
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY
VOLUME 9 NO. 2 PAGE 59–69 (2016)

A New Structure on Manifolds: Silver
Structure

Mustafa Özkan∗ and Betül Peltek
(Communicated by Josef Mikes̆)

ABSTRACT

In this paper, we address a new structure defined by a (1, 1) tensor field Θ satisfying Θ2 − 2Θ− I = 0
on a manifold, which is called silver structure. Integrability conditions and parallelism of the this
structure is obtained via a corresponding almost product structure. Finally, a silver Riemannian
structure is defined on a Riemannian manifold.
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1. Introduction

Irrational numbers have an impact as fascinating as rational numbers. One of such fascinating impacts
that attracted the attention most is the golden ratio φ = (1 +

√
5)/2 number, which is a positive root of the

equation x2 − x− 1 = 0. Inspired by this algebraic equation, Hreţcanu [13] defined the golden structure on a
manifold M by a tensor field Φ of type (1, 1) on M satisfying Φ2 = Φ + I . Then, the geometry of the golden
structure on M was investigated by Crasmareanu and Hreţcanu [3]. Recently, the golden structure has been
studied in [6, 7, 14, 15, 22, 24, 25, 26, 28, 29, 32]. In addition to these, some types of polynomial structures was
intensively studied in last time, namely an almost product, almost complex, almost tangent and f−structure
in [9, 10, 11, 17, 18, 19].

Another irrational number, as fascinating as the golden ratio, is θ = 1 +
√

2, which is a positive solution of the
equation x2 − 2x− 1 = 0 and called the silver number, silver ratio, or silver mean. It has been used in design,
architecture, and physics. Also, Chandra and Rani [2] used the silver mean to describe fractal geometry.

The main novelty of this paper is to study the geometry of the silver structure on a differentiable manifold
using a corresponding almost product structure. To the best of our knowledge, it is the first time that silver
structure on manifolds is studied in the literature. In particular, we follow the spirit of [3].

The paper is organized as follows. In Section 2, we define silver structure on a differentiable manifold.
Furthermore, we establish the relationship among the silver ratio, tangent real silver ratio, and complex silver
ratio. Next, we give some examples of silver structure. After that, we study the connection on the silver
structure. In Section 5 we investigate the integrability of the silver structure, and the parallelism of the silver
structure in terms of Schouten and Vrănceanu connections. Finally, we define silver Riemannian manifold and
study some properties on this manifold. Also, we give an example of the silver structure on manifold R2.

2. Silver Structures on Manifolds

Throughout the paper, all manifolds, tensor fields, and connections are assumed to be differentiable and of
class C∞.

Now, we give some definitions and propositions that will be used in the rest of this paper.
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Silver Structure

Definition 2.1 (see [23]). Let M be a C∞ differentiable manifold. A tensor field Θ of type (1, 1) on M is called a
silver structure on M if Θ satisfies the equation

Θ2 = 2Θ + I (2.1)

where I is the identity (1, 1) tensor field on M .

Proposition 2.1 (see [20]). Let Θ be a silver structure on the manifold M . For any integer number n

Θn = PnΘ + Pn−1I (2.2)

where (Pn) is the Pell sequence.

Using the Binet’s formula for Pell sequence [12, 16] which is

Pn =
θn − (2− θ)n

2
√

2

from (2.2) we have

Θn =
θn − (2− θ)n

2
√

2
Θ +

θn−1 − (2− θ)n−1

2
√

2
I.

Proposition 2.2. i) The eigenvalues of a silver structure Θ are the silver ratio θ and 2− θ.
ii) A silver structure Θ is an isomorphism on the tangent space TxM for every x ∈M of the manifold M .

iii) Θ is invertible and its inverse Θ̂ = Θ−1 satisfies:

Θ̂2 = −2Θ̂ + I.

From the paper [3] if T , P , and J are an almost tangent structure, an almost product structure, and an almost
complex structure, respectively, then −T , −P and −J are also an almost tangent structure, an almost product
structure, and an almost complex structure, respectively. One should emphasize that we can find a similar
relation in a silver structure:

Proposition 2.3 (see [23]). If Θ is a silver structure then Θ̃ = 2I −Θ is also a silver structure.

