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ABSTRACT

We consider a scheduling problem observed in a soft-drink production facility with multiple production lines and sequence-dependent setup 
times. The primary objective is to obtain a weekly schedule that minimizes the total weighted unsatisfied demand. As a secondary objective we aim 
to minimize the total production and setup times. The number of molds and the number of shifts at any day are limited. We formulate the problem 
as a Mixed Integer Linear Program and propose several heuristic procedures for its solution. The results of our extensive runs have revealed the 
satisfactory performance of our heuristic procedures.

Keywords: Scheduling, sequence-dependent setup times, heuristic, integer programming

DİZİYE BAĞLI KURULUM SÜRELERİ VE YAN KISITLARI OLAN PARALEL ÜRETİM HATLARI

ÖZ

Çoklu üretim hatları ve diziye bağlı kurulum süreleri ile bir meşrubat üretim tesisinde gözlemlenen bir çizelgeleme problemini ele alıyoruz. 
Birincil hedefimiz, toplam ağırlıklı karşılanamayan talebi en aza indirecek haftalık bir program elde etmektir. İkinci bir hedef olarak, toplam üretim 
ve kurulum sürelerini en aza indirmeyi hedefliyoruz. Herhangi birgün de kalıp sayısı ve vardiya sayısı sınırlıdır. Problemi bir Karma Tamsayılı 
Doğrusal Program olarak formüle edip, çözüm için birkaç sezgisel prosedür önermekteyiz. Kapsamlı çalışmalarımızın sonucu, sezgisel prosedür-
lerimizin tatmin edici performansını ortaya koymuştur.

Anahtar Kelimeler: Çizelgeleme, dizi bağımlı kurulum zamanları, sezgisel, tam sayılı programlama

* İletişim yazarı
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1. INTRODUCTION

We consider the problem of allocating parallel pro-
duction lines to multiple products at a soft-drink pro-
duction plant. A product type is represented by its group 
(drinks using the same syrup type) and its shape, size, 
and container type. A setup is required when the product 
type changes. During this setup time, if the bottle shape 
changes, the mold at the blowing station is changed. 
Moreover, if the syrup type differs, the tank feeding the 
bottling station is cleaned and refilled. For each product, 
there is a set of eligible production lines and each eli-
gible line has a different throughput rate. We intend to 
schedule the production lines to meet the requirements 
of the weekly production plan as far as possible, so that 
the total weighted unsatisfied demand is minimized. As 
a secondary concern is to minimize the total time spent 
in the system. Simultaneous scheduling decisions have 
to be made among the lines as the number of molds and 
number of shifts at any day are limited.

Soft drink production process is composed of two 
stages (see Figure 1).

1. Syrup preparation: Syrup is the most expensive 
ingredient of the soft drinks. After being prepared 

Figure 1. Soft Drink Production Process
 

in the syrup room, it is transferred to the tanks that 
feed the production lines. The issues here are the 
tank capacities and the perishability of the syrup. The 
shelf life of the syrups is only 24 hours; therefore, 
they should be prepared just before the production.

2. Bottling: A production line is composed of five stati-
ons: blow, fill, label, package, and pallet. Tanks feed 
the filling station at the second stage.

In the literature, the majority of the soft drink pro-
duction scheduling studies consider two stages of the 
production process together. The planning horizon is 
divided into macro periods of constant length, each of 
which has a demand for each product type. Each macro 
period is divided into micro periods of varying length, in 
which one type of product is produced. This problem type 
is named as integrated lot sizing and scheduling problem. 
Drexl and Kimms [8] give an extensive review of the lot 
sizing and scheduling problems. In lot sizing phase, lot 
sizes, inventory or backlogging levels at the end of each 
macro period for each product type are determined. In 
scheduling phase, the order of each product type at each 
production line is determined.

Some noteworthy studies on the applications of the 
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lot sizing and scheduling problem in soft-drink industry 
are due to Toledo et al. [19, 20, 21], Ferriara et al. [9, 10, 
11], Baldo et al. [3], and Maldonado et al. [15]. Meyr 
and Mann [16] give a decomposition approach for lot-
sizing and scheduling decisions in parallel production 
line environments. Clark et al. [6], Araujo and Clark [2], 
and Gicquel and Minoux [13] study a lot sizing and sche-
duling problem on a single line for the general setting.

Toledo et al. [19, 20, 21] consider the two-stage lot 
sizing and scheduling problem with sequence-dependent 
setup times on unrelated parallel machines. The first 
study proposes a mixed integer linear model, the second 
study presents a multi-population genetic algorithm for 
hierarchically structured populations, and the final study 
suggests a genetic algorithm embedded into mathemati-
cal programming. Ferriara et al. [9] consider a two-stage 
problem, and propose a mathematical model that links 
the stages via continuous variables.

