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Abstract: In this study, it is considered the problem of comparing the performances of the Maximum Likelihood (ML) and 

Bayes estimators under symmetric and asymmetric loss function  for the unknown parameters of Weibull distribution. ML 

estimators are computed by using the Newton Raphson method. Bayesian estimations under Squared, Linex and General 

Entropy loss functions by using Jeffrey’s extension prior are introduced with Tierney Kadane approximation for Weibull 

distribution. For different sample sizes, estimators are compared to obtain the best estimator in terms of mean squared errors 

using a Monte Carlo simulation study. 

 

Key words: Tierney-Kadane’s approximation, Bayes estimation, Weibull distribution, Maximum likelihood estimation, Loss 

functions. 

 
Weibull Dağılımı için Tierney Kadane’in Yaklaşımı ile Simetrik ve Asimetrik Kayıp 

Fonksiyonları Altında En Çok Olabilirlik ve Bayes Tahmin Edicilerinin Karşılaştırılması 

 
Öz: Bu çalışmada, Weibull dağılımının bilinmeyen parametreleri için simetrik ve asimetrik kayıp fonksiyonları altında Bayes 

tahmin edicileri ve en çok olabilirlik tahmin edicilerinin karşılaştırılması problemi düşünülmüştür. En çok olabililirlik tahmin 

edicileri Newton Raphson methodu ile hesaplanmıştır.Weibull dağılımı için Tierney Kadane’in yaklaşımı ile Karesel, Linex 

ve Genel entropy kayıp fonksiyonları altında Bayes tahmin edicileri Jeffrey’in genişletilmiş önseli kullanılarak elde 

edilmiştir.Farklı örnek boyutları için Monte Carlo Simulasyon çalışması ile en iyi tahmin ediciyi elde etmek için tahmin ediciler 

hata kareler ortalamaları bakımından karşılaştırılmıştır. 

 
Anahtar Kelimeler: Tierney Kadane’in yaklaşımı, Bayes tahmini, Weibull dağılımı, En çok olabilirlik tahmin edicisi, Kayıp 

fonksiyonları. 

 

1.Introduction 

 

Weibull distribution has become a popular tool for modeling life data and improving growth in the field of 

reliability. The Weibull distribution is generally used in reliability. The Weibull distribution can be used to model 

a variety of life behaviors. A Weibull distribution is the values of the shape parameter β, and the scale parameter 

α, affects the characteristics life of the distribution, the failure rate, the reliability function [1]. There are many 

studies about parameters for Weibull Distribution. Some of articles Nadarajah et.al. [2], Zhang et.al. [3], Guure 

et.al [4], Rasheed et.al [5], Pandey and Rao [6], Rasheed and F.Naji [7], Arshad and Abdalghani [8], Meena et.al 

[9] and Arshad and Misra [10]. The main advantage of Weibull analysis provides accurate failure analysis and 

failure forecasts with extremely small samples. ML estimation has been the most generally used method for 

estimating the parameters of the Weibull distribution. Bayes estimator for exponential distribution with an 

extension of Jeffreys’ prior information was considered [11]. 1The cumulative distribution function (CDF), 

probability density function (pdf), reliability function and hazard function of an X  random variable having 

 W α,β are as follows.  

                                                           
* Corresponding author:gulcangencer@kmu.edu.tr. ORCID Number of authors: 1 0000-0002-3543-041X, 2  0000-0002-2914-1056 
 

http://kmu.edu.tr/fbe


 

Comparison Of Maximum Likelihood And Bayes Estimators Under Symmetric And Asymmetric Loss Functions By Means Of Tierney 
Kadane’s Approximation For Weibull Distribution 

70 

 

( ) 1 0 , 0 , 0

x

F x e x



  

 
 
                  (1) 

1
( ) 0 , 0 , 0

x

f x x e x



    

 
 

      
            (2) 

( )

x

R x e





 
 
 

                    (3)
1

( )h x x
   


                    (4) 

,where 

 for 𝛽<1 h(t) is decreasing, 

 for 𝛽>1 h(t) is increasing, 

 for 𝛽=1 h(t) is constant. 

As in almost all branches of science, one of the main objectives of statistics is to have information about the 

working population. In other words, knowing the unknown (parameters) of the population. That is, to make 

estimates about the parameters of the population. If so, it may be desirable to have the best estimator. There are 

many methods used in the literature.In this article, it is considered ML and Bayes estimators. 