One can easily see from the following assertion that it is clear to obtain a connection between a silver and
almost product structure.

Theorem 2.1. If Θ is a silver structure on M , then

P =
1√
2

(Θ− I) (2.3)

is an almost product structure on M . Conversely, any almost product structure P on M yields a silver structure on M
as follows:

Θ = I +
√

2P. (2.4)

By the equation (2.4), we can give following definitions.

Definition 2.2. 1) Let (M,T ) be an almost tangent manifold. The tensor field Θt defined by

Θt = I +
√

2T

is called the tangent silver structure on (M,T ). Θt satisfies the equation

Θ2
t − 2Θt + I = 0.

Taking into account the equation x2 − 2x+ 1 = 0 in the real field R, we have the tangent real silver ratio
θt = 1.
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2) Let (M,J) be an almost complex manifold. The tensor field Θc defined by

Θc = I +
√

2J

is called the complex silver structure on (M,J). The polynomial equation satisfied by Θc is

Θ2
c − 2Θc + 3I = 0.

For M = R we get
x2 − 2x+ 3 = 0

with solutions x1 = 1 + i
√

2, x2 = 1− i
√

2. The complex number θc = 1 + i
√

2 is called a complex silver
ratio.

We give the relationship among the silver ratio, tangent real silver ratio, and complex silver ratio as follows:

Tangent real silver ratio Silver ratio Complex silver ratio
θt = 1 θ = 1 +

√
2 θc = 1 + i

√
2

= θt + i (θ − θt)

3. Examples of Silver Structure

In this part of the paper, we give some silver structure examples.

Example 3.1 (Clifford Algebras). Let C ′ (n) be the real Clifford algebra of the positive definite form
∑n

i=1

(
xi
)2

of Rn [21]. The defining relations of C ′(n) are{
e2
i = 1
eiej + ejei = 0, i 6= j

where {e1, . . . , en} is orthonormal basis of Rn.
Therefore, introducing Θi = 1 +

√
2ei we give new presentation relations of C ′(n):{

Θi : Silver structure
ΘiΘj + ΘjΘi = 2(Θi + Θj)− 2, i 6= j.

In [21], C ′(2) is constructed as

1 = I2, e1 =

(
1 0
0 −1

)
, e2 =

(
0 1
1 0

)
and hence 

i) Θ1 = I2 +
√

2e1 =

(
1 +
√

2 0

0 1−
√

2

)
=

(
θ 0
0 2− θ

)
,

ii) Θ2 = I2 +
√

2e2 =

(
1
√

2√
2 1

)
.

(3.1)

Example 3.2 (2D Silver Matrices). Θ ∈ Rnn is called a silver matrix if Θ satisfies the equation

Θ2 = 2Θ + In (3.2)

where In is the identity matrix on Rnn.
By solving (3.2) for n = 2, we obtain silver structures in R2

2;

i) For a, d ∈ R, b ∈ R− {0},

Θa,b =

(
a − 1

b

(
a2 − 2a− 1

)
b 2− a

)
or Θb,d =

(
2− d − 1

b

(
d2 − 2d− 1

)
b d

)
. (3.3)
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ii) For a = θ, b ∈ R,

Θθ,b =

(
θ 0
b 2− θ

)
or Θ2−θ,b =

(
2− θ 0
b θ

)
or

Θθ,b =

(
θ b
0 2− θ

)
or Θ2−θ,b =

(
2− θ b

0 θ

)
.

iii) For a = θ, b = 0,

Θθ,0 =

(
θ 0
0 2− θ

)
or Θ2−θ,0 =

(
2− θ 0

0 θ

)
.

Hence, from (3.1) and (3.3) we have

Θ1 = lim
b→0

Θθ,b and Θ2 = Θ1,
√

2.

Example 3.3 (Quaternion Algebras). Let H be a quaternion algebra with a base {1, e1, e2, e3} satisfying

e2
1 = e2

2 = e2
3 = −1, e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2.