Ferriara et al. [9] consider a single-stage and single 
machine lot-sizing and scheduling problem with sequ-
ence-dependent setup costs. They aim to minimize the 
sum of the inventory, backorder, and machine change-
over costs.

In Ferriara et al. [11], the first stage of the soft drink 
production process is embedded into the second stage 
by modifying the setup times in the second stage. The 
setup time is taken as the maximum of the bottling line 
product setup time, and the respective tank syrup setup 
time. The objective is to minimize the total holding and 
backlogging costs.

We model the second stage of production since its 
optimal schedule forms the basis for the organization of 
the first stage. We include the first stage in our model 
by putting the constraint that a limited number of syrup 
types can be prepared at a given time.

Our model covers many aspects of scheduling prob-
lems that have been extensively studied in the literature. 
Basically, it is a parallel line scheduling problem, in 
which lot splitting is allowed, setup times are sequence 

dependent and the number of molds is limited (related 
to tool constraints in the literature). 

Yalaoui and Chu [22] consider an identical parallel 
machine scheduling problem with sequence-dependent 
setup times and lot splitting, and minimize the makespan. 
They propose a heuristic procedure, by first reducing 
the problem into a single machine scheduling problem, 
whose solution is used as an initial feasible solution. 
Following this, they apply improvement steps consi-
dering lot splitting and setup times. Tahar et al. [18] 
consider the same problem and state that the considered 
problem is NP-hard. They suggest a heuristic algorithm 
and show the satisfactory performance of their heuristic. 
Chen and Wu [5] and Shim and Kim [17] consider an 
unrelated machine scheduling with machine-and sequ-
ence-dependent setup times and tool constraints and aim 
to minimize total tardiness. Chen and Wu [5] propose a 
heuristic using threshold-accepting methods, tabu lists, 
and improvement steps. Shim and Kim [17] develop a 
branch and bound algorithm along with several domi-
nance properties and lower bounds.

Dhaenens-Flipo [7] also consider unrelated parallel 
machine scheduling with machine- and sequence-de-
pendent setup times. Their model has limited time to 
process all jobs and the objective is to minimize the total 
cost of production, distribution, and switching. Boudhar 
and Haned [4] consider an identical machine scheduling 
problem where preemption is allowed and makespan is 
minimized. They show that the problem is NP-hard and 
present heuristics and lower bounds to approximate the 
optimal solution. Freeman et al. [12] consider an unrela-
ted parallel machine scheduling problem with sequence-
dependent setup times and their objective is to minimize 
the total waste and overtime costs. They formulate the 
problem as a Mixed Integer Program and propose a 
decomposition heuristic from its solution.  Kaya and 
Sarac [14] study an identical parallel machine scheduling 
problem with sequence-dependent setup times. Their ob-
jectives are minimizing the makespan and total tardiness.  
They use goal programming to solve a real-life instance 
from a plastic product manufacturing plant.
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Our model differs from the previously reported 
models in many aspects. First it is different in terms of 
its objective function. Our objective is to minimize the 
weighted sum of unsatisfied demand at the end of the 
planning horizon. When there is a sufficient production 
time to satisfy all demand, the secondary objective of 
minimizing the total processing and setup times becomes 
effective.  The secondary objective reflects the produc-
tion cost. Different from all other studies we have time 
limitations and shift considerations. The time to comp-
lete all production, and our planning horizon is 6 days.  
The number of workers is limited and each day they are 
distributed to the production lines by shifts. Suppose that 
the number of workers is enough to cover six shifts a 
day and we have three production lines. We also decide 
which shifts are to be covered at each line. There can 
be a feasible solution, where lines 1 and 2 cover three 
shifts, and line 3 stays idle.

We start with formulating a specific model and 
proposing efficient solution procedures for finding app-
roximate solutions. In Section 2, we define our problem 
and give a Mixed Integer Linear Programming model. 
In Section 3, we present our heuristic procedures, and 
in Section 4 we discuss their performance. In Section 5, 
we conclude the study by pointing out our main findings 
and suggestions for future research.

2. PROBLEM DEFINITION AND THE MODEL

The plant makes weekly production plans. Therefore, 
the preset planning horizon is for six days. We discretize 
the planning horizon as follows. A day is composed of 
three 8-hour shifts. A day has a number of intervals 
each α hours long. We denote a time period by its day 
and interval number. d represents the day index, k is the 
shift index, t is the interval index. Therefore, a (d,t) pair 
represents the decision time. When α = 4 we have the 
case in Figure 2.

