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ABSTRACT

We consider a hyperbolic space Ĥ3 of positive curvature in the projective Cayley – Klein model. In
this model the space Ĥ3 is realized on the ideal domain of a Lobachevskii space Λ3. This domain is
an exterior of a projective space P3 with respect to an oval surface γ called an absolute of the spaces
Ĥ3 and Λ3. The group G3 of projective automorphisms of the oval surface γ is the fundamental
group of transformations for the space Ĥ3 and the Lobachevskii space. In article the classification
of dihedrons of the space Ĥ3 is proposed. It is shown that all dihedrons of the space Ĥ3 belong to
fifteen types wich are invariant under the transformations of the group G3. Dihedrons of six types
are measurable by means of the absolute. Dihedrons of three types have real measures.

Keywords: hyperbolic three-space of positive curvature; dihedron of the hyperbolic three-space of positive curvature; measure of a dihedron; base of a
dihedron.
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1. Introduction

This paper is devoted to the 190th anniversary of non-Euclidean geometry. The first report on non-Euclidean
geometry has been given at the Kazan university by Nikolay Ivanovich Lobachevsky in February, 1826. This
event is considered the birth of non-Euclidean geometry.

1.1. The hyperbolic space Ĥ3 of positive curvature

In a projective space P3 there are three types of non-degenerate surfaces of the second order: oval surfaces;
annular surfaces formed by lines; zero surfaces wich not contain the real points (see, for instance, [2, Chapter V,
§15], [4, Chapter II, §4]). A signature of a quadratic form of the oval, annular, or zero surface equals two, zero,
or, respectively, four. Each oval (or annular) surface divides the space P3 into two non-homeomorphic (or,
respectively, homeomorphic) domains.

In the projective Cayley – Klein model, a hyperbolic space Ĥ3 of positive curvature (a complete Lobachevskii
space Λ3) is realized on the domain of the space P3 that is exterior (interior) with respect to an oval surface γ
[14, Chapter 4, §1]. The spaces Ĥ3 and Λ3 are components of the expanded hyperbolic space H3. The group G3

of projective automorphisms of the oval surface γ is the fundamental group of transformations for Ĥ3, H3, and the
Lobachevskii space. The oval surface γ is called the absolute surface or the absolute of the spaces Ĥ3, H3, and Λ3.

Every line on the space Ĥ3 belongs to one of three types depending on its position with respect to the
absolute. Lines intersecting the absolute in two real points are called hyperbolic. If the intersection is two
imaginary conjugate points, then the line is elliptic. Every tangent line to the absolute is called parabolic (Fig. 1).
All flat angles in Ĥ3 belong to twenty types.

Every real plane of the space Ĥ3 also belongs to one of three types. An elliptic plane crosses the absolute at
a zero curve (see [2, Chapter V, §15], [4, Chapter II, §4]). A hyperbolic plane of positive curvature [10], [11], [14,
Chapter 4, §1] crosses the absolute at an oval curve. Every hyperbolic plane of positive curvature is one of two
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component of the expanded hyperbolic plane. A co-Euclidean plane (see [9], [13], [15]) is a tangential plane to
the absolute and has a pair of imaginary conjugate lines from the absolute (see Fig. 1).
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FIGURE 1. The lines and the planes on the space Ĥ3: the line a is elliptic,
the line b is hyperbolic, the line c is parabolic; the plane α1 is elliptic,

the plane α2 is hyperbolic plane of positive curvature,
the plane α3 is co-Euclidean

In the space Ĥ3 there are also three types of planes pencils. If the axis of a planes pencil is an elliptic
(hyperbolic) line, then this pencil contains two real (imaginary conjugate) tangential planes to the absolute.
Such pencil is called hyperbolic (elliptic). A planes pencil with a parabolic axis contains one real tangential plane
to the absolute. Such pencil is called parabolic.

1.2. The questions of research

In [8] the first stage of a classification of tetrahedrons in the space Ĥ3 is presented. For the full classification
of tetrahedrons in this space the full classification of dihedrons is necessary. We propose such classification in
this article (in section 3). We show that every dihedron of the space Ĥ3 belongs to one of fifteen invariant types.