We can write any quaternion as follows

q = Sq + ~Vq = a0 + a1e1 + a2e2 + a3e3

where Sq = a0 and ~Vq = a1e1 + a2e2 + a3e3 denote the scalar and vector parts of q, respectively.
The norm of a quaternion q is defined by Nq =

√
a2

0 + a2
1 + a2

2 + a2
3 and we say that q0 = q/Nq is a unit

quaternion where q 6= 0. Every unit quaternion can be written in the form: q0 = cosα+ ~ε0 sinα where ~ε0 is a
unit vector satisfying the equality ~ε2

0 = −1.
Hence;

i) We can define the silver biquaternion structure as

Θq = 1 +
√

2i ~ε0

where ~ε2
0 = −1 and i2 = −1.

ii) We can define the silver split quaternion structure as

Θq = 1 +
√

2~ε0

where ~ε2
0 = 1.

Example 3.4 (Silver Reflection). Recall, [3, 21], that in an Euclidean space (E,<,>), the reflection with respect
to a hyperplane H with the normal v ∈ E − {0} has the formula

rv (x) = x− 2 < x, v >

< v, v >
v for x ∈ E

and obviously r2
v = IE the identity on E.

Hence, we can define the silver reflection with respect to v as

Θv = IE +
√

2rv

and then v is an eigenvector of Θv with the corresponding eigenvalue 2− θ. Also, the Lemma from [21, p.314]
follows that,

XΘvX
−1 = ΘX(v)

for X ∈ O (E,<,>) : the orthogonal group of E. An explicit expression of this linear transformation is

Θv (x) = θx− 2
√

2
< x, v >

< v, v >
v.

Example 3.5 (Triple Structure in Terms of Silver Structures). Let F and P be two tensor fields of type (1, 1) on
the manifold M . With the triple (F, P, J = P ◦ F ) we can define the following four structures:
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1) F 2 = P 2 = I and P ◦ F − F ◦ P = 0; then J2 = I ,

2) F 2 = P 2 = I and P ◦ F + F ◦ P = 0; then J2 = −I ,

3) F 2 = P 2 = −I and P ◦ F − F ◦ P = 0; then J2 = I ,

4) F 2 = P 2 = −I and P ◦ F + F ◦ P = 0; then J2 = −I

called, respectively, almost hyperproduct (ahp), almost biproduct complex (abpc), almost product bicomplex
(apbc), and almost hypercomplex (ahc) [3, 4].
From (2.4), we can write

ΘF = I +
√

2F, ΘP = I +
√

2P, ΘJ = I +
√

2J

where F, P tensor fields of type (1, 1) on the manifold M and J = P ◦ F . Hence we get
√

2ΘJ = ΘPΘF −Θp −ΘF + θI

and the triple (ΘF ,ΘP ,ΘJ) is:

1′) An (ahp)-structure if and only if ΘF ,ΘP are silver structures and ΘPΘF = ΘFΘP then ΘJ is a silver
structure .

2′) An (abpc)-structure if and only if ΘF ,ΘP are silver structures and ΘPΘF + ΘFΘP = 2(ΘP + ΘF )− 2I
then ΘJ is a complex silver structure.

3′) An (apbc)-structure if and only if ΘF ,ΘP are complex silver structures and ΘPΘF = ΘFΘP then ΘJ is a
silver structure .

4′) An (ahc)-structure if and only if ΘF ,ΘP are complex silver structures and ΘPΘF + ΘFΘP = 2(ΘP +
ΘF )− 2I then ΘJ is a complex silver structure.

4. Connection as Silver Structure

4.1. Connections in principal fibre bundles

Let P (M,π,G) be a principal fibre bundle with total space P , base spaceM , projection π, and structure group
G. V and H denote the vertical distribution (the kernels of π∗) and the horizontal distribution (complementary
distribution, i.e. TP = V ⊕H and H is G−invariant), respectively.

The tensor field of type (1, 1)
F = v − h

is an almost product structure on P where v and h are the corresponding projectors of V and H , respectively.
We know in [3] that, F represents a principal connection if and only if the following conditions are satisfied:

i) X is a vertical vector field if and only if F (X) = X .

ii) dRa ◦ Fu = Fua ◦ dRa for every a ∈ G and u ∈ P .

