

3-Metil-4-(4-karboksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on Üzerine Bazı Teorik Hesaplamalar

Hilal MEDETALİBEYOĞLU^{1,*}, Onur AKYILDIRIM², Haydar YÜKSEK¹

¹Kafkas Üniversitesi, Fen-Edebiyat Fakültesi, Kimya Bölümü, 36100, Kars, Türkiye ²Kafkas Üniversitesi, Kimya Mühendisliği, Mühendislik-Mimarlık Fakültesi, 36100, Kars, Türkiye

Araştırma Makalesi	Kimya	Geliş Tarihi/Received	Kabul Tarihi/Accepted
Research Article	Chemistry	21.04.2019	28.06.2019

Öz: Bu çalışmada, 3-metil-4-(4-karboksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiğinin DFT (B3LYP/B3PW91) ve 6-31++G(d,p) temel seti kullanılarak optimizasyonu gerçekleştirilmiştir. Bileşiğin optimize yapısı kullanılarak GIAO ve CSGT metotları ile DMSO ve CCl₄ çözücü ortamında ¹H-NMR kimyasal kayma değerleri hesaplanmıştır. Molekülün UV-vis ve IR frekans değerleri hesaplanmış ve deneysel sonuçlar ile arasındaki ilişki değerlendirilmiştir. Ayrıca, molekülün bağ açıları, dihedral açıları, bağ uzunlukları, elektronik özellikleri, mulliken atomik yükleri, HOMO-LUMO enerjileri ve MEP haritaları aynı temel set ve metot kullanılarak hesaplanmıştır.

Anahtar Kelimeler: 1H-1.2.4-triazol-5-on, Gaussian09W, 6-31++G(d,p), GIAO, CSGT, B3LYP, B3PW91.

Some Theoretical Calculations on 3-Methyl-4-(4-carboxybenzylidenamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one

Abstract: In this paper, the optimization of 3-methyl-4-(4-carboxybenzylidenamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one was performed by using DFT (B3LYP/B3PW91) and 6-31++G(d,p) basis set. Starting with optimized structure, ¹H-NMR chemical shift values of the compound were calculated in DMSO and CCl₄ solvents media by using GIAO and CSGT methods. UV-vis and IR frequency values of the molecule were calculated and the relationship between experimental and theoretical results were evaluated. Also, the bond angles, dihedral angles, bond lengths, electronic properties, mulliken atomic charges, HOMO-LUMO energies and MEP maps of the molecule were measured by using the same basis set and method.

Keywords: 1H-1,2,4-Triazol-5-one, Gaussian09W, 6-31++G(d,p), GIAO, CSGT, B3LYP, B3PW91.

1. GİRİŞ

1*H*-1,2,4-triazol-5-on türevli heterosiklik bileşiklerin çok önemli biyolojik etkinliklere sahip olduğu bilinmektedir. 1,2,4-Triazol türevli bileşikler, analjezik (Chandramouli ve ark., 2012) antiinflamatuvar (Kumar ve ark., 2016), antimikrobiyal (Adam ve Elsawy, 2018;

Sumrra ve ark., 2018), antiviral (Zhan ve ark., 2011), antikanser (Dehkhodaei ve ark. 2018), antioksidan (Plech ve ark., 2013), antikonvülsan (Luszczki ve ark., 2012) gibi geniş biyolojik aktivite spektrumuna sahiptir. Ayrıca, en yaygın kullanılan organik bileşiklerin önemli bir sınıfını oluşturmaktadır bunula birlikte analitik kimya, tıbbi ve farmasötik kimyada dâhil olmak üzere birçok alanda çok çeşitli uygulamalara sahip olduğu görülmüştür. Bu yüzden günümüzde triazol sistemleri çok fazla dikkat çekmiştir. Son zamanlarda yeni sentezlenecek olan ya da sentezlenen birçok molekülün özelliklerinin öngörülmesinde ve anlaşılmasında etkin hesaplama yaklaşımları yaygın şekilde kullanılmıştır. Bu çalışmada, 3-metil-4-(4-karboksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on molekülü için yoğunluk fonksiyonel teorisi (DFT) hesaplamaları tercih edilmiş ve teorik olarak elde edilen parametreler deneysel sonuçlarla (Akyıldırım, 2005) birlikte değerlendirilmiştir.

2. MATERYAL VE METOT

3-Metil-4-(4-karboksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on molekülünün çıktı dosyaları Gaussview 5.0 yazılımıyla görselleştirilmiş (Keith ve Millam, 2009) ve moleküler modellemesi için Gaussian09W (Frisch ve ark., 2009) programı kullanılmıştır. Hesaplama işlemleri için Yoğunluk Fonksiyonu Teorisi (DFT) metodu ve birçok polarize fonksiyon içeren 6-31++G(d,p) temel seti kullanılarak molekülün en kararlı uzay yapısı ve yerleşimi tespit edilmiştir. Yoğunluk fonksiyonu teorisi (DFT) yöntemlerinin (Becke, 1988; Becke, 1993; Perdew, 1986a; Perdew, 1986b; Lee ve ark., 1988; Perdew ve Wang, 1992) tercih edildiği bu çalışmada 6-31++G(d,p) temel setiyle molekülün yapısal parametreleri, yapısal, spektroskopik ve elektronik özellikleri incelenmiştir.

