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ABSTRACT

In this paper, we study curvature theory of point-line trajectories in Lorentz 3-space. We give
the characterization by indicatrix, directrix and their relationship in Lorentz 3-space. We use this
characterization and relationship to depict a point-line trajectory.
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1. Introduction

Point-line trajectory is a very commonly encountered topic in many industrial applications such as welding,
cutting, painting, milling, screwing and instrument probing. Point-line trajectory is used as a tool to trace a
path with the tool axis oriented in a certain direction while the rotation about the axis is irrelevant, [13].

There are many studies dealing with the curvature theory of line trajectory [1, 2, 3, 4, 5, 6, 7]. One of
these studies is presented by McCarthy and Roth [6]. Then, Ryuh and Pennock [10] carried out this theory
to trajectory planing of robot end-effectors. They studied directrix and the trajectory of the tool center point.
But, the relationship and coordination between the directrix and indicatrix are given by Ting and friends [13].
For detailed information, see [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1].

This study is related with relationship and coordination between the directrix and indicatrix in Lorentz
3−space and presents curvature theory of point-line trajectories in Lorentz 3−space. We investigate Ting and
friends’, [13], results in Lorentz 3−space.
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Definition. A vector u in E3
1

is said to be spacelike if 〈u, u〉 > 0 or u = 0, timelike if 〈u, u〉 < 0, lightlike or null
if 〈u, u〉 = 0 and u 6= 0. We define the signature of a vector u as

ε =

 1, u is spacelike
0, u is lightlike
−1, u is timelike.

The norm of a vector u ∈ E3
1

is defined by ‖u‖ =
√
|〈u, u〉|, [8].
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3. Characterization by Indicatrix, Directrix and Their Relationship

A point-line trajectory with a one parameter motion is a patch on a ruled surface that can be denoted as a
two dimensional set of points defined by the succeding equation

X(t, ψ) = r(t) + ψR(t) (3.1)

where t is an independent parameter, r(t) andR(t) are respectively, the directrix and indicatrix of the point-line
trajectory and ψ is also an independent parameter indicating a physical point on the point-line determined by
r(t) and R(t).
The indicatrix of a point-line trajectory in Lorentz 3-space can be acted as a spherical curveR(t) on a unit pseudo
sphere S2

1 in E3
1. Let s

R
be the arc length of the spherical curve

s
R
=

∫ t

0

〈Ṙ, Ṙ〉1/2dt. (3.2)

The unit spacelike tangent vector T to the indicatrix is given by the derivative of R with respect to s
R

is

R′ = T. (3.3)

Let K = R× T be a timelike vector, the three mutually orthogonal unit vectors [R, T,K] define a geodesic
trihedron and denoted by [R]. The first order derivative of [R] with respect to s

R
is R′

T ′

K ′

 =

 0 1 0
−1 0 γ

R

0 γ
R

0

 R
T
K

 , (4)

where γ
R

is the geodesic curvature.
Unit timelike vector N of R(t) represents the direction of T ′. Let B = −T ×N be a spacelike vector and called
binormal of R(t). The three mutually orthogonal unit vectors [T,N,B] define a natural trihedron and denoted
by [T ]. Their derivative relations are given as T ′

N ′

B′

 =

 0 κ
R

0
κ

R
0 τ

R

0 τ
R

0

 T
N
B

 , (5)

where curvature κ
R

and torsion τ
R

characterize completely differential properties of the indicatrix up to the
third order. Since R(t) stays on a unit pseudo sphere, from [14], it can be proved that

τ
R
= ±

κ′
R

κ
R

√
1± κ2

R

(6)

and κ
R

and γ
R

have the following relationship

κ2
R
= ±(γ2

R
− 1). (7)

The relationship between geodesic trihedron [R] and natural trihedron [T ] can be expressed as T
N
B

 =

 0 1 0
sinh θ 0 cosh θ
cosh θ 0 sinh θ

 R
T
K

 , (8)

where θ is referred to as the hyperbolic angle. (See Figure 1.) From equations (4) and (5), we have

sinh θ = − 1

κ
R

and cosh θ =
γ

R

κ
R

. (9)

In some cases it may be desirable the derivatives according to t. So, the derivatives of R(t) are obtained as

Ṙ =
dR

dt
= γT, (10)
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Figure 1. Trihedrons [R] and [T ] and the hyperbolic angle

R̈ = γ̇T + γ2κ
R
N, (11)

...
R = (γ̈ + γ3κ2

R
)T + (3γ̇γκ

R
+ γ3κ′

R
)N + γ3κ

R
τ
R
B. (12)

Here, γ =
ds

R

dt
is speed of the indicatrix or the angular velocity of the point-line motion.