Taking into account (2.4), we have the following assertions for a silver structure.

Proposition 4.1. Let Θ be a silver structure on P . Θ is associated to a principal connection if and only if the following
relations hold:

i) X ∈ V if and only if X ∈ χ (P ) is an eigenvector of Θ with respect to the eigenvalue θ.

ii) dRa ◦Θu = Θua ◦ dRa for every a ∈ G and u ∈ P .

Let ω ∈ Ω1 (P,g) be the connection 1−form of H and let Ω ∈ Ω2 (P,g) be the curvature form of ω where g is
the Lie algebra of G. We have [3]

Ω (X,Y ) = −1

4
ω(NF (X,Y ))

where NF is the Nijenhuis tensor of F .
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Proposition 4.2. Let F be an almost product structure and let Θ be the associated (2.4) silver structure. Then

NF =
1

2
NΘ

and
Ω (X,Y ) = −1

8
ω(NΘ(X,Y ))

where NF and NΘ are the Nijenhuis tensors of F and Θ, respectively.

We know that the principal connection is flat if its curvature form Ω vanishes.

Proposition 4.3. The principal connection is flat if and only if the associated silver structure is integrable, i.e. NΘ = 0.

The given principal connection determines a lift lω : χ (M)→ χ (P ) satisfying[
lωX̄, lωȲ

]
− lω

[
X̄, Ȳ

]
= NF

(
lωX̄, lωȲ

)
for X̄, Ȳ ∈ χ (M) [3].

Proposition 4.4. The lift lω is a morphism if and only if the associated silver structure is integrable, i.e. NΘ = 0.

4.2. Connection in tangent bundles

Let M be an n−dimensional differentiable manifold and (TM, πM ,M) is its tangent bundle with the
base space M . Let

(
U, xi

)
1≤i≤n be a local coordinate system on M and

(
π−1
M (U) , xi, yi

)
1≤i≤n be induced

local coordinate system on TM defined by xi (u) = xi (πM (u)) and yi (u) = dxi (u) for all u ∈ π−1
M (U). V =

{X ∈ TM : πM∗ (X) = 0} called the vertical distribution of M .
A tensor field T of type (1, 1) on M defined by T = ∂

∂yi ⊗ dx
i an almost tangent structure on M , i.e. T 2 = 0.

Definition 4.1 (see [3]). A (1, 1) tensor field v is called vertical projector if

T ◦ v = 0, v ◦ T = T.

Definition 4.2 (see [3]). A complementary distribution N to the V

χ (M) = N ⊕ V, (4.1)

is called non-linear connection.

Since a vertical projector v is C∞ (M) linear with imv = V , we obtain

Proposition 4.5 (see [3]). A vertical vector v induces a non-linear connection denoted N (v) through relation N (v) =
ker v.

If N is a non-linear connection then hN and vN are the horizontal and vertical projection with respect to the
decomposition (4.1). Thus we have

Proposition 4.6 (see [3]). Let hN and vN corresponding projections N and V , respectively. If N is a non-linear
connection then vN is a vertical projector with N (vN ) = N .

Definition 4.3 (see [3]). A (1, 1) tensor field Γ is called non-linear connection of an almost product type if

Γ ◦ T = −T, T ◦ Γ = T.

Proposition 4.7 (see [3]). If Γ is a non-linear connection of an almost product type, then

i) vΓ = 1
2

(
Iχ(M) − Γ

)
is a vertical vector.

ii) V (M) is the (−1)−eigenspace of Γ while N (vΓ) is the (+1)−eigenspace of Γ.

Proposition 4.8 (see [3]). Let Γ = Iχ(M) − 2v be a non-linear connection of an almost product type where v is a vertical
vector. Then Γ is an almost product structure on M .

The following proposition with regard to silver structures is posed:

Proposition 4.9. A non-linear connectionN onM , given by the vertical vector v, can also be defined by a silver structure
Θ (= ΘΓ)

Θ = θIχ(M) − 2
√

2v

with N the θ−eigenspace and V the (2− θ)−eigenspace.
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5. Integrability and Parallelism of Silver Structures

Let Θ be a silver structure on M . NΘ denotes the Nijenhuis tensor of tensor field Θ of type (1, 2). From [30],
for X,Y ∈ χ (M)

NΘ (X,Y ) = Θ2 [X,Y ] + [ΘX,ΘY ]−Θ [ΘX,Y ]−Θ [X,ΘY ] .