We make the following further assumptions.

• The bottling (second) stage of production is consi-
dered as its optimal schedule forms the basis for the 
organization of the syrup preparation (first) stage. 

• At most one product type is assigned to each period, 
to avoid frequent setups. 

• The setup for the first day is carried out the previous 
night, therefore the setup time for the first period of 
the planning horizon is zero.

• Each product belongs to a single group but each 
group may have more than one product.

We have the following operating constraints.

1. Syrup room constraint: Syrups are perishable and 
therefore are prepared immediately before produc-

Figure 2. Periods For Two Days When α = 4
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tion. Since there are limited number of tanks for 
preparation, the number of different syrups that can 
be used at a given time is also limited.

2. Mold availability constraint: Each product requires 
a specific mold type. There are limited number of 
molds of each type and this restricts the number of 
lines that can simultaneously produce each product 
type using the same type of mold.

3. Line eligibility constraint: The technological 
capabilities of the lines are different; hence each 
product can be produced on a specified subset of the 
production lines.

4. Number of shifts available in a day: There are a 
limited number of workers available during the day, 
which determines the number of shifts available in 
a day.

5. Same shift on all days: The company aims to run 
the same shifts at each line for each day throughout 
the planning horizon to ease the production control.

The preferences that form the objective function are 
listed below.

• Demand satisfaction and product priorities: For 
each product, we keep track of the fraction of the 
demand satisfied by the production schedule. Some 
product types have prespecified priorities. The pe-
nalty for failing to satisfy a unit of a product type 
depends on its priority level.

• Production time and setup time reduction: The 
total production time and time used by setups are as 
small as possible.

The parameters of the problem are defined below.

α: length of a planning period in hours. It should be 
more than the maximum setup time between product 
types and an integer that divides 8. The possible values 
are 1, 2, 4, and 8.

W: Number of shifts available per day

A: Number of different types of syrups that can be 
prepared at any time 

i: Product type index, i = 1, ..., N 

d: Production day index, d = 1, ..., D 

k: Shift index in a day, k = 1,2,3 

t: Period index in a day, t = 1,...,24/α.

l: Line index, l = 1,...,L 

m: Mold type index, m = 1,..,M

El: Set of eligible drinks for line l

qi: Demand for drink i in units 

vi: Penalty of not satisfying one unit of demand for 
product type i

Bm: Available number of mold type m

Tk: Set of periods in shift

𝑘𝑘𝑘 𝑘𝑘� = {8𝛼𝛼 �𝑘𝑘 𝑘 𝑘� + 𝑘𝑘… 𝑘 8𝛼𝛼 𝑘𝑘𝑘 

Oim: 1 if drink i requires mold m, 0 otherwise

RTil: Rate of production for product type i on line l 
in units per hour 

Gig: 1 if drink i belongs to drink group g, 0 otherwise 

fij: Setup time from product type i to j in hours

∈1: Weight of the second objective (a positive value)

Our decision variables are 

xidtl: Fraction of demand for product type i that is 
satisfied in period (d,t) at line l

yidtl: 1 if the line l is setup for product type i at the 
beginning of period (d,t), otherwise 0

zidtl: 1 if there is a production of product type i at line 
l in period (d,t), otherwise 0

stdtl: Setup time spent in period (d,t) at line l

βdtg: 1 if a product type from group g is produced in 
period (d,t), otherwise 0 

λkl: 1 if shift k is utilized for line l throughout the 
planning horizon, otherwise 0

γi: Fraction of the unsatisfied demand of product type 
i at the end of the horizon.
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Now, we can present our Mixed Integer Linear Prog-
ramming (MILP) model.

The objective is composed of two components, gi-
ven in the order of importance. The first part is the total 
weighted penalty of the unsatisfied demand at the end 
of the horizon.

 
Second term is the total time spent on production 

and setup.

i
idtl dtl

i d t l d t lil

q x st
RT

   

Constraint set (1) ensures that products are assigned 
to their eligible lines. Constraint set (2) keeps track of 
the product type which is currently setup on a line for 
each period (d,t). Constraint set (3) ensures that for a 
given time period and line, if there is a production, then 
the related z variable takes value 1. Constraint set (4) 
calculates the fraction of unsatisfied demand for each 
product type at the end of the horizon.

Constraint set (5) ensures that for each line and time 
period, production can occur if there is a related setup. 
Constraint sets (7) and (8) calculate the setup time if 
there is a product change from one period to the next. 
We assume that setup for the first day is carried out 
the previous night, therefore the setup time for the first 
period of the planning horizon is zero. This assumption 
is ensured by Constraint set (6).