3. BULGULAR VE TARTIŞMA

3.1. Moleküler Yapı

3-Metil-4-(4-karboksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on molekülü optimize edilmiş Şekil **1**'de moleküler yapısı verilmiştir.

Bu bileşiğin moleküler geometrik parametreleri (bağ açıları, dihedral açıları ve bağ uzunlukları) B3LYP/6–31++G(d,p) ve B3PW91/6–31++G(d,p) yöntemlerinden faydalanılarak hesaplamış tüm parametreler Tablo **1**'de verilmiştir.

Şekil 1. Bileşiğin B3LYP/6-31++(d,p) yöntemine göre optimize edilmiş moleküler yapısı

Tablo 1. Bileşiğin B3LYP/B3PW91 yöntemlerine göre elde edilen yapısal parametreleri (bağ uzunluğu (A⁰) ve dihedral ve bağ açıları (⁰))

Bağ uzunluğu	B3LYP	B3PW91	Bağ Açısı	B3LYP	B3PW91	Dihedral Açı	B3LYP	B3PW91
C1-C10	1.49	1.48	C10-C1-N23	125.31	125.44	N23-C1-C10-H18	120.42	120.45
C1-N23	1.30	1.30	C10-C1-N24	123.62	123.57	N23-C1-C10-H19	-120.08	-120.01
C1-N24	1.39	1.39	N23-C1-N24	111.07	111.00	N23-C1-C10-H20	0.16	0.21
C2-N22	1.37	1.36	N22-C2-N24	101.39	101.29	N24-C1-C10-H18	-59.60	-59.57
C2-N24	1.42	1.41	N22-C2-O26	130.04	130.07	N24-C1-C10-H19	59.90	59.98
C2-O26	1.23	1.22	N24-C2-O26	128.57	128.64	N24-C1-C10-H20	-179.86	-179.81
C3-C4	1.47	1.46	C4-C3-H13	118.08	118.28	C10-C1-N23-N22	179.99	-180.00
C3-H13	1.09	1.09	C4-C3-N25	119.84	119.68	N24-C1-N23-N22	0.01	0.02
C3-N25	1.29	1.29	H13-C3-N25	122.08	122.04	C10-C1-N24-C2	180.00	180.00
C4-C5	1.40	1.40	C3-C4-C5	118.40	118.41	C10-C1-N24-N25	0.05	0.07
C4-C9	1.41	1.41	C3-C4-C9	122.73	122.64	N23-C1-N24-C2	-0.02	-0.02
C5-C6	1.39	1.39	C5-C4-C9	118.87	118.95	N23-C1-N24-N25	-179.96	-179.95
C5-1H4	1.09	1.09	C4-C5-C6	120.64	120.60	B24-2-22-12	179.98	179.95
C6-C7	1.40	1.40	C4-C5-H14	119.60	119.60	N24-C2-N22-N23	-0.01	0.00
C6-H15	1.09	1.09	C6-C5-H14	119.75	119.80	O26-C2-N22-H12	-0.04	-0.07
C7-C8	1.41	1.40	C5-C6-C7	120.30	120.25	O26-C2-N22-N23	179.96	179.98
C7-C11	1.50	1.50	C5-C6-H15	118.49	118.52	N22-C2-N24-C1	0.02	0.01
C8-C9	1.39	1.39	C7-C6-H15	121.17	121.18	N22-C2-N24-N25	179.96	179.93
C8-H16	1.08	1.09	C6-C7-C8	119.12	119.21	O26-C2-N24-C1	-179.96	-179.97
C9-H17	1.08	1.09	C6-C7-C11	123.21	123.17	O26-C2-N24-N25	-0.02	-0.05
C10-H18	1.09	1.09	C8-C7-C11	117.65	117.61	H13-C3-C4-C5	-0.08	-0.06
C10-H19	1.09	1.09	C7-C8-C9	120.61	120.57	H13-C3-C4-C9	179.58	179.57
C10-C2	1.09	1.09	C7-C8-H16	118.49	118.42	N25-C3-C4-C5	179.90	179.92
C11-H27	1.36	1.36	C9-C8-H16	120.90	121.01	N25-C3-C4-C9	-0.44	-0.45
C11-H28	1.21	1.21	C4-C9-C8	120.44	120.40	C4-C3-N25-N24	180.00	-179.99
H12-N22	1.01	1.01	C4-C9-H17	119.12	119.05	H13-C3-N25-N24	-0.02	-0.01
H21-O27	0.97	0.97	C8-C9-H17	120.44	120.55	C3-C4-C5-C6	-179.66	-179.60
N22-N23	1.38	1.37	C1-C10-H18	110.98	110.97	C3-C4-C5-H14	0.78	0.86
N24-N25	1.37	1.36	C1-C10-H19	110.98	110.98	C9-C4-C5-C6	0.67	0.76
			C1-C10-H20	108.52	108.50	C9-C4-C5-H14	-178.89	-178.79
			H18-C10-H19	107.52	107.57	C3-C4-C9-C8	-179.80	-179.80
			H18-C10-H20	109.42	109.41	C3-C4-C9-H17	-0.02	-0.04
			H19-C10-H20	109.40	109.39	C5-C4-C9-C8	-0.15	-0.17
			C7-C11-O27	117.22	117.02	C5-C4-C9-H17	179.63	179.59
			C7-C11-O28	123.19	123.11	C4-C5-C6-C7	-0.19	-0.25
			O27-C11-O28	119.59	119.87	C4-C5-C6-H15	-177.94	-177.82
			C2-N22-H12	125.30	125.15	H14-C5-C6-C7	179.36	179.30
			C2-N22-N23	114.32	114.48	H14-C5-C6-H15	1.61	1.72
			C12-N22-N23	120.39	120.37	C5-C6-C7-C8	-0.80	-0.84
			C1-N23-N22	104.89	104.90	C5-C6-C7-C11	-179.31	-179.31
			CI-N24-C2	108.34	108.33	H15-C6-C7-C8	176.89	176.67
			C1-N24-N25	121.31	121.36	H15-C6-C/-H11	-1.62	-1.80
			C2-N24-N25	130.36	130.30	C6-C7-C8-C9	1.32	1.43
			C3-N25-N24	119.12	119.05	C6-C7-C8-H16	-1/8.77	-1/8.66
			C11-027-H21	111.20	110.75	CTT-C7-C8-C9	1/9.91	179.98
						CII-C/-C8-H16	-0.18	-0.11