The aim of the study is to compare the ML and Bayes estimators under three loss functions by means of 

Tierney Kadane  approximation using Jeffrey’ s extension prior. The plan of the manuscript is as follows. In section 

2, ML estimates of the parameters of Weibull distribution are reviewed. In section 3, Bayes estimators under 

Squared, Linex and General Entropy loss functions by using Tierney-Kadane approximation are obtained. In 

section 4, the simulation study is given. Finally, in section 5, the conclusion part is presented. 

 

2.Preliminary 

 

F(x): Distribution function 

f(x): Probability density function 

L(θ): The likelihood function depending on θ  

ℓ(θ):  The log-likelihood function depending on θ  

π(θ): The prior distribution function depending on θ 

π(θ∕x): The posterior distribution function depending on θ 

L(.,.):Loss function 

�̂�: Maximum likelihood estimation of α parameter 

 

3.Material and Method 

 

The ML Method the basic principle of the likelihood method is the selection of the sampling value 

corresponding to the values with the highest probability of obtaining the sampling values (or probability densities) 

as an estimate for the unknown parameter by looking at the sample values. The ML method is a method used to 

find predictors. The Bayesian approach is fundamentally different from other methods. In this approach, it is 

assumed in addition that θ is itself a random variable (though unobservable) with a known distribution. This prior 

distribution (specified according to the problem) is modified in light of the data to determine a posterior distribution 

(the conditional distribution of θ given the data), which summarizes what can be said about θ on the basis of the 

assumptions made and the data [12]. In addition to the primary distribution, a posterior distribution is used that 

reflects the sample information. The Bayesian estimation is considered to be the expected value of the posterior 

distribution under the lost function of interest.  

 

4.Proposed Method 

 

4.1.Tierney Kadane’s approximation 

 

Tierney and Kadane [13] is one of the methods to find the approximate value of the mathematical explanations 

as the ratio of two integrals given in Equations (19), (22) and (25). Although the Lindley approach plays an 

important role in the prediction of Bayes, this approach can only be used to obtain derivatives 1 and 2. For this 
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reason, Tierney and Kadane proposed a new approach in 1986 (Tierney-Kadane approach) which makes it possible 

to take the 3rd derivative of the log-likelihood function. In this approach, there is a faster convergence than Lindley 

approximation [14]. This approximation can be written as follows for a case with two parameters. ( , )u    is any 

function of  α and  ,  , x 


 is defined in Eq., (10) ,  ,    is logarithm joint prior distribution and defined 

as follows. For details see Tierney and Kadene [13]. 
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4.2.Maximum likelihood estimation  

 

Let 1 2
, , ...,

n
X X X  be independent random variables having W distribution with  ,   parameters. Then 

the log-likelihood function is given by 
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Differentiating the log-likelihood function  , x 


 partially with respect to  ,β  parameters and then 

equating to zero, following non-linear equations is obtained and these equations can be solved with the Newton-

Raphson method [15]. 
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4.3.Bayesian estimation symmetric and asymmetric loss functions   

 

Let  1 2
, , ...,

n
X X X X  is a random sample taken from Weibull  α,β  distribution. For Bayesian 

estimation of the parameters, it is needed for prior distributions for these parameters. In this study, as a prior 

distribution, Jeffrey’s extension priors are used and these are as follows [16]. 
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respectively. 

The Squared error loss function is a symmetric function and introduced by [17] and [18]. Let any function of 

α and   is  ,u u   . The squared loss function is as follows:  

2

1 BS BSL ( u u ) ( u u )
 

  
                                                                                                                        (17)

 

The value which is minimize the expected value of squared loss function is 

   , ,BSu E u x   


       
                                   (18) 

In this case, Bayes estimator of  ,u   under squared error loss function which is a symmetric loss function 

is obtained as follows. 
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 , x 


 is log-likelihood function,  , x  


 is the logarithm of a joint prior distribution. The Linex 

loss function is an asymmetric function and introduced by Varian [19]. Zellner [20] is studied about Bayes 
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estimation under linex loss function. Let any function of α and   is  ,u    and “a” arbitrary constant. The 

Linex loss function is defined as follows. 

2
( )  exp(a )-a -1;   a 0,L                          (20)

    , ,u u   


   . Then, posterior mean of Linex loss function is given as; 

   2
exp [exp ] 1E L u u a u E au a u E u  
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General Entropy loss function is an asymmetric function and suggested by Calabria and Pulcinia [21]. Dey 

and Liao [22] are studied with Bayes estimation under the General Entropy loss function. Let any function of α ,

  is  ,u    and “k” arbitrary constant. General Entropy loss function is defined as follows. 