By means of the absolute of the space Ĥ3 we can introduce two invariant types of measurements in pencils of
planes. In section 4 we introduce the dihedrons measurement in the space Ĥ3 in perfect analogy to the angles
measurement on the hyperbolic plane Ĥ of positive curvature (see [7], [10]). We show that in the space Ĥ3 the
dihedrons of six types are measurable.

Inasmuch as in hyperbolic geometry the measurement of angles is an intricate problem, we provide
all reasonings in detail. We use the principle of objects measurement in spaces with projective metrics.
This principle has been created in classical works [1], [3], [4], [5]. But some stages of reasonings remain
misunderstood modern researchers. As a result in non-Euclidean geometry contradictory assertions collect.
In this article we suggest to return to foundations of the measurement question, to return to understand.

2. Classification of the dihedrons of the space Ĥ3

2.1. The pairs of planes in the space H3

Using for the faces types of dihedrons the designations from the work [8], we denote the type of expanded
hyperbolic planes by H , and the type of elliptic (or co-Euclidean) planes by E (or, respectively, C). The
hyperbolic, elliptic, or parabolic type of a planes pencil we denote by h, e, or, respectively, p.

There are six types of orderless pairs of the planes, each of which belongs to one of three topological typesH ,
E, and C: HH , HE, HC, EE, EC, CC. Disregarding realization opportunities of planes pairs in the space H3,
we obtain eighteen various sets characterizing planes pairs in pencils of three types: HHh, HEh, HCh, EEh,
ECh, CCh, HHe, HEe, HCe, EEe, ECe, CCe, HHp, HEp, HCp, EEp, ECp, CCp.

Every elliptic planes pencil in H3 contains only the expanded hyperbolic planes. Therefore the sets HEe,
HCe, EEe, ECe, CCe have not realization in the space H3. If a pair of planes contains an elliptic plane, then
this pair belongs to a hyperbolic pencil. Moreover, any two co-Euclidean planes of the space H3 determine
some hyperbolic pencil. Therefore the sets HEp, EEp, ECp, CCp have not realization in H3. Thus there are
only nine sets for planes pairs in the spaces H3 and Ĥ3:

HHh, HEh, HCh, EEh, ECh, CCh, HHe, HHp, HCp. (2.1)
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2.2. The dihedrons types of the space Ĥ3

Any two planes of the space Ĥ3 divide this space into two connected parts. We call them the dihedrons
between the given planes. The planes are called faces of the dihedrons between them. Two dihedrons with the
common faces are called adjacent. Let us determine the dihedrons types of the space Ĥ3 in accordance with the
sets from (2.1).

1. The dihedrons with the set HHh.

If the dihedron between two hyperbolic planes of a hyperbolic pencil does not contain (contains) the
co-Euclidean planes of this pencil, we call it the hyperbolic dihedron (hyperbolic pseudodihedron).

2. The dihedrons with the set HEh.

A hyperbolic plane and an elliptic plane divide the space Ĥ3 into two connected topologicaly equivalent
parts. We call them the quasidihedrons between these planes. The quasidihedron containing (not
containing) pole of the hyperbolic face with respect to the absolute is called hyperbolic (elliptic). The
quasidihedron with orthogonal faces is called right.

3. The dihedrons with the set HCh.

Assume that κ1 and κ2 are co-Euclidean planes in a hyperbolic pencil and η is a hyperbolic plane of this
pencil. If the dihedron between the planes κ1 and η does not contain (contains) the plane κ2, we call it the
hyperbolic dihedral flag (hyperbolic dihedral pseudoflag) with the fases κ1 and η.

4. The dihedrons with the set EEh.

If the dihedron between two elliptic planes does not contain (contains) the absolute, we call it the elliptic
dihedron (elliptic pseudodihedron).

5. The dihedrons with the set ECh.

If the dihedron between an elliptic plane and a co-Euclidean plane does not contain (contains) the
absolute hyperquadric, we call it the elliptic dihedral flag (elliptic dihedral pseudoflag).

6. The dihedrons with the set CCh.

If the dihedron between two co-Euclidean planes does not contain (contains) the absolute hyperquadric,
we call it the dihedral valiana (dihedral covaliana).

7. The dihedron with the set HHe.

Two hyperbolic planes of an elliptic pencil divide the space Ĥ3 into two topologicaly equivalent parts.
We call them the semispaces between the given planes.