C6-C7-C11-H27	-21.96	-23.07
C6-C7-C11-O28	157.98	156.92
C8-C7-C11-O27	159.51	158.44
C8-C7-C11-O28	-20.55	-21.57
C7-C8-C9-C4	-0.85	-0.92
C7-C8-C9-H17	179.37	179.32
H16-C8-C9-C4	179.24	179.17
H16-C8-C9-H17	-0.53	-0.59
C7-C11-O27-H21	-8.88	-8.90
O28-C11-O27-H21	171.18	171.11
C2-N22-N23-C1	0.00	-0.01
H12-N22-N23-C1	-179.99	-179.97
C1-N24-N25-C3	-179.91	-179.91
C2-N24-N25-C3	0.16	0.19

3.2. Mulliken Atomik Yük Değerleri

Popülasyon analizi yöntemleri içerisinde en yaygın olan yöntem Mulliken yük dağılımıdır. (Mulliken,1955). Bu yöntemin temeli atomik orbitallerin lineer kombinasyonu ile moleküler orbitallerin elde edilmesi esasına dayanır. Bu dağılım tüm elementlerin elektronegativitesi hakkında tam bilgi sağlamaz (Reed ve ark., 1988). Bazen bir orbitalde negatif elektron nüfusu verebilirken bazen de bir orbitalde ikiden fazla elektron hesaplayabilmektedir. Sonuç olarak Mulliken atomik yük dağılımı nitel bazı tahminler yapmamızı sağlamaktadır. Molekül için hesaplanan atomik yük değerleri Tablo 2 ve Grafik 1'de verilmiştir.

Atomlar	B3LYP	B3PW91	Atomlar	B3LYP	B3PW91
C1	0.16	0.14	H15	0.01	0.11
C2	0.39	0.67	H16	0.17	0.19
C3	0.27	0.36	H17	0.13	0.12
C4	0.39	0.54	H18	0.19	0.19
C5	-0.80	-0.71	H19	0.20	0.20
C6	-0.53	-0.46	H20	0.19	0.19
C7	0.92	0.54	H21	0.37	0.35
C8	-0.29	-0.33	N22	-0.31	-0.31
С9	-0.04	-0.14	N23	-0.10	-0.04
C10	-0.51	-0.42	N24	-0.20	-0.45
C11	0.26	0.41	N25	-0.11	-0.19
H12	0.38	0.40	O26	-0.42	-0.52
H13	0.30	0.26	O27	-0.39	-0.36
H14	0.13	0.14	O28	-0.43	-0.42

Tablo 2. Bileşiğe ait Mulliken atomik yük değerleri

Grafik 1. Bileşiğin Mulliken atomik yük grafiği

3.3. İnfrared Spektrum Analizi

3-Metil-4-(4-karboksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on molekülün titreşim frekanslarının B3LYP ve B3PW91/6-31++G(d,p) temel setine göre hesaplamaları gerçekleştirilmiş ve 3N–6 titreşim hareket serbestliğine karşılık gelen 28 atomlu molekülün 78 titreşim frekansı tabloya ve grafiklere (Tablo **3** ve Grafik **2**) aktarılmıştır (Gans, 1971). B3LYP ve B3PW91 parametrelerine göre hesaplanan IR ve Raman spektrumları çizilmiştir (Şekil **2** ve **3**).