Constraint set (9) ensures that if a period is used, 
then the whole time is spent for production and setup, 
the idle time is not allowed. Constraint set (10) allocates 
the available shifts during the day to the lines. This sche-
dule is applied during the planning horizon. Constraint 
set (11) ensures that earlier shifts are preferred to later 
shifts. Constraint set (12) ensures that a period can be 
used if the related shift is used.

Based on constraint set (13), it is impossible to use 
more than the available number of molds for each type 
at any time during the planning horizon. Constraint set 
(14) checks whether any product type for each product 

group is produced for each period in the planning ho-
rizon. Constraint set (15) ensures that no more than A 
types of groups are produced at the same time.

Constraint sets (16, 17, and 18) define the binary 
variables and constraint sets (19) and (20) ensure the 
nonnegativity.

3. SOLUTION PROCEDURES

Our initial experiments revealed that the MILP model 
cannot be solved within a reasonable time even for small 
sized problem instances. To find high quality solutions in 
a reasonable time, we develop three heuristic procedures, 
based on a number of relaxation schemes designed to 
provide lower bounds on the optimal objective function 
value.

3.1 Relaxation Schemes

We present two relaxation schemes in this section. In 
the first, all integer decision variables are relaxed, and 
in the second only the setup related decision variables 
are relaxed. These solutions are used as constraints in 
our heuristic algorithms. We first define these relaxation 
schemes, and then discuss the details of our heuristic 
procedures.

Pure Linear Programming Relaxation (LP)
We obtain the pure linear programming relaxation of 

the model by relaxing all integer decision variables, i.e., 
the setup variables, shift variables and group variables, 
(yidtl, zidtl, λkl, and βdtg). The binary requirement on deci-
sion variables are simply removed and replaced by the 
constraint forcing them to be between 0 and 1. Our first 
lower bound is the optimal objective function value of 
the model LP.

Partial Linear Programming Relaxation (PLP)
We obtain the partial Linear Programming relaxation 

of the MILP by relaxing only the binary requirements 
for the setup and production variables, yidtl and zidtl. Our 
second lower bound is the optimal objective function 
value of the PLP model.

3.2 Decomposition Heuristic

Our first heuristic procedure is based on the concept 
of decomposing the problem into smaller subproblems, 
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each of which is solved to optimality by an optimization 
software. Each subproblem has the same flavor as the 
original problem, except that it considers fewer periods. 
Once the problem is decomposed into subproblems of 
p days long, it is assumed that all subproblems, except 
the last one, have exactly p days. The last subproblem 
considers the remaining  days.

Two consecutive subproblems u and u + 1 are related 
in the sense that the product type produced in the last pe-
riod of subproblem u will be the reflected as the product 
type setup in the first period of the subproblem u + 1. 
Therefore, the product types produced in the last period 
of each line for a subproblem are taken as constraints 
for the next subproblem.

Each subproblem aims to maximize the weighted 
sum of the satisfied demand. In doing so, as much work 
as possible is concentrated to the initial periods, favoring 
our the concern of producing at earlier periods. Such a 
solution may be essential when there is incomplete in-
formation about the product types and demand values. 
For those uncertain environments, it is more logical to 
use the initial periods with known demands, and assign 
the slack capacity to the new product arrivals or extra 
production requests. We give the stepwise description 
of our first heuristic procedure below.

Heuristic 1(p)

Step 0. Divide the problem into U subproblems, 
where U = D/p

Let u = 1, solve the first subproblem by considering 
the first p periods.

Step 1. If u < U then let u = u + 1 else go to Step 3

Solve subproblem u considering the days (u − 1) p 
+ 1 through min{D, u*p} by fixing the shift decisions 
taken in subproblem 1,

the updated unsatisfied demand values after subprob-
lem u − 1, the setups done at each line in the last shift 
in subproblem u − 1.

Step 2. Update the following parameters of the 
problem

• the unsatisfied demand amount for each product type 

using the production in subproblem u
• the production types setup at each line by the setups 

valid in the last period of subproblem u
• the current objective function value by adding the 

second part of the objective from subproblem u.

Go to Step 1

Step 3. Stop, all subproblems are solved. The total 
weighted unsatisfied demand is added to the objective 
value.

This heuristic uses the maximum number of days 
considered for a subproblem, p, as the main parameter. 
As p increases, the solution quality of the heuristic 
improves at the expense of increasing the solution time. 
At one extreme p = D, hence no decomposition is done, 
and at another extreme p = 1, hence each day forms its 
own problem, and D subproblems are solved. The latter 
problem is the easiest to solve and produces poor quality 
solutions.