3
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k

u u
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Then, posterior mean of General Entropy  loss function is given as;    
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It is very difficult to solve the equations (19), (22) and (25) in closed-form. Because of this reason, the Bayes 

Estimators of  ,u    can be obtained using Tierney-Kadane’s approximation.  
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4.4. Mathematical equations 

 

The partial derivatives related to  *
,l   ,  ,l    , 

*
 and   are defined as follows; 
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Bayes estimators for α, β parameters using Eq. (9) are found as follows.  
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5.Appendix  

 

In this section, ML and approximate Bayes Estimators by Tierney-Kadane’ approximation are obtained under 

Squared error loss function, Linex loss function and General Entropy loss function for unknown parameters of W 

distribution and results are compared in terms of mean squared error by using Monte Carlo simulation method. 

Mean squared error (MSE) is defined as follows;Let   is the true parameter value and  ( ) 1, 2,...,10000i i


  

is the estimation value in 
th

i  replication. Then the MSE for Tierney-Kadane approximations can be written as, 
210000

( )

1

1

10000
i

i

MSE  




 
  

 
                              (39) 

Simulation steps are as follows:Step1: It is generated data from W distribution with 

1,1.5,  1.3,1.7     for the sample size n=20, 30, 50, 100.Step 2: ML estimates for parameters are 

computed by a solution of non-linear Eqs. (11-12) by using the Newton-Raphson method.Step 3: Tierney-Kadane 

Bayes estimates are computed for parameters under Squared error, Linex  a= 0.8, 1.5  and General entropy 

 k= 0.8, 1.5  loss functions using Jeffrey’s extension prior (c=0.2).Step 4: Means squared errors are computed 

over 10000 replications by using Eq. (39).  

 

6.Conclusion 

 

In this study, approximate Bayes estimators under Squared error, Linex and General entropy loss functions 

obtained by using the Tierney-Kadane’s method and ML’s for W distribution with parameters are compared. The 

ML’s of the unknown parameters are computed by using the Newton Raphson method. The approximate Bayes 

estimators are compared with the ML’s in terms of MSE by using the Monte Carlo simulation method. As seen 

from Table 1 and Table 2, the performances of Bayes estimates for parameters and general entropy loss function 

are generally better than others in terms of MSEs. In addition, MSEs of ML and approximate Bayes estimates 

obtained under different loss functions are decreased when n is increased. Furthermore, MSEs of estimators are 

close to each other for large n values.İt is seen that the minimum MSE is reached even if the parameter values 

change when looking at Figures 1 and 2.In general, the ML estimators and estimators are obtained under the 

quadratic loss function are almost the same as MSE, and in some cases the linex loss function has the same MSE 

with general entropy loss function, while general entropy loss function often has a smaller MSE. 
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  Figure 1. MSEs values for =1.5 and β=1.7 

 
 

Figure 2. MSEs values for =1 and β=1.3

 

Table 1. Mean estimates and MSEs for parameters of Weibull distribution ( , 0.8)a k 
 

 

 

MLE

0,0085
BS

0,0086

BL

0,0012
BGE

0,0012
0

0,005

0,01

MLE

0,0220
BS

0,0239

BL

0,0076
BGE

0,0070
0

0,02

0,04

0,06

n    c    

 

 , 

 

    ML     BS  BL  BGE      ML      BS  BL  BGE  

 

0.8a k   

 

0.8a k    

30 

     1 0.2 1.3 

MSE
  0.022004 0.023935 0.007610 0.007089 0.021749 0.023826 0.007772 0.006984 

ME
  

1.000476 1.033536 1.029985 1.020257 1.002649 1.035844 1.043469 1.032701 

MSE
  

0.046422 0.045170 0.008289 0.006964 0.046640 0.045415 0.008809 0.007107 

ME
  

1.364397 1.355320 1.347874 1.338887 1.363272 1.354210 1.370014 1.350367 

    1.5 0.2 1.7 

MSE
  

0.028945 0.030532 0.004226 0.004118 0.028336 0.030021 0.004380 0.004034 

ME
  

1.499102 1.531427 1.520957 1.516731 1.500584 1.533068 1.544775 1.530689 

MSE
  

0.080435 0.078229 0.008121 0.007032 0.077744 0.075671 0.008789 0.006926 

ME
  

1.788931 1.778696 1.754710 1.748446 1.783719 1.773503 1.800806 1.769439 

50 

     1 0.2 1.3 

MSE
  

0.012859 0.013555 0.004334 0.004115 0.013030 0.013757 0.004447 0.004146 

ME
  

1.000961 1.020859 1.019286 1.013165 1.001479 1.021337 1.025957 1.019487 

MSE
  

0