R, S denote the complementary distributions on M corresponding to θ and 2− θ, respectively. Let r, s be the
corresponding projections, which results in

r2 = r, s2 = s, rs = sr = 0, r + s = I. (5.1)

Based on the straightforward computation from (2.4), we have the following equations
r =

1

2
√

2
Θ− 2− θ

2
√

2
I,

s = − 1

2
√

2
Θ +

θ

2
√

2
I.

(5.2)

For convenience of the reader, we give the next theorem for integrability of Θ, the distribution R and S.
We know from [30] that

i) Θ is integrable if NΘ = 0.

ii) The distribution R is integrable if s [rX, rY ] = 0 and S is integrable if r [sX, sY ] = 0 for X,Y ∈ χ (M).

From (2.1) and (5.2), we get 
Θr = rΘ = θr =

θ

2
√

2
Θ +

1

2
√

2
I,

Θs = sΘ = (2− θ) s =
2− θ
2
√

2
Θ +

1

2
√

2
I.

(5.3)

Then for silver structure, we can easily prove that{
s[rX, rY ] = 1

8sNΘ(rX, rY ),

r[sX, sY ] = 1
8rNΘ(sX, sY ).

Proposition 5.1. A silver structure Θ is integrable if and only if the associated (2.4) almost product structure is
integrable.

Proposition 5.2. Let X,Y ∈ χ(M). The distribution R is integrable if and only if sNΘ(rX, rY ) = 0, and the
distribution S is integrable if and only if rNΘ(sX, sY ) = 0. If Θ is integrable then both the distributions R an S are
integrable.

Let ∇ be a linear connection on M . To the pair (Θ,∇) we associate two other linear connections [1, 3]:

i) The Schouten connection
∇̃XY = r (∇XrY ) + s (∇xsY ) , (5.4)

ii) The Vrănceanu connection

∇̌XY = r (∇rXrY ) + s (∇sxsY ) + r [sX, rY ] + s [rX, sY ] . (5.5)

Proposition 5.3. The projectors r and s are parallels in terms of Schouten and Vrănceanu connections for every linear
connection ∇ on M . Also, Θ is parallel in terms of Schouten and Vrănceanu connections.

Proof. From (5.1), for every X,Y ∈ χ(M)

(∇̃Xr)Y = ∇̃XrY − r(∇̃XY ) = r(∇XrY )− r(∇XrY ) = 0,

(∇̌Xr)Y = ∇̌XrY − r(∇̌XY ) = r(∇rXrY ) + r[sX, rY ]− r(∇rXrY )− r[sX, rY ] = 0.

Thus, r is parallel with respect to ∇̃ and ∇̌.
In a similar manner, it can be shown that s is parallel with respect to ∇̃ and ∇̌. From (5.3), Θ is parallel with

respect to Schouten and Vrănceanu connections.
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Definition 5.1 (see [5]). The distribution R is called parallel with respect to linear connection ∇ if ∇XY ∈ R
where X ∈ χ(M) and Y ∈ R.

Definition 5.2 (see [5]). The distribution R is called ∇−half parallel if (∆Θ) (X,Y ) ∈ R where

(∆Θ) (X,Y ) = Θ∇XY −Θ∇YX −∇ΘXY +∇Y (ΘX) (5.6)

for X ∈ R, Y ∈ χ(M).

Definition 5.3 (see [5]). The distribution R is called ∇−anti half parallel if (∆Θ) (X,Y ) ∈ S where X ∈ R,
Y ∈ χ(M).

Proposition 5.4. The distributions R and S are parallel in terms of Schouten and Vrănceanu connections for the linear
connection ∇.

Proof. Let X ∈ χ(M) and Y ∈ R. So, sY = 0 and rY = Y . From (5.4) and (5.5), we get

∇̃X Y = r(∇X Y ) ∈ R,

∇̌XY = r(∇rXY ) + r[sX, Y ] ∈ R.
Hence R is parallel with respect to ∇̃ and ∇̌.
S also satisfies similar equations.