3.3 Linear Programming Relaxation Based 
Heuristic Procedures

Our preliminary experiments on small sized problem 
instances have revealed the satisfactory behavior of the 
Partial Linear Programming Relaxation (PLP). Based on 
the instances that are solved to optimality, we find that 
most of the products that are fully unsatisfied are same 
for the optimal solution of the original model (MILP) and 
the PLP. Therefore, we decided to use the optimal solu-
tion of the PLP in developing two heuristic procedures.

The first LP-based heuristic procedure, Heuristic 
2, uses the shift decisions given by PLP, and finds the 
values of other decisions by solving MILP, by taking 
shift decisions which are parameters, rather than deci-
sion variables.

Moreover, we observe that the majority of the product 
types that are not included in the solution of PLP (i.e. 
the ones with zero satisfied demand values) are also not 
included in the optimal MILP solution. In other words, 
if we obtain γi

PLP = 1, then it is very likely that γi
* = 1. 

Following this observation, we will not consider product 
type i if γi

PLP = 1. Therefore, we reduce the problem size.
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Below is the stepwise description of our first partial 
linear programming relaxation based heuristic procedure.

Heuristic 2

Step 0. Relax the binary constraint on setup and 
production variables.

Include constraints, 0 ≤ yidtl ≤ 1 and 0 ≤ zidtl ≤ 1.

Step 1. Solve the resulting linear programming 
relaxation problem.

Suppose that λPLP
kl and γi

PLP are the optimal solution 
values for the partial relaxation.

Step 2. Reduce the problem size by removing each 
product type i if γi

PLP = 1

Solve the reduced MILP model using the  va-
lues as parameters and replacing the constraint set xidtl 

≤ yidtl by zidtl ≤ yidtl.

The second partial Linear Programming Relaxation 
based heuristic procedure, Heuristic 3, uses the producti-
on decisions given by (PLP), i.e., xidtl values, in addition 
to the shift decisions. As in heuristic 2, we first reduce 
the problem size by removing the products with γi

PLP = 
1. Moreover, on each day, we only consider the product 
types produced in the optimal solution of (PLP). We set 

   

We define Sd as the set of products that are produced 
in day d in the optimal solution of (PLP), i.e.,

 
 

Table 1. Parameters

W α L D M A
6 4 3 6 6 2 1

Formally, we incorporate the following constraint 
for each d.

 

(21)

Note that according to the above constraint set, the 
heuristic selects among the products in set Sd. Below is 
the stepwise description of our third heuristic.

Heuristic 3

Step 0. Relax the integer constraints on zidtl and yidtl.

Step 1. Solve PLP.

Let xPLP
jdtl , λPLP

kl, and γj
PLP be the optimal solution 

values.

Step 2. Reduce the problem size by removing the 
products with γi

PLP = 1.

Compute Sd for each d.

Solve the reduced MILP model with constraint set 
(21).

The idea of fixing some variables based on the 
optimal values coming from relaxations is also used by 
Ferreira et al. (9, 10). 

4. COMPUTATIONAL RESULTS

We evaluate the performance of our heuristics and 
MILP on various parameter settings. The algorithms are 
coded in C# programming language, and mixed integer 
linear models are solved via CPLEX 12.6 and run on 16 
GB Dual channel RAM laptops with i7-5600U processor. 
The company needs an immediate solution, therefore we 
put a time limit on all our runs. Time limit for MILP is 
3600 seconds and the run stops when the optimality gap 
becomes less than or equal to 1%. The time limit for all 
heuristics is 900 seconds.

We generate 12 different combinations of the prob-
lem parameters. We randomly generate three parameters 
(demand, production rate, and setup time) from different 
intervals using uniform distribution. We consider three 
values of number of product types, N = 5,10,20. Some 
parameters have fixed values, given in Table 1.

• Demand and setup times: Demand and setup times 
are randomly generated based on uniform distribution 
using the intervals in Table 2. We determine the lower 
and upper bounds of the uniform distribution that rep-
resents the real case at the soft drink production plant.

Note that all setup times are smaller than our defined 
period length of (α = 4) hours, hence no period will be 
occupied by only setup operations.
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• Line eligibility and production rates: Each of our 
three production lines can process a subset of all pro-
ducts, hence have different production capabilities. 
Based on the real case, we assume that the first line 
is capable of producing all product types.

 For the other two production lines, for each product 
type we generate a uniform random number between 
0 and 1. If the generated number is below the proba-
bility of eligibility, we include that product into the 
eligible set of the line.