8. The dihedrons with the set HHp.

If the dihedron between the hyperbolic planes of a parabolic pencil does not contain (contains) the co-
Euclidean plane of this pencil, we call it the layer (pseudolayer) between the given planes.

9. The dihedrons with the set HCp.

A hyperbolic plane and a co-Euclidean plane of a parabolic pencil divide the space Ĥ3 into two
topologicaly equivalent parts. We call them the dihedral parabolic flags between the given planes.

Thus all admissible pairs of planes determine fifteen dihedrons types in the space Ĥ3. We represent all
dihedrons types in the table 1.

3. The dihedrons measurement in the space Ĥ3

3.1. Principles of measurement

In spaces with projective metrics, a measurement of objects determined by two elements of some pencil is
called hyperbolic (elliptic) if it is set by means of the pair of absolute real (imaginary conjugate) elements of the
given pencil. A parabolic measurement is set by means of the pair of real coincided elements (see, for instance,
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Table 1. The types and measures of dihedrons of the space Ĥ3

Measure υ (υ̃) of Type of Types
Type of a dihedron a dihedron a faces of faces

pencil α β
Dihedral valiana — h C C
Dihedral covaliana —
Dihedral hyperbolic flag — h
Dihedral hyperbolic pseudoflag — C H
Dihedral parabolic flag — p
Dihedral elliptic flag — h C E
Dihedral elliptic pseudoflag —
Semispace υ ∈ [0;π] e
Hyperbolic dihedron υ ∈ R+ h
Hyperbolic pseudodihedron υ̃ = i π + υ, υ ∈ R+ H H
Layer — p
Pseudolayer —

υ̃ = ε υ + i π/2,
Quasidihedron υ ∈ R+, h H E

ε = 1;−1; 0
Elliptic dihedron υ ∈ R+ h E E
Elliptic pseudodihedron υ̃ = i π − υ, υ ∈ R+

[4, Chapter VI, §1], [6, Part III, §20.3]). In other words, the measurement type in a pencil is identical to the type
of this pencil. We notice that a figure consisting of all points on a line is also called a pencil of points (see, for
instance, [16, Chapter IX]). We adhere here to traditional names.

Let α and β be planes of the space Ĥ3 and k = α ∩ β. Let us denote the planes pencil with axis k by Θ. The
pencil Θ contains two co-Euclidean planes. We denote them by κ1 and κ2. The pencil Θ is parabolic if and only
if κ1 = κ2.

The cross-ratio of a quadruple of planes from a pencil is an invariant of all projective transformations. Hence
the cross-ratio (αβκ1κ2) is an invariant of the fundamental group G3 of the space Ĥ3. The type of a dihedron is
an invariant of the group G3 too. Therefore we express the measure of the dihedron between the planes α and
β through the cross-ratio (αβκ1κ2).

Let us consider all possibilities.

1. Assume that the faces α and β of the dihedron are non-co-Euclidean planes and the pencil Θ containing
the faces is non-parabolic.

If the pencil Θ is hyperbolic (or elliptic), then the planes κ1 and κ2 are real (or, respectively, imaginary
conjugate). In this case by means of the cross-ratio (αβκ1κ2) it is possible to set the hyperbolic (or,
respectively, elliptic) measurement of dihedrons with axis k. Hence in the space Ĥ3 the following
dihedrons are measurable: semispace, quasidihedron, hyperbolic dihedron, hyperbolic pseudodihedron,
elliptic dihedron, and elliptic pseudodihedron.

2. Assume that the faces α and β of the dihedron are non-co-Euclidean planes and the pencil Θ containing
the faces is parabolic.

In this case the faces α and β of the dihedron are the hyperbolic planes and κ1 = κ2. Therefore we have
(αβκ1κ2) = 1. It means that any two pairs of the hyperbolic planes from a parabolic pencil are congruent
to each other. Consequently, layers and pseudolayers are immeasurable dihedrons in the space Ĥ3.

If we consider a parabolic pencil of planes as a limiting position of a hyperbolic pencil of planes, then
we can define artificial measures of layers and pseudolayers (see analogous reasonings for angles of the
plane Ĥ in [12]).