Proposition 5.5. The distributions R and S are parallel with respect to ∇ linear connection if and only if ∇ and ∇̃ are
equal.

Proof. If R, S are ∇−parallel then ∇X (rY ) ∈ R and ∇X (sY ) ∈ S where X,Y ∈ χ(M).
For that reason

∇X (rY ) = r∇X (rY ) and ∇X (sY ) = s∇X (sY ) .

Since r + s = I and (5.4),
∇XY = r∇X (rY ) + s∇X (sY ) = ∇̃XY.

Therefore ∇ = ∇̃.
The converse can be shown easily.

Proposition 5.6. The distribution R is half parallel with respect to the Vrănceanu connection if

[rX, sY ] ∈ R

where X ∈ R and Y ∈ χ(M).

Proof. Taking account of the equation (5.6) for connection ∇̌, we have

s (∆Θ) (X,Y ) = sΘ∇̌XY − sΘ∇̌YX − s∇̌ΘXY + s∇̌Y (ΘX)

where X ∈ R and Y ∈ χ(M).
Hence, by (5.3) and (5.5), we obtain

s (∆Θ) (X,Y ) = (2− 2φ) s [rX, sY ]

which proves the proposition.

Similarly, we have the following proposition for distribution S.

Proposition 5.7. The distribution S is half parallel with respect to Vrănceanu connection if

[sX, rY ] ∈ S

where X ∈ S and Y ∈ χ(M).

Proposition 5.8. The distributions R and S are anti half parallel with respect to Vrănceanu connection.

Proof. Taking account of the equation (5.6) for ∇̌, we have

r (∆Θ) (X,Y ) = rΘ∇̌XY − rΘ∇̌YX − r∇̌ΘXY + r∇̌Y (ΘX)

where X ∈ R and Y ∈ χ(M).
From (5.3) and (5.5), we obtain

r (∆Θ) (X,Y ) = (2φ− 2) r [sX, rY ] .

Since sX = 0, we have r (∆Θ) (X,Y ) = 0. Thus (∆Θ) (X,Y ) ∈ S.
In a similar manner, it can be shown that S is anti half parallel with respect to the Vrănceanu connection.
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6. Silver Riemannian Manifolds

Let P be almost product structure on manifold M and g be a Riemannian metric (respectively, a semi-
Riemannian metric) such as

g(P (X), P (Y )) = g(X,Y ) ∀X,Y ∈ χ(M)

or equivalently, P be a g−symmetric endomorphism such as

g(P (X), Y ) = g(X,P (Y )).

Then, we call that the pair (g, P ) is a Riemannian almost product structure (respectively, a semi-Riemannian
almost product structure) [8, 27, 31].

From (2.3) and (2.4), we can give the following proposition.

Proposition 6.1. The almost product structure P is a g−symmetric endomorphism if and only if the associated silver
structure Θ is also g−symmetric endomorphism.

Definition 6.1. Let g be a Riemannian metric (respectively, a semi-Riemannian metric) on manifold M such as

g(Θ(X), Y ) = g(X,Θ(Y )), ∀X,Y ∈ χ(M).

Then, we call that the pair (g,Θ) is a silver Riemannian structure (respectively, a silver semi-Riemannian
structure) and triple (M, g,Θ) is also a silver Riemannian manifold (respectively, a silver semi-Riemannian
manifold).

Corollary 6.1. Let (M, g,Θ) be a silver Riemannian manifold. Then, on a silver Riemannian manifold (M, g,Θ),

i) The projectors r, s are g−symmetric. That is,{
g(r(X), Y ) = g(X, r(Y )),
g(s(X), Y ) = g(X, s(Y )).

ii) The distributions R, S are g−orthogonal. That is,

g(r(X), s(Y )) = 0.

iii) The silver structure Θ on manifold M is NΘ−symmetric. That is,

NΘ(Θ(X), Y ) = NΘ(X,Θ(Y )).