 There are two alternatives for generating production 
rates. In random case (R), the production rate of a 
product type is uniformly generated from the same 
interval for each line, however if the production rates 
depend on the line (LD), they are generated from 
line-dependent intervals. Line-dependent set is in 
line with current operation of the company, such that 
for a given product type, production rate of line 1 < 
production rate of line 2 < production rate of line 3. 
We generate data using the values reported in Table 
3.

• Mold availability: Based on the practical case, we 
take the number of available molds for a given type 
as 1 or 2 with respective probabilities of 0.7 and 0.3. 
Note that we expect that about 70 percent of the mold 
types has only one available unit.

• Product-mold requirement: In our data set, each 
product belongs to a single group and the group of 
each product is assigned randomly. All groups are 
equally likely.

• Product penalties: For each product type, we uni-
formly generate an integer in [1, 10].

For each combination of problem parameters, we 
randomly generate 10 problem instances. To compare 
the performance of the heuristics, we use the following 
measures for each instance.

• TSi: the time spent by heuristic i (in seconds), i = 
MILP represents the original mathematical model

• Ωi: the objective value obtained by heuristic i at the 
end of the time limit, i = MILP represents the original 
mathematical model

• Gap: the optimality gap of MILP in 3600 seconds

• Gapi: the relative gap of heuristic i (run for 900 
seconds) in terms of the solution obtained by MILP 
in 3600 seconds

 

We give an example of an optimal schedule in the 
following figure, for a five-product case. Only two lines 
are utilized and the other line is kept idle. The numbers 

Table 2. Demand and Setup Time Distributions

High (H) Low (L) Constant(C)

Demand U[800000/N,1500000/N] U[200000/N,1000000/N]

Setup time U[1.8,3.6] U[0.9,1.8] 1

Table 3. Production Rate Distributions

R (Random) LD (Line dependent)

Rate Probability of eligibility Rate Probability of eligibility

Line 1 U[500,3500] 1 U[1000,1500] 1

Line 2 U[500,3500] 0.3 U[1000,2500] 0.8

Line 3 U[500,3500] 0.4 U[1000,3500] 0.6
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in the boxes represent the product type. We have a setup 
from product 1 to product 2 on day 2 at t=4. 

The summary measure is average, which is the ave-
rage of the all instances with given set of parameters. 
First of all, we test the performance of MILP. Table 4 
gives average solution times and optimality gaps at the 
termination limit for all problem settings. We observe 
that the biggest factor that affects the running time is the 
size of the problem, N.

As N increases, running time increases significantly. 
In high demand cases, average running time is below one 
minute, when there are 5 products and above one hour 
when there are 20 products. For the cases, in which the 
optimal solution is not obtained in one hour, average 
gap also increases significantly as the number of product 
type increases. For high demand rates, average gap is 
about 0.5%, 2% and 10% in average for N = 5, 10, and 
20, respectively. The problem becomes harder as N inc-
reases, the running time is an exponential function of N.

We observe that running time of MILP is also sensi-
tive to the demand rate. The instances with high demand 
rates are much easier to solve than those with low de-
mand rates. The reason is that MILP with first objective 
function is much easier to solve than the one with second 
objective function. Low demand instances leave more 
room for product to line assignments, therefore this leads 
to many assignment alternatives. More alternatives, i.e., 
a bigger feasible region, increase the complexity of the 
search. When N = 5, the average running times are below 
one minute for high demand instances and about half an 
hour for low demand instances. In cases, where N = 10, 

almost all of the low demand instances have an optima-
lity gap after one. Whereas, average running times are 
around 2000 seconds for high demand cases. Optimality 
gap decreases as demand rates increases. When N = 5, 
and demand rate is high, average gap is around 0.5% 
and when demand rate is low, average gaps are around 
3%. When N = 10, average gap is around 2% and 20% 
for high and low demand instances.

When we have random production rates, the model 
has to search more to assign products to production lines. 
We observe that when the setup times are constant, i.e. 
sequence independent, the instances with line-dependent 
production rates are easier to solve. For example, for N = 
5, and when demand rate is high, the running times are 
2.57 and 17.07 seconds for line-dependent and random 
production rates, respectively. When demand rate is low, 
the running times are 409.95 and 808.41 seconds for line-
dependent and random production rates, respectively.

On the other hand, when setup times are sequence-
dependent, the running time of MILP is insensitive to 
dependency of production rates to lines. We next discuss 
the sensitivity of the running time to the size of setup 
time. The solution time or gap is smaller when the setup 
times are lower. When we have high setup times, the 
objective function value is more sensitive to the sequence 
of products, i.e. a small change in the sequence may 
lead to higher deviations in the objective function value.