3. Assume that at least one of the faces α and β of the dihedron is the co-Euclidean plane.

Let the face α be a co-Euclidean plane. Then α coincides at least with one of the planes κ1, κ2. In
this case the number (αβκ1κ2) is not defined. Consequently, in the space Ĥ3 the following dihedrons
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are immeasurable: dihedral valiana, dihedral covaliana, dihedral hyperbolic flag, dihedral hyperbolic
pseudoflag, dihedral elliptic flag, and dihedral elliptic pseudoflag.

We notice that any two measurable dihedrons are congruous if and only if they belong to one type and have
equal measures. Any two immeasurable dihedrons of one type are congruous.

In subsections 3.2 – 3.5 we define the measures of the measurable dihedrons of the space Ĥ3. We need the
following properties of points of an elliptic (hyperbolic) line.

Lemma 3.1. Two orthogonal points divide the elliptic line containing them into two congruous segments.

Lemma 3.2. Let A and B be distinct non-orthogonal points of an elliptic line l. If a point A′ (B′) is orthogonal on the
line l to the point A (B), then the points A′ and B′ belong to one segment between the points A and B.

Lemma 3.3. Two orthogonal points divide the hyperbolic line containing them into two congruous quasisegments.

Lemma 3.4. Let A and B be non-orthogonal points on various branches of a hyperbolic line l. If a point A′ (B′) is
orthogonal on the line l to the point A (B), then the points A′ and B′ belong to different quasisegments between the
points A and B.

Proofs of these properties are offered, for example, in [10, Lemmas 4.2.1–4.2.4], where elliptic and hyperbolic
lines are considered in the hyperbolic plane Ĥ of positive curvature. But the given properties do not depend on
a type of the space containing the considered lines. Therefore we have provided here more general formulations
of these properties.

3.2. The measure of a semispace

Assume that hyperbolic planes α and β of the elliptic pencil Θ form adjacent semispaces ν1 and ν2. The pencil
Θ with the hyperbolic axis k = α ∩ β contains two imaginary conjugate tangential planes to the absolute. We
denote them by κ1 and κ2. For the planes α, β, κ1, and κ2 we have (αβκ1κ2) ∈ C and |(αβκ1κ2)| = 1 (see the
similar proof in [10, Theorem 1.11.2]).

Let us consider the number

υ =

∣∣∣∣ 1

2i
ln(αβκ1κ2)

∣∣∣∣ , (3.1)

where the function ln z is the principal value of the complex logarithm Ln z of z = (αβκ1κ2). The function ln z
is defined by the condition

ln z = ln |z|+ i arg(z), −π < arg(z) ≤ π. (3.2)

Using the equality from (3.2), we find

υ =

∣∣∣∣ 1

2i
[ln |(αβκ1κ2)|+ i arg(αβκ1κ2)]

∣∣∣∣ =
1

2
| arg(αβκ1κ2)|.

Hence υ ∈ [0;π/2]. Thus the multiplier 1/2i in the formula (3.1) allows us to obtain the real measure υ of
a semispace, using the complex number (αβκ1κ2). The expression (3.1) is the Laguerre formula adapted to
measurement of dihedrons of concrete type. This formula is universal in elliptic measurement of objects (see,
for instance, [4, Chapter VI, §1], [6, Part III, §20.3]).

Suppose the planes α and α′ of the elliptic pencil Θ are orthogonal. It means that (αα′κ1κ2) = −1. Then by
the principle of duality of the space Ĥ3 from Lemma 3.1 we conclude that the planes α and α′ divide the space
Ĥ3 into two congruous semispaces. We call them the right semispaces. The value υ from (3.1) for the orthogonal
planes α and α′ equals π/2. Thus the number π/2 corresponds to every right semispace. We call this number
the measure of a right semispace.

If the planes α and β are not orthogonal, then we consider the planes α′ and β′ wich satysfy the following
conditions:

α′⊥α, k ⊂ α′, β′⊥β, k ⊂ β′.
By the principle of duality of the space Ĥ3 from Lemma 3.2 we conclude that the planes α′ and β′ belong to

one semispace between the planes α and β. The semispace containing (not containing) the planes α′ and β′ is
called wide (narrow).