The directrix of a point-line trajectory is a spacelike curve denoted by r(t). Let s
r

refer to the arc length of the
directrix,

s
r
=

∫ t

0

〈ṙ, ṙ〉1/2dt (13)

and the derivatives of a variable with respect to s
r

in the context of directrix be denoted by a superscript prime.
The unit spacelike tangent vector t of the directrix, with respect to s

r
:

r′ = t. (14)

Therefore, the Frenet relations of r(t) can be written as t′

n′

b′

 =

 0 κr 0
κ

r
0 τ

r

0 τ
r

0

 t
n
b

 , (15)

where t, n, b are the unit spacelike tangent, timelike normal and spacelike binormal vectors of r(t) and κr and
τr are the curvature and torsion of r(t). Let us denote the unit vectors t, n and b as [t].
The derivatives of r(t) with respect to t can be expressed as follows;

ṙ =
dr

dt
= vt, (16)

r̈ = v̇t+ v2κrn, (17)
...
r = (v̈ + v3κ2

r
)t+ (3vv̇κ

r
+ v3κ′

r
)n+ v3κ

r
τ
r
b, (18)

where v =
ds

r

dt
is the speed of the directrix.

In the text which follows, we will treat the relationship between the directrix and indicatrix curves.
The directrix and indicatrix have been characterized separately up to now. To completely characterize a point-
line trajectory, we must also regard the relationship between the directrix and indicatrix.
The relation between the arc lengths s

R
and s

r
is shown by

ξ =
ds

r

ds
R

, (19)

where ξ is referred to as the velocity ratio. Accordingly, the speed of the directrix and its derivatives can be
given as follows

v = ξγ, (20)

v̇ = ξ′γ2 + ξγ̇, (21)

v̈ = ξ′′γ3 + 3ξ′γγ̇ + ξγ̈, (22)

where ξ′ =
dξ

ds
R

and ξ′′ =
d2ξ

ds2
R

.
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4. Coordination of Directrix and Indicatrix

From the point trajectory, the {t,n,b} trihedron and the characteristic numbers characterizing the directrix
can be determined. To coordinate the direction of the point-line axis with the indicatrix up to the second order,
the required characteristic numbers atT , κR, ξ, and ξ′ need to be determined, [13].
The orientation of the point-line axis with respect to the point trajectory is characterized by parameters atR and
anR. If such a directional relationship is to remain unchanged, atR and anR must be constant. Since atR = R.t
and anR = R.n where R is the unit spacelike vector along the point-line axis, taking the derivatives over the
conditions that atR and anR are constant yields

Ṙ.t+R.ṫ = 0, (23)

Ṙ.n+R.ṅ = 0. (24)

From equations (10), (15) and (19) the above two equations can be rewritten as, respectively,

atT + ξκranR = 0 (25)

and
anT + ξκratR + ξτrabR = 0. (26)

Equations (23) and (24) or (25) and (26) are the conditions for the point-line axis to maintain a consistent
direction with respect to the directrix up to the first order.
Let T = (Tx, Ty, Tz), t = (tx, ty, tz), n = (nx, ny, nz) and if we exchange them into equations (25) and (26), we
get

txTx + tyTy + tzTz + ξκranR = 0,

nxTx + nyTy + nzTz + ξκ
r
atR + ξτ

r
abR = 0.

Unifying the above two equations with the constraints on the magnitude and direction of T ,

T 2
x + T 2

y + T 2
z = 1

and
R.T = 0 and RxTx +RyTy +RzTz = 0,

where R = (Rx, Ry, Rz), T and ξ can be solved. If we solve this equation systems,we get T and ξ as below,
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+ c2

3

, Tz = ± c3√
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2
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3

,

where

c
0

= −txnzRy + txnyRz − tynxRz + tynzRx − tznyRx + tznxRy,

c
1

= −atRκrRytz − abRτrRytz + anRκrRynz + atRκrRzty

+abRτrRzty − anRκrRzny,

c
2

= anRκrRznx + atRκrRxtz + abRτrRxtz − anRκrRxnz

−atRκrRztx − abRτrRztx,

c
3

= −anRκrRynx − atRκrRxty − abRτrRxty + anRκrRxny

+atRκrRytx + abRτrRytx.

If we take the derivative over equations (23) and (24), we have

R̈.t+ 2Ṙ.ṫ+R.̈t = 0, (27)

R̈.n+ 2Ṙ.ṅ+R.n̈ = 0. (28)
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With equations (10), (11), (15) and (19)− (21) the above equations can be rewritten as
1

ξ
(v̇ − γ2ξ′)atT + γ2κ

R
atN + 2γvκ

r
anT + (v̇κ

r
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r
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+ v2κ
r
τ
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abR = 0,

(29)

1
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r
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+ v2(κ′
r
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r
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r
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r
anR) = 0.

(30)

κ
R

and ξ′ can be solved from the above two equations. If we solve these equations, we get
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c
4
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2atT
ξ

, c
5
= γ2atN ,

c
6

= − v̇atT
ξ
− 2γvκ

r
anT − (v̇κ

r
+ v2κ′

r
)anR − v2κ2ratR − v

2κ
r
τ
r
abR,

c7 = −γ
2anT
ξ

, c
8
= γ2anN ,

c
9

= − v̇anT
ξ
− 2γv(κ

r
atT + τ

r
abT )− v̇(κr

atR + τ
r
abR)

−v2(κ′
r
atR + κ2

r
anR + τ ′

r
abR + τ2

r
anR).

5. Conclusions

This paper gives the properties of the curvature theory of point-line trajectories in Lorentzian 3-space. We
have shown that the relation between the curvature and geodesic curvature of indicatrix. The relation between
the direction and indicatrix curves are given.
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