Proposition 6.2 (see [3]). A Riemannian almost product structure is a locally product structure if P is parallel with

respect to the Levi-Civita connection
g

∇ of g, i.e.
g

∇P = 0 and if ∇ is a symmetric linear connection then the Nijenhuis
tensor of P verifies

NP (X,Y ) = (∇PXP )Y − (∇PY P )X − P (∇XP )Y + P (∇Y P )X.

Then in the silver structure, we have

Proposition 6.3. The silver structure Θ is integrable if (M, g,Θ) is a locally product silver Riemannian manifold.

Theorem 6.1. The set of linear connections ∇ for which ∇Θ = 0 is

∇XY =
1

4

[
3∇̄XY + Θ

(
∇̄XΘY

)
−Θ

(
∇̄XY

)
− ∇̄XΘY

]
+OpQ (X,Y )

where ∇̄ is an arbitrary linear connection and Q is a (1, 2)−tensor field for which OPQ is an associated Obata operator

OPQ (X,Y ) =
1

2
[Q (X,Y ) + PQ (X,PY )]

for the corresponding almost product structure (2.3).

Now, let us give the following example for silver structure.
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Silver Structure

Example 6.1.

r = 1
(x+y)2+1

∂
∂x ⊗ dx−

x+y
(x+y)2+1

∂
∂x ⊗ dy −

x+y
(x+y)2+1

∂
∂y ⊗ dx+ (x+y)2

(x+y)2+1
∂
∂y ⊗ dy,

s = (x+y)2

(x+y)2+1
∂
∂x ⊗ dx+ x+y

(x+y)2+1
∂
∂x ⊗ dy + x+y

(x+y)2+1
∂
∂y ⊗ dx+ 1

(x+y)2+1
∂
∂y ⊗ dy

are projection operators in R2.

R = Sp

{
∂

∂x
− (x+ y)

∂

∂y

}
and S = Sp

{
(x+ y)

∂

∂x
+

∂

∂y

}
are complementary distributions corresponding to the projection operators r and s, respectively. The
distributions R, S are orthogonal with respect to the Euclidean metric of R2. Moreover, these distributions
are associated to the silver structure

Θ

(
∂

∂x

)
=

(2− θ) (x+ y)
2

+ θ

(x+ y)
2

+ 1

∂

∂x
− 2
√

2 (x+ y)

(x+ y)
2

+ 1

∂

∂y
,

Θ

(
∂

∂y

)
= − 2

√
2 (x+ y)

(x+ y)
2

+ 1

∂

∂x
+
θ (x+ y)

2
+ (2− θ)

(x+ y)
2

+ 1

∂

∂y

which is integrable since NΘ

(
∂
∂x ,

∂
∂y

)
= 0.
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[5] Das, L.S., Nikic, J. and Nivas, R., Parallelism of distributions and geodesics on F (a1, a2, ..., an)−structure Lagrangian manifolds. Diff.

Geom. Dyn. Syst. 8 (2006), 82–89.
[6] Gezer, A., Cengiz, N. and Salimov, A., On integrability of Golden Riemannian structures. Turk. J. Math. 37 (2013), no.4, 693–703.
[7] Gezer, A. and Karaman C., Golden-Hessian structures. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 86 (2016), no:1, 41–46.
[8] Gray, A., Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16 (1967), 715–737.
[9] Hinterleitner, I., Mikeš, J. and Peška, P., On F ε

2 -planar mappings of (pseudo-) Riemannian manifolds. Arch. Math. (Brno) 50 (2014), no.5,
287–295.

[10] Hrdina, J., Geometry of almost Cliffordian manifolds: Nijenhuis tensor. Miskolc Math. Notes 14 (2013), no.2, 583–589.
[11] Hrdina, J. and Vašik, P., Geometry of almost Cliffordian manifolds: classes of subordinated connections. Turk. J. Math. 38 (2014), no.1,

179–190.
[12] Horadam, A.F., Pell identities. Fibonacci Quart. 9 (1971), no.3, 245–252, 263.
[13] Hretcanu, C.E., Submanifolds in Riemannian manifold with Golden structure. Workshop on Finsler geometry and its applications,

Hungary, 2007.
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