We may consider the space Ĥ3 as the sum of two adjacent right semispaces. Hence the summary measure
of the adjacent semispaces ν1 and ν2 between the planes α and β equals π. For this reason we call the value υ
from (3.1) (or π − υ) the measure of the narrow (or, respectively, wide) semispace between the planes α and β.
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The measure of the semispace between the planes α, β does not depend on a sequence order of the planes in
the pairs α, β and κ1, κ2. Indeed, for the cross-ratio (αβκ1κ2) we have

(βακ1κ2) = (αβκ1κ2)−1, (αβκ2κ1) = (αβκ1κ2)−1.

Consequently, ∣∣∣∣ 1

2i
ln(βακ1κ2)

∣∣∣∣ =

∣∣∣∣ 1

2i
ln(αβκ2κ1)

∣∣∣∣ =

∣∣∣∣ 1

2i
ln(αβκ1κ2)

∣∣∣∣ = υ.

In [10, Theorem 4.4.1] it is proved that the length of a segment on an elliptic line in the plane Ĥ is additive.
Owing to this fact on the principle of duality of the space Ĥ3 the entered measure of a semispace is additive
too.

3.3. The measure of an elliptic (hyperbolic) dihedron

3.3.1. Definitions. Assume that elliptic planes α and β form the elliptic dihedron ν with an elliptic axis k. Let
κ1 and κ2 be the co-Euclidean planes of the hyperbolic pencil Θ with the axis k. By the definition of an elliptic
dihedron the pairs of the planes α, β and κ1, κ2 do not divide each other. Consequently, we have (αβκ1κ2) ∈ R+.
Owing to this condition the number

υ =
1

2
|ln(αβκ1κ2)| (3.3)

is real and positive too. We call it the measure of the elliptic dihedron ν.
Now suppose the hyperbolic planes α and β of the hyperbolic pencil form the hyperbolic dihedron ν. The

planes α and β in the pencil with the elliptic axis k do not divide the pair of the co-Euclidean planes κ1 and κ2
of this pencil. Hence (αβκ1κ2) ∈ R+.

We call the number υ from (3.3) the measure of the hyperbolic dihedron ν. The number (−υ) is the agreed
measure of this dihedron.

The measure of the elliptic (hyperbolic) dihedron between the planes α and β does not depend on a sequence
order of the planes in the pairs α, β and κ1, κ2. Using the approach offered in the proof of Theorem 4.4.2 from
[10], we can prove that the entered measure of an elliptic (hyperbolic) dihedron is additive.

3.3.2. Remark about the Laguerre formula. The way of calculation of angles measures on the Euclidean plane by
means of projective geometry is established in [5]. The measurement of angles on the Euclidean plane is elliptic.
Therefore the formula obtained by Laguerre is suitable only to elliptic pencils. Generalization of the Laguerre
formula for hyperbolic pencils has become possible on account of works by Cayley and Klein.

The choice principle of a constant in the Laguerre formula is in detail considered by Klein in [3], [4] (see also
[6], [10]). This principle at calculation of the lengths of segments on hyperbolic lines does not raise doubts of
researchers. But at calculation of angular measures in hyperbolic pencils some authors trespass against this
principle. It leads to the wrong results. Therefore we pay attention to an important detail of reasonings. Since
for elliptic and hyperbolic dihedrons the number (αβκ1κ2) is real and positive, in the Laguerre formula (3.3) it
is necessary to accept the multiplier 1/2. This real multiplier via the formula (3.3) provides transition from the
real positive number (αβκ1κ2) to the real positive measure υ of the dihedron.

Moreover, the universal choice of the constant in the Laguerre formula for pencils of one type provides the
uniform logical scheme for creation of different non-Euclidean geometries.

3.3.3. Measures of conjugate dihedrons. If elliptic planes α, β and hyperbolic planes α′, β′ in a hyperbolic planes
pencil Θ satisfy the conditions α⊥α′ and β⊥β′, then the elliptic dihedron between the planes α, β and the
hyperbolic dihedron between the planes α′, β′ are called conjugate to each other.