Tablo	3.	Bile	şiğin	titre	sim	fre	kansl	ları
			1 (7)					

Titreşim Frekansları	Skalalı DFT	Skalalı B3PW91
$\tau N_{25}C_3C_4C_5$ (47), $\tau N_{23}C_1N_{24}N_{25}$ (11), $\tau C_1N_{24}N_{25}C_3$ (17),	24	24
$\tau N_{22}N_{23}C_1N_{24} (15), \tau C_3C_5C_9C_4 (26), \tau N_{25}C_3C_4C_5 (10), \tau C_7C_6C_5C_4 (12), \tau N_{23}C_1N_{24}N_{25} (19)$	36	36
$\tau O_{27}C_{11}C_7C_6$ (19), $\delta N_{25}C_3C_4$ (27), $\delta C_3C_4C_9$ (25)	54	54
$\tau O_{27}C_{11}C_7C_6$ (64)	60	60
$\tau C_1 N_{24} N_{25} C_3$ (23), $\tau N_{23} C_1 N_{24} N_{25}$ (28), $\tau C_7 C_6 C_5 C_4$ (10)	90	90
$\tau C_1 N_{24} N_{25} C_3$ (19), $\tau N_{22} N_{23} C_1 N_{24}$ (16), $\tau C_3 C_5 C_9 C_4$ (11)	143	143
$\tau H_{18}C_{10}C_1N_{24}$ (72)	149	147
$\delta C_1 N_{24} N_{25}$ (16), $\delta C_3 C_4 C_9$ (34)	155	154
$\tau N_{25}C_3C_4C_5$ (20), $\tau C_1N_{24}N_{25}C_3$ (39), $\tau C_{10}N_{24}N_{25}C_1$ (14)	173	173
$v C_3 C_4 (15)$	184	183
$\delta O_{27}C_{11}C_7$ (12), $\delta C_3C_4C_9$ (28), $\delta C_{10}C_1N_{23}$ (19)	235	231
$\tau N_{23}C_1N_{24}N_{25}$ (24), $\tau C_3C_5C_9C_4$ (35)	248	251
$\tau H_{12}N_{22}N_{23}C_1$ (18), $\tau C_1N_{24}N_{25}C_3$ (16), $\tau C_{10}N_{24}C_{25}C_1$ (34)	286	293
$\delta O_{26}C_2N_{22}$ (14), $\delta C_1N_{24}N_{25}$ (11)	320	319
$\tau N_{23}C_1N_{24}N_{25}$ (12), $\tau C_7C_6C_5C_4$ (12), $\tau N_{22}N_{23}C_1N_{24}$ (15), $\tau C_3C_5C_9C_4$ (10)	338	339
$\tau C_7 C_6 C_5 C_4 (54)$	397	394
$\delta N_{22}N_{23}C_1(18), \delta O_{26}C_2N_{22}(17), \delta C_1N_{24}N_{25}(13)$	406	404
$\tau C_7 C_6 C_5 C_4 (20)$	408	407
$\tau O_{26}N_{22}N_{24}C_2$ (11), $\tau H_{12}N_{22}N_{23}C_1$ (57)	438	446
$\tau H_{21}O_{27}C_{11}C_7(69)$	462	468
$\delta O_{27}C_{11}C_7(22), \delta C_3C_4C_9(13), \tau H_{21}O_{27}C_{11}C_7(18)$	478	479
$\tau C_7 C_6 C_5 C_4$ (12), $\tau C_3 C_5 C_9 C_4$ (25), $\delta O_{27} C_{11} C_7$ (16)	520	519
$\delta C_{10}C_1N_{23} (13), \delta O_{26}C_2N_{22} (32), \delta C_1N_{24}N_{25} (19)$	573	573
$\nu N_{22}N_{23}$ (10), $\nu C_{10}C_1$ (15), $\delta O_{28}C_{11}O_{27}$ (12), $\delta N_{23}C_1N_{24}$ (13), $\delta C_6C_5C_4$ (10), $\delta C_1N_{24}N_{25}$ (10)	586	586
$\delta C_6 C_5 C_4 (49)$	623	617
$\delta O_{28}C_{11}O_{27}(29), \delta C_6C_5C_4(14), \nu C_{10}C_1(12)$	626	625
$\tau H_{12}N_{22}N_{23}C_1 (13), \tau N_{22}N_{23}C_1N_{24} (32), \tau C_{10}N_{24}N_{23}C_1 (11)$	627	627
τ H ₁₄ C ₅ C ₆ C ₇ (11), τ C ₇ C ₆ C ₅ C ₄ (35), τ O ₂₈ C ₇ O ₂₇ C ₁₁ (31)	676	675
$\tau O_{26}N_{22}N_{24}C_2$ (80)	689	691
$v O_{27}C_{11}(11), v C_3C_4(17), \delta O_{28}C_{11}O_{27}(19)$	726	728
$\delta O_{28}C_{11}O_{27}$ (29), $\delta C_6C_5C_4$ (14), $C_{10}C_1$ (12)	741	740