When N = 5, demand rates are high, and production 
rates are line dependent, average running times are 
3.24 and 48.24 seconds, for low and high setup times, 
respectively. When N = 10, demand rates are high, and 

 
Figure 3. An Optimal Schedule for a Five-Product Case
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Table 4. The Performance of MILP (time limit = 3600 seconds)

Average Average
N Demand Prod Rate Setup Time TSMILP Gap

5 H LD L 3.24 0.56

5 H LD H 48.24 0.74

5 H LD C 2.57 0.47

5 H R L 2.54 0.39

5 H R H 20.81 0.38

5 H R C 17.07 0.45

5 L LD L 1101.58 3.01

5 L LD H 2351.77 5.48

5 L LD C 409.95 1.35

5 L R L 1445.67 2.26

5 L R H 1477.64 3.07

5 L R C 808.41 1.11

10 H LD L 1587.83 1.20

10 H LD H 2131.73 1.76

10 H LD C 2320.41 2.88

10 H R L 1922.40 1.16

10 H R H 2911.54 2.43

10 H R C 1575.76 1.06

10 L LD L 3600.00 18.46

10 L LD H 3483.14 15.76

10 L LD C 3600.00 11.13

10 L R L 3600.00 16.97

10 L R H 3600.00 20.58

10 L R C 3260.00 17.06

20 H LD L 3600.00 9.91

20 H LD H 3600.00 19.06

20 H LD C 3600.00 7.37

20 H R L 3600.00 9.59

20 H R H 3600.00 14.64

20 H R C 3600.00 7.55
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production rates are line dependent, average running 
times are 1587.83 and 2131.73 seconds, for low and 
high setup times, respectively.

We now discuss the performance of our heuristic 
procedures. The performance is measured by average 
running time or average gap when the time limit is ex-
ceeded. We define gap as the deviation of the heuristic 
solution from MILP solution as the percentage of MILP 
solution. MILP is considered as the best objective value 
obtained at the termination limit of one hour.

We report the performance of Heuristic 1 in Table 5. 
p = 1 refers to the case with 6 subproblems, each one day 
long and p = 2 refers to the case with 3 subproblems, each 
3 days long. Heuristic 1 uses MILP for each subproblem. 
Heuristic 1 does not provide satisfactory solutions, since 
the smallest gap is 778% when p = 1, and 304% when p 
= 2. We want to note that both cases are of high demand. 
As we predicted, the solution quality becomes better as p 
increases, with an increase in running time, which is less 
than 2172.95 in average over all instances. We suggest 
to use it when demand values are not available, namely 
in uncertain environments.

We evaluate the performance of Heuristic 2 and 
Heuristic 3 in Table 6. A negative average gap value 
in tables indicates that on average, heuristic solutions 
are better than the solutions returned by MILP at the 
termination limit.

The positive average gap values for Heuristics 2 are 
3 are very small (i.e. for heuristic 2, ≤ 8.57 when N = 5, 
≤ 5.70 when N = 10, and ≤ −1.98 when N = 20). These 
observations indicate that their performance (in 15 mi-
nutes) is close to performance of MILP (in one hour). 
The average gap improves as N increases. When N = 5, 
average gaps are between 6% and 9.5% for the hardest 
combination, and for the other settings almost all average 
gap values are below 6%.

When N = 20 and demand rate is high, all average 
gaps obtained by Heuristic 2 and Heuristic 3 are nega-

tive. When N = 10, and demand rate is low, half of the 
average gaps are negative for both heuristics. Negative 
gap values indicate that for hard problem settings, both 
heuristics perform much better than MILP. We observe 
that Heuristic 2 and Heuristic 3 do not dominate each 
other, hence they can be used together to achieve higher 
quality solutions.

We suggest practitioners to use MILP for the cases 
with N ≤ 10 with high demand rates, and for all cases, 
where N ≤ 5. For N > 10 or low demand rates, Heuristic 
2 or Heuristic 3 should be used.

5. CONCLUSIONS

In this study, we consider a scheduling problem faced 
in a soft-drink bottling plant. The problem resides in 
sequence-dependent setup times, side constraints that 
stem from the shifts, mold types, and drink groups. Our 
objective is to minimize the weighted sum of the unsa-
tisfied demand and total production and setup times. We 
model the problem as a MILP, and show that it is capable 
of solving instances with up to 5 and 10 products for high 
and low demand cases, respectively.

