(tg, - ti—1)ihe, - hy) =
01(5(0 11) 1 l) {hl-al_l(to,-",tl—l;h2""vhl) if 7=0.

We define mappings { fyq : A7 x U4~ — G™} as

fm,q(t07"' 7tq;h17"' ,hm+q,1) = (hh'" 7h,m,1,0'q(t07' © 7tq;hm7"' 7hm+q71))‘

A (2p — m — q)-form S, , on U™+ 1 is defined as S, = (=1)™ [, fr.qtm- Then we define the cochain 7 as
the sum of following 7, on U?~1=! for0 <[ <p—1:

m = E Brm.g-
m+q=2p—1l, p>m2=>1

Theorem 3.1 ([3][8]). n:=mno+---+mp—1 is a cocycle in [op,Q (NG)] whose cohomology class is mapped to
(1 + -+ pp) in H* (NG, [FPQ; ) by a boundary map 3 : H*~Y(NG, [0, ]) = H* (NG, [FPQL ).

Proof. See [8]. O

4. Construction of a Lie algebra cocycle

For any Lie group G, let C}%.(G?,R) denote the group of germs at (1, --- , 1) of smooth functions G? — R and
H} (G,R) denote the cohomology group of the following complex:

=TT (e
—==

= C(G"R) = O (GPTLR)

Brylinski constructed a natural cochain map ¢ : C}, (G,R) — C?(G,R) as follows:

P(e) (&, -+, &p) =

oP

[m Z Sgn(ﬂ>c(eXp(9p(1)§p(1))7"' anp(yp(p)fp(p)>)]yi:0

pPESG,

where C?(G,R) is the space of smooth alternating multilinear maps G — R and ¢; € G. For example, if we take
oc e CZOOOC(GQ, R) and set Xp(i) = eXp(yp(i)fp(i)) then

2

d(dc)(&1,&2) = | > sgn(p)(3e)(X (1), Xp(2))lyi=o

0y10y2 ol
62
=590, pEZGQ sgn(p)(e(Xp2)) — (X)X o)) + (Xp(1)))yi—o
82
- [8y13y2 (—e(X1 Xy = Xo X3))lyi=0 = (d(#(€))) (&1, &2)-

Let LU be the free loop space of a contractible open set U C SO(4) containing 1 and ev: LU x S' — U be
the evaluation map, i.e. for y € LU and 6 € S', ev(y,0) is defined as (). Then [, ev* maps n, € Q' (U?) to a
cochain in Q°(LU?). This cochain defines a cohomology class in local cohomology group HZ .(LSO(4),R). So
as an application of Theorem 3.2, we can obtain a cocycle in ¢( [, ev*n,) € C?(Lso(4), R).

Now we compute this cocycle. We define:

* * * * *
a:= / ev fioE13, b:= / ev fo1E22, c:= / ev'm
St A2 ’ S1 Al St
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then ¢(y1,7v2) = a(y1,72) + b(y1,72) for v1,v2 € LU. Recall that
f12(to, t1,t2;71(0),72(0)) = 02(to, t1,t2;71(0),72(0))

f2,1(to, t1,t2;71(0),72(0)) = (71(0), o1(to, t1;72(0)))-

In this case we can take:

Yi(0) = exp(yi&i(0))
o1 (to, t1;exp(y262(0))) := exp(t1y2€2(0))
o2(to, t1, t2; exp(y161(0)), exp(y262(0))) = exp((1 — to)y1€1(0)) exp(t2y282(0))

where ¢; € Lso(4). By observing the coefficient of y;y2, we see ¢(a(y1,72)) = 0.
We define a map 3., -, : S* x Al = SO(4) x SO(4) as follows:

6717'7’2 (9; tOvtl) = (71 (9)’ 01 (t0>t1§'72(9)))'
Then b(v1,72) = [g1y a1 B2, 5, E2,2 and up to O(|y1|?) and O(Jyz|?),

aﬁ'ﬂm _ 3{1 (9) ¢ 352(9) 8571,72
90 N7 270 ) oy

= (0,9262(0)) .

Therefore

0? -1 L 706(0)
[8y18y2b(71’72)]“:°* 12872 Z Sgn(T)/ ( a0 >T<1)T<2>52(6%(3)7(4)%

TES, 0
Now we obtain the following theorem.
Theorem 4.1. There exists a Lie algebra 2-cocycle oo on Lso(4) which is expressed as follows:

CISHSIE 128 7 DO (bgﬂ

TES,

1 851(9)) (8&(9)) )
0)r(3)7(4) — 0)r(31r(a) )40 ).
/O << 90 @ §2(0)r(3)r(a) 90 ) §1(0) (3 (4))
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