$v N_{22}C_2(10), v C_{10}C1(11), \delta N_{22}N_{23}C_1(14), \delta C_1N_{24}N_{25}(20)$	771	772
$\tau H_{14}C_5C_6C_7$ (15)	784	789
$\tau H_{14}C_5C_6C_7$ (36)	812	809
$\tau C_3 C_5 C_9 C_4 (12)$	841	837
$\tau C_7 C_5 C_6 C_4$ (10)	853	854
$\tau C_7 C_5 C_6 C_4 (12)$	928	924
$\tau C_7 C_6 C_5 C_4 (12)$	956	953
$\tau C_7 C_6 C_5 C_4 (10)$	967	962
$\tau H_{13}C_3N_{25}N_{24}$ (70), $\tau H_{14}C_5C_6C_7$ (10)	975	970
$\delta C_6 C_5 C_4 (50)$	989	985
τ H ₁ $_{\rm eC}$ $_{\rm eC}$ $_{\rm eC}$ $_{\rm eC}$ (61)	1024	1014
$\delta C_1 N_{24} N_{25} (10), \delta N_{22} N_{22} C_1 (16), \tau H_{18} C_{10} C_1 N_{24} (12)$	1032	1037
$\tau H_{10}C_{10}C_{1}N_{24}(10)$	1053	1062
$\mathbf{H}_{10} \mathbf{C}_{10} \mathbf{C}_{10} \mathbf{N}_{21} (14)$	1067	1082
$v \Gamma_{18} c_{10} c_{11} c_{24} (17)$ $v \Gamma_{c} C_{c} (13) \delta H_{c} C_{c} (26)$	1007	1092
$V_{1} = (11)_{1} \otimes H_{1} \otimes H_{2} \otimes H$	1150	11/9
$\delta H_{2}(C_{1}(27)) \times C_{1}(27)$	1150	1152
V = V = V = V = V = V = V = V = V = V =	1150	1152
$v \ln_{22}\ln_2(17), v \ln_{22}\ln_{23}(11), v \ln_{14}C_5C_6(11)$	1206	1210
$v C_{5}C_{4}(11), v N_{22}C_{2}(10)$	1200	1210
$V N_{22}N_{23} (17)$ S U O C (19) + O C (17) + C C (15)	1255	1200
S = C C (22)	1200	1271
$0 \Pi_{14} \Box_{5} \Box_{6} (25)$	1200	1260
$V C_5 C_4 (15), V C_8 C_7 (25)$	1300	1512
$V N_{22} C_2 (23), 0 H_{13} C_{21} N_{25} (23)$	1550	1331
$0 H_{12}N_{22}N_{23}$ (58)	1545	1345
$0 H_{13} U_3 H_{25} (10)$	13/1	1364
$\delta H_{14}C_5C_6(13), \forall C_5C_4(24)$	1389	138/
$v N_{22}C_2$ (13), $\delta H_{13}C_3N_{25}$ (20)	1400	1398
$\delta H_{18}C_{10}H_{20}(77), \tau H_{18}C_{10}C_{1}N_{24}(22)$	1418	1407
$\tau H_{18}C_{10}C_1N_{24}$ (14)	1433	1431
$\delta \operatorname{H}_{14}\operatorname{C}_5\operatorname{C}_6(14)$	1485	1482
$v C_5 C_4 (29), \delta C_6 C_5 C_4 (10)$	1541	1548
$v N_{23}C_1$ (36), $v C_5C_4$ (21)	1582	1590
$v N_{23}C_1$ (16), $v C_5C_4$ (21)	1594	1602
$v N_{23}C_1 (51), v C_5C_4 (13)$	1607	1616
$v N_{22}C_2$ (13), $v O_{26}C_2$ (72)	1721	1737
$v O_{28}C_{11}$ (86)	1749	1762
$v C_{10}H_{18}(91)$	2939	2937
$v C_{10}H_{18}$ (99)	2997	3004
$v C_{10}H_{18}(91)$	3037	3037
v C ₃ H ₁₃ (40)	3047	3044
v C ₃ H ₁₃ (53)	3050	3046
$v C_3 H_{13} (43)$	3072	3069
$v C_{3}H_{13}(13), v C_{9}H_{17}(50)$	3089	3084
$v C_{3}H_{13}(13), v C_{9}H_{17}(49)$	3101	3097
$v N_{22}H_{12}$ (100)	3546	3552
$v O_{27}H_{21}$ (100)	3660	3671
*v. gerilme: å. hükülme: ås. makaslama: o. sallanma: v. düzlem dısı hükülme t. dönme		

Grafik 2. Bileşiğin titreşim frekansları arasındaki korelasyon grafiği

Hesaplanan titreşim frekansları ile deneysel değerler (Akyıldırım, 2005) karşılaştırılmış ve her yöntem için R² değerleri hesaplanmıştır (Grafik **2**). Titreşim frekansları Veda4f yazılım programından yararlanılarak tespit edilmiştir (Jamroz, 2004). Yöntemler karşılaştırıldığında deneysel değerlere yakın sonuçlar elde edilmiştir.