We develop three heuristic procedures that use de-
composition and Linear Programming

Relaxation ideas. We compare the performances of 
the heuristics relative to the solutions returned by the 
MILP model at a specified termination limit of one hour. 
We observe that the decomposition based heuristics find 
rapid solutions, but at the expense of decreased solution 
quality.  Linear Programming based heuristics produce 
higher quality solutions, in a shorter time and could solve 
the instances with up to 20 products in 15 minutes. We 
consider that our study has contributed to the schedu-
ling literature, and practices in the soft-drink industry. 
Future research may lead to the development of exact 
procedures for the problem under consideration in this 
study. Moreover, other lower bounds can be developed 
to assess the quality of our heuristic procedures.
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Table 5. The Performance of Heuristic 1, for p = 1,2 (time limit = 900 seconds)

p = 1 p = 2

Average Average Average Average

N Demand Prod Rate Setup Time TS1 Gap1 TS1 Gap1

5 H LD L 0.55 825.40 0.44 328.80

5 H LD H 0.34 820.30 0.35 326.58

5 H LD C 0.31 778.18 0.26 307.18

5 H R L 0.24 861.41 0.25 340.95

5 H R H 0.26 887.88 0.30 354.54

5 H R C 0.22 977.57 0.27 386.75

5 L LD L 0.35 2333.87 0.58 872.48

5 L LD H 0.31 2962.92 0.69 1121.50

5 L LD C 0.30 3480.86 1.77 1256.20

5 L R L 0.31 2164.57 3.24 801.50

5 L R H 0.50 1696.45 0.65 665.30

5 L R C 0.31 1588.06 0.67 616.00

10 H LD L 0.76 850.64 1.51 335.19

10 H LD H 0.96 810.91 2.26 323.20

10 H LD C 0.99 935.93 1.56 374.41

10 H R L 1.02 843.81 1.56 333.94

10 H R H 1.13 895.96 3.69 356.06

10 H R C 0.91 893.78 2.58 355.85

10 L LD L 1.45 1662.27 137.85 643.58

10 L LD H 3.66 1446.42 185.42 540.82

10 L LD C 1.22 2047.14 57.48 706.91

10 L R L 1.93 1678.71 206.78 639.25

10 L R H 1.71 1845.22 193.40 727.43

10 L R C 1.91 2289.70 283.84 838.71

20 H LD L 3.74 867.74 42.66 341.69

20 H LD H 14.14 875.54 833.48 330.93

20 H LD C 4.19 935.92 100.29 359.00

20 H R L 4.44 820.66 169.28 319.30

20 H R H 71.62 783.42 2172.95 304.25

20 H R C 4.84 874.58 189.54 343.06
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Table 6. The Performance of Heuristic 3 and Heuristic 2 (time limit = 900 seconds)

Heuristic 3 Heuristic 2
Average Average Average Average

N Demand Prod Rate Setup TS3 Gap3 TS2 Gap2

5 H LD L 2.57 0.14 2.26 0.27

5 H LD H 5.12 5.84 5.02 5.55

5 H LD C 1.08 1.33 0.89 1.37

5 H R L 1.04 4.59 0.90 4.60

5 H R H 4.17 3.57 2.32 1.74

5 H R C 7.44 3.34 5.10 3.25

5 L LD L 255.83 3.50 294.19 3.10

5 L LD H 288.01 2.46 414.15 -0.06

5 L LD C 95.76 1.39 110.96 1.19

5 L R L 224.38 6.70 270.52 6.35

5 L R H 179.60 9.35 270.40 8.57

5 L R C 155.46 7.26 205.78 7.02

10 H LD L 127.60 1.02 241.60 0.86

10 H LD H 253.59 1.19 347.48 1.06

10 H LD C 479.20 1.57 488.01 1.54

10 H R L 296.90 3.45 313.22 3.46

10 H R H 354.01 1.79 342.63 1.35

10 H R C 192.88 5.29 303.08 5.00

10 L LD L 808.90 -2.14 884.42 -2.65

10 L LD H 826.16 -0.08 1583.94 -1.35

10 L LD C 827.09 0.30 920.84 0.21

10 L R L 738.66 4.19 737.26 5.70

10 L R H 937.64 -2.55 935.67 -3.70

10 L R C 725.54 0.71 911.27 0.52

20 H LD L 924.63 -2.30 885.97 -3.61

20 H LD H 939.53 -5.85 939.24 -7.26

20 H LD C 929.14 -1.72 929.01 -1.98

20 H R L 934.21 -2.33 857.78 -2.63

20 H R H 929.47 -2.87 928.96 -4.54

20 H R C 921.53 -1.67 921.64 -2.15
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