Let κ1 and κ2 be the co-Euclidean planes of the pencil Θ. Since

α⊥α′ ⇐⇒ (αα′κ1κ2) = −1, β⊥β′ ⇐⇒ (ββ′κ1κ2) = −1,

by properties of the cross-ratio of a quadruple of planes from a pencil we have

(α′β′κ1κ2) = (α′ακ1κ2)(αβ′κ1κ2) = −(αβ′κ1κ2) = −(αβκ1κ2)(ββ′κ1κ2) = (αβκ1κ2).

Therefore the measures of conjugate dihedrons are equal.
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3.4. The measure of a quasidihedron

Assume that a hyperbolic plane α and an elliptic plane β form adjacent quasidihedrons ν1 and ν2. The planes
α and β in the pencil Θ divide the pair of the co-Euclidean planes κ1 and κ2. Hence (αβκ1κ2) ∈ R, (αβκ1κ2) < 0,
and arg(αβκ1κ2) = π. We pressume that

υ =
1

2
ln(αβκ1κ2), (3.4)

where the function ln z is defined by condition (3.2).
From (3.4) via the condition (3.2) we obtain υ = [ln |(αβκ1κ2)|+ iπ] /2. Consequently, υ ∈ C and Im(υ) = π/2.
We consider the hyperbolic plane β′ orthogonal to the given elliptic plane β in the pencil Θ. By the principle

of duality of the space Ĥ3 from Lemma 3.3 we conclude that the planes β, β′ divide the space Ĥ3 into two
congruous quasidihedrons. We call them the right quasidihedrons. For the pairs of the planes β and β′ the
number υ from (3.4) equals iπ/2. In view of this we call the number iπ/2 the measure of a right quasidihedron.

The space Ĥ3 can be considered as the sum of two adjacent quasidihedrons, in particular, of two adjacent
right quasidihedrons. Therefore we appropriate the measure iπ to the space Ĥ3 accepted as a dihedron of a
hyperbolic planes pencil.

The numberes υ and iπ − υ, that is, the numberes

±1

2
| ln |(αβκ1κ2)||+ i

π

2
,

are called the measures of the adjacent quasidihedrons ν1 and ν2 between the planes α and β.
The entered measure of the quasidihedron between the planes α and β does not depend on a sequence order

of the planes in pairs α, β and κ1, κ2. The sum of quasidihedrons is not a quasidihedron. For this reason the
question of additivity of a measure for a quasidihedron does not make sense.

Suppose the planes α′, β′ in the pencil Θ satisfy the following conditions: α′⊥α, β′⊥β. According to
Lemma 3.4 by the principle of duality of the space Ĥ3 the planes α′ and β′ belong to various quasidihedrons
between the planes α and β. Let ν1 (ν2) be the hyperbolic (elliptic) quasidihedron between the planes α and β.
Then the quasidihedron ν1 (ν2) contains the plane α′ (β′). Therefore the quasidihedron ν1 (ν2) consists from the
right quasidihedron σα (σβ) between the planes α, α′ (β, β′) of the measure iπ/2 and the elliptic (hyperbolic)
dihedron σe (σh) between the planes α′, β (β′, α). We denote the measure (agreed measure) of the elliptic
(hyperbolic) dihedron σe (σh) by a simbol αe (αh). By the definition of the measure (agreed measure) of an
elliptic (hyperbolic) dihedron we have αe ∈ R and αe > 0 (αh ∈ R and αh < 0).

We display the section of the discussion objects by some hyperbolic plane of the space Ĥ3 in Fig. 2.
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FIGURE 2. The section of the quasidihedrons ν1 and ν2
of the space Ĥ3 by some hyperbolic plane

The sum of the measures υ1 and υ2 of the adjacent quasidihedrons ν1 and ν2 equals iπ. Hence

υ1 + υ2 = i
π

2
+ αe + i

π

2
+ αh = iπ.

It follows that αh = −αe and
υ1 = i

π

2
+ αe, υ2 = i

π

2
− αe.
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Taking into account these equalities we formulate the following definitions.
We call the number

iπ

2
+

1

2
| ln |(αβκ1κ2)||

(
iπ

2
− 1

2
| ln |(αβκ1κ2)||

)
the measure of the hyperbolic (or, respectively, elliptic) quasidihedron between the planes α and β.