3.4. ¹H-NMR Spektral Analizi

Molekülün, ¹H NMR kimyasal kayma değerleri DMSO, CCl₄ çözücülerinde 6-31++G (d,p) temel setinde B3LYP ve B3PW91 yöntemleriyle hesaplanmıştır. Molekülün optimize edilmiş moleküler geometrisi üzerinden GIAO ve CSGT yöntemleri kullanılarak aynı yöntem ve temel set ile hesaplamalar gerçekleştirilmiştir (Tablo **4**). Molekülün ¹H-NMR kimyasal kayma değerleri ile deneysel değerler arasında en küçük kareler yöntemine göre oluşturulan R² sonuçları hesaplanmıştır. R² değerleri kıyaslandığında her iki yöntemde elde edilen değerlerin birbiriyle yakın ve uyumlu olduğu gözlenmiştir (Şekil **4**). Çalışmada, 1*H*-1,2,4triazol-5-on halkasında bulunan N-H protonunun asidik özellik taşıması nedeniyle N-H için hesaplanan değerlerle deneysel değerler arasında kıyaslama sonucu lineer doğrudan sapmalar gözlenmiş ve teorik olarak elde edilen değerlerin daha düşük bir alanda olduğu tespit edilmiştir.

Tablo 4. Bileşiğinin TMS'ye göre ¹H-NMR deneysel ve teorik (B3LYP ve B3PW91 DMSO ve CCl₄ çözücüleri içerisinde GIAO ve CSGT yaklaşımlarına göre kimyasal kayma değerleri (ppm)

No	Deneysel	B3LYP GIAO (DMSO)	B3LYP GIAO (CCl4)	B3LYP CSGT (DMSO)	B3LYP CSGT (CCl4)	B3PW91 GIAO (DMSO)	B3PW91 GIAO (CCl4)	B3PW91 CSGT (DMSO)	B3PW91 CSGT (CCl4)
H12	11,88	8,09	7,86	8,27	8,06	8,12	7,89	8,30	8,08
H13	9,81	10,62	10,64	10,30	10,34	10,79	10,80	10,45	10,48
H14	7,92	8,05	7,89	8,29	8,14	8,20	8,03	8,43	8,28
H15	8,04	8,17	7,92	8,26	8,03	8,32	8,06	8,39	8,16
H16	8,04	8,67	8,71	8,61	8,66	8,79	8,83	8,74	8,78
H17	7,92	8,90	8,86	9,06	9,04	9,83	8,99	9,20	9,18
H18	2,29	2,73	2,65	3,89	3,82	2,66	2,69	3,92	3,85
H19	2,29	2,74	2,66	3,88	3,82	2,40	2,70	3,92	3,86
H20	2,29	2,44	2,44	3,49	3,49	2,53	2,52	3,55	3,55
H21	Sonuç Gözlenmedi	8,06	7,51	7,90	7,37	8,08	7,54	7,93	7,39

Şekil 5. Bileşiğinin TMS'ye göre ¹H-NMR deneysel ve teorik (B3LYP ve B3PW91 DMSO ve CCl₄ çözücüsü içerisinde GIAO ve CSGT yaklaşımlarına göre kimyasal kayma (ppm) değerlerinin karşılaştırılması

3.5. MEP Haritası, HOMO-LUMO Enerjileri, Elektronik Özellikler ve UV-vis Spektral Verileri

Moleküler elektrostatik potansiyel (MEP) ile molekülün nükleofilik ve elektrofilik tepkimeleri verebileceği bölgeler belirlenebilir. Ayrıca molekül içi hidrojen bağlarının belilenmesinde geniş bilgiler sağlamaktadır (Levine, 2000; Cramer, 2004). Bileşiğin moleküler elektrostatik potansiyel (MEP) haritası incelendiğinde kırmızı bölgeler dıştaki elektronları kuvvetlice iten elektron bakımından zengin bölgeleri ifade ederken ayrıca en düşük potansiyel enerjili bölgeler olmasıyla birlikte elektronları kuvvetlice çeken elektron

bakımında fakir bölgeleri ifade ederken pozitif yüke sahip bu bölgeler en yüksek potansiyel enerjiye sahiptir. Molekülün MEP yüzeyleri B3LYP/B3PW91 metoduyla hesaplanmış ve molekülün üç (3) boyutlu yüzey haritaları Şekil **6**'de gösterilmiştir. Yüzey haritası incelendiğinde, elektron bakımından yoğunluğun en fazla olduğu bölgelerin azot ve oksijen atomlarının çevresinde olduğu tespit edilmiştir. Molekülde pozitif bölgelerin hidrojen atomlarının üzerinde olduğu gözlenirken 1,2,4-triazol halkasında ki NH bölgesi ise elektron yoğunluğu bakımından en düşük olan bölgedir.

Molekülün elektronik özellikleri HOMO-LUMO enerjileri kullanılarak hesaplanmıştır. Molekülün HOMO enerjisi; elektron verme yeteneğini ifade ederken LUMO enerjisi ise elektron çekme yeteneğini ifade etmektedir. Hesaplanan HOMO-LUMO enerjilerinden yararlanarak bileşiğe ait elektronik parametreler (A; elektron ilgisi, S; moleküler yumuşaklık, I; İyonlaşma potansiyeli, χ ; elektronegatiflik, η ; moleküler sertlik,) belirlenmiştir (Tablo **5**).