3.5. The measure of an elliptic (hyperbolic) pseudodihedron

Assume that elliptic planes α and β form two adjacent dihedrons: the elliptic dihedron νe of the measure υ
from (3.3), where υ ∈ R+, and the elliptic pseudodihedron ψe (Fig. 3). The elliptic pseudodihedron ψe consists
from two right quasidihedrons and the hyperbolic dihedron νh conjugate to νe. The agreed measure of the
hyperbolic dihedron νh equals (−υ). Owing to this we call the number iπ − υ the measure of the elliptic
pseudodihedron ψe.
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h
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FIGURE 3. The section of the dihedrons νe and νh in the space Ĥ3

by some hyperbolic plane

Let now α′ and β′ be the given hyperbolic planes. These planes form two adjacent dihedrons: the hyperbolic
dihedron νh of measure υ (3.3), where υ ∈ R+, and the hyperbolic pseudodihedron ψh (see Fig. 3). The
hyperbolic pseudodihedron ψh consists from two right quasidihedrons and the elliptic dihedron νe of the
measure υ. The elliptic dihedron νe is conjugate to the hyperbolic dihedron νh. Owing to this we call the
number iπ + υ the measure of the hyperbolic pseudodihedron ψh. As the agreed measure of the hyperbolic
dihedron νh equals υ0, where υ0 = −υ, the measure of the hyperbolic pseudodihedron ψh equals iπ − υ0.

Finishing a discourse about the measurement of dihedrons in Ĥ3, we notice that the formally calculated
measures of layers and pseudolayers equal zero (see the formula (3.3) on the condition κ1 = κ2). In some tasks
we accept the numberes 0 and iπ as the artificial measures of layers and pseudolayers, respectively (see [12]).

Outcomes of reasonings are presented in the table 1.

3.6. The linear measure of a dihedron of the space Ĥ3

Let α and β be faces of some dihedron F of the space Ĥ3. The pole of the plane α (β) with respect to the
absolute we denote by Sα (Sβ). Let A = α ∩ SαSβ and B = β ∩ SαSβ . The line SαSβ is a common perpendicular
of the planes α and β. If k = α ∩ β, then the line SαSβ is the polar of the line k with respect to the absolute.
One part of the line SαSβ between the points A and B belongs to the dihedron F . We call this part a base of the
dihedron F .

Suppose F is the measurable dihedron. Then SαSβ and k are non-parabolic lines of the various types and
AB is a segment or a quasisegment of the line SαSβ .

The pencil Θ with the axis k contains two tangent planes to the absolute. We denote them by κ1 and κ2.
Let K1 = κ1 ∩ γ and K2 = κ2 ∩ γ. The measurement in the pencil Θ is set by means of the planes κ1 and κ2.
The measurement on the line SαSβ is set by means of the points K1 and K2. By definition in the Laguerre
formula the constant multiplier of the measure υ of the dihedron F is equal to 1/2τ , where τ = i (τ = 1) for
the elliptic (hyperbolic) pencil Θ. The length |AB| of the segment or the quasisegment AB by definition can
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be calculated via the similar formula with the constant multiplier ρ/2τ , where τ = i (τ = 1) for the elliptic
(hyperbolic) line SαSβ [10, §4.4]. The pencils Θ and SαSβ of one type. Moreover, accoding to the construction
we have (αβκ1κ2) = (ABK1K2). Consequently, υ = |AB|/ρ.

Thus we proved the following assertion: The measure of a measurable dihedron in the space Ĥ3 is equal to the
relation of the length of its base to the curvature radius ρ of the space Ĥ3.

The similar result for the plane Ĥ is proved in [10, Theorem 4.7.1]: The measure of a measurable angle of the plane
Ĥ is equal to the relation of the length of its base to the curvature radius ρ of the plane Ĥ .

4. Conclusion

In this work we have geometrically defined types of dihedrons in the hyperbolic space Ĥ3 of positive
curvature and have offered geometrical ways of their measurement. We proved that by means of the absolute of
the space Ĥ3 it is possible to measure dihedrons of six of fifteen types. In the accepted definitions the dihedrons
of three types have real measures. At the following stage of researches we will express the entered measures of
the dihedrons through coordinates of faces. Inasmuch as in the space Ĥ3 it is possible to use various convenient
coordinate systems, we will derive formulae of expression of measures of the dihedrons in two most convenient
canonical frames.
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