Şekil 6. Molekülün B3LYP/6-31++G(d,p) metoduyla hesaplanan moleküler elektrostatik potansiyel (MEP) yüzey haritaları

Şekil 7. Bileşiğin B3LYP ve B3PW91 yöntemleriyle elde edilen HOMO-LUMO enerjileri

		eV	eV
		(B3LYP)	(B3PW91)
	LUMO	-2,72	-2,70
	НОМО	-6,68	-6,69
Α	Elektron İlgisi	2,72	2,70
Ι	İyonlaşma Potansiyeli	6,68	6,69
ΔΕ	Enerji Aralığı	3,96	3,99
χ	Elektronegativite	4,70	4,69
Pi	Kimyasal Potansiyel	-4,70	-4,69
ω	Elektrofilik Indeks	0,03	0,03
IP	Nukleofilik Indeks	-0,34	-0,34
S	Moleküler Yumuşaklık	373,85	370,74
η	Moleküler Sertlik	1,98	2,00

Tablo 5.	Bileşiğin	bazı ele	ktronik	parametrel	eri
----------	-----------	----------	---------	------------	-----

Molekül için UV-vis bölgesinde $\pi \rightarrow \pi^* \text{ ve } \sigma \rightarrow \sigma^*$ geçişleri gözlenmektedir. Bileşiğin etanol çözücüsü içerisinde ki deneysel olarak elde edilen dalga boyları 300, 232 ve 210 nm olarak tespit edilmiştir (Akyıldırım, 2005). Bununla birlikte bileşiğin absorpsiyon dalga boyları (λ), uyarılma enerjileri, osilatör kuvvetleri (f) ve zamana bağlı TD-SCF-B3PW91 ve TD-SCF-B3LYP yöntemleri kullanılarak etanol çözücüsü içerisinde hesaplanmıştır. Molekülün hesaplanan absorpsiyon dalga boyları B3LYP ve B3PW91 yöntemlerine göre etanol çözücüsü içerisinde ki değerleri sırasıyla; 346/347, 299/296 ve 210/287 nm olarak hesaplanmıştır.

Deneysel	λ (nm)	λ (nm)	Uyarılma	Uyarılma	f(osilatör	f(osilatör
	B3LYP	B3PW91	Enerjisi (eV)	Enerjisi (eV)	gücü)	gücü)
			B3LYP	B3PW91	B3LYP	B3PW91
300	346	347	3.5817	3.5785	0.3780	0.3582
232	296	299	4.1896	4.1521	0.0004	0.0003
210	287	295	4.3260	4.3533	0.5548	0.5765

Şekil 8. Bileşiğin deneysel ve teorik UV-vis spektral verileri

4. TARTIŞMA VE SONUÇ

3-Metil-4-(4-karboksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on bileşiği için B3LYP ve B3PW9/6-31++G(d,p) temel setleri kullanılarak hesaplamalar gerçekleştirilmiştir. Bileşiğin teorik IR, UV-vis ve ¹H-NMR spektral değerleri hesaplanarak deneysel verilerle karşılaştırılmıştır. Hesaplanan spektral veri sonuçları değerlendirildiğinde oldukça uyumlu sonuçların olduğu gözlenmiştir. Bileşiğin teorik titreşim frekansları ile deneysel değerler arasında en küçük kareler yöntemine göre oluşturulan R² sonuçları hesaplanmıştır. Bileşiğin her bir yöntem için hesaplanan R² değerleri; 0.9961 (B3LYP) ve 0.9965 (B3PW91) olduğu gözlenirken her iki sonuç oldukça uyumludur yöntemler arasında ki en iyi sonucun ise B3PW91 yöntemiyle elde edilen sonuçlar olduğu tespit edilmiştir. Bileşiğin ¹H NMR kimyasal kayma değerleri çözücü ortamında hesaplanarak deneysel verilerle arasında bir kıyaslama yapılmıştır. B3LYP ve B3PW91/6-31++G(d,p) temel setiyle DMSO ve CCl₄ çözücüsü içerisinde iki farklı (GIAO ve CSGT) yaklaşımla hesaplamalar gerçekleştirilmiştir. ¹H-NMR kimyasal kayma değerleri ile deneysel veriler arasında ki R²; 0.8348/0.8341 (B3LYP, GIAO/CSGT (DMSO)), 0.8189/0.8155 (B3LYP, GIAO/CSGT (CCl₄)), 0.8258/0.8092 (B3PW91, GIAO/CSGT (DMSO)), 0.8121/0.8068 (B3PW91, GIAO/CSGT (CCl₄)) olarak hesaplanmıştır. Sonuçlar değerlendirildiğinde B3LYP yöntemi, GIAO yaklaşımı ve DMSO çözücüsü içerisinde ki değerlerin en iyi olduğu gözlenmiştir. Bileşiğin UV-vis spektral verileri için de R² değerleri hesaplanarak en iyi yöntem tayin edilmiştir. Etanol çözücüsü içerisinde elde edilen değerlerle deneysel sonuçlar arasında ki R² değerleri; 0.9911 (B3LYP) ve 0.9722 (B3PW91) olarak hesaplanmış en iyi sonuçların B3LYP yönteminde olduğu gözlenmiştir. Molekülün MEP haritasına incelendiğinde maksimum negatif bölgeler elektronegatif atomlar (N ve O) üzerinde ve maksimum pozitif bölgeler ise 1,2,4-triazol halkasında ki NH üzerinde yoğunlaşmıştır. Ayrıca HOMO-LUMO sınır orbitalleri arasındaki enerji farkları B3LYP ve B3PW91/6-31++G(d,p) yöntemlerine göre sırasıyla 3.96 ve 3.99 eV olduğu gözlenmiştir.

KAYNAKLAR

- Adam M.S.S., Elsawy H. (2018). Biological potential of oxo-vanadium salicylediene amino-acid complexes as cytotoxic, antimicrobial, antioxidant and DNA interaction. *Journal of Photochemistry and Photobiology B*, 184, 34-43.
- Akyıldırım O. (2005). 3-Alkil(Aril)-4-(4-karboksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on Bileşiklerinin Sentezi, Yapılarının Aydınlatılması ve Susuz Ortam Titrasyonları. Yüksek Lisans Tezi, Kafkas Üniversitesi, Fen Bilimleri Enstitüsü.

- Becke A.D. (1988). Density-functional exchange-energy approximation with correctasymptotic behavior, *Physical Review A*, 38, 3098-3100.
- Becke A.D. (1993). Density-functional thermochemistry. III. The role of exact Exchange, *Journal of Chemical Physics*, 98, 372-377.
- Chandramouli C., Shivanand M., Nayanbhai T., Bheemachari B., Udupi R. (2012). Synthesis and biological screening of certain new triazole Schiff bases and their derivatives bearing substituted benzothiazole moiety. *Journal of Chemical and Pharmaceutical Research*, 4, 1151-1159.
- Cramer C.J. (2004). Essentials of Computational Chemistry: Theories and Models Computational Chemistry, 596.
- Dehkhodaei M., Sahihi M., Rudbari H.A., Ariaeefar M., Gharaghani S., Azadbakht R., Taheri S., Abbasi Kajani A. (2018). Multi experimental and computational studies for DNA and HSA interaction of new nano-scale ultrasoundassisted synthesized Pd(II) complex as a potent anticancer drug, *Journal of Molecular Liquids*, 264, 386-397.
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Vreven TJr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C.J., Ochterski W., Martin L.R., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. (2009). Gaussian Inc. (Wallingford, CT).

Gans P. (1971). Vibrating Molecules. Chapman and Hall, London, 145.

Jamroz M.H. (2004). Vibrational Energy Distribution Analysis VEDA4 (Warsaw).

Keith T., Millam J., (2009). GaussView, Version 5, R Dennington, Semichem Inc, Shawnee Mission, KS.

Kumar G., Devi S., Kumar D. (2016). Synthesis of Schiff base 24-membered trivalent transition metal derivatives with their anti-inflammation and antimicrobial evaluation. *Journal of Molecular Structure*, 1108, 680-688.

Lee C., Yang W., Parr R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Physical Review B*, 37, 785-789.

Levine I.N. (2000). Many-Electron Atoms. Quantum chemistry. Prentice- Hall Inc, New Jersey. 739.

Luszczki J.J., Plech T., Wujec M. (2012). Effect of 4-(4-bromophenyl)-5-(3- chlorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione on the anticonvulsant action of different classical antiepileptic drugs in the mouse maximal electroshock-induced seizure model. *European Journal of Pharmacology*, 690, 99-106.

Mulliken R.S. (1955). Electronic Population Analysis on LCAO-MO Molecular Wave Functions. Journal of

Chemical Physics, 23,1833-1840.

Perdew J.P. (1986a). Density-functional approximation for the correlation energy of the inhomogeneous electron gas. *Physical Review B*, 33, 8822. (b) Perdew, J.P. (1986b). *Physical Review B*, 34, 7406.

- Perdew J.P., Wang Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. *Physical Review B*, 45, 13244.
- Plech T., Wujec M., Kosikowsk U., Malm A., Rajtar B., Polz-Dacewicz M. (2013). Synthesis and in vitro activity of 1,2,4-triazole-ciprofloxacin hybrids against drug-susceptible and drug-resistant bacteria. *European Journal of Medicinal Chemistry*, 60, 128-134.
- Reed A.E., Curtiss L.A., Weinhold F., (1988). Intermolecular interactions from a natural bond orbital, donoracceptor viewpoint. *Chemical Reviews*, 899.
- Sumrra S.H., Kausar S., Raza M.A., Zubair M., Zafar M.N., Nadeem M.A., Mughal E.U., Chohan Z.H., Mushtaq F., Rashid U., (2018). Metal based triazole compounds: their synthesis, computational, antioxidant, enzyme inhibition and antimicrobial properties. *Journal of Molecular Structure*, 1168, 202-211.
- Zhan P., Li D., Chen X., Liu X., De Clercq E., (2011). Functional roles of azoles motif in anti-HIV agents. *Current Medicinal Chemistry*, 18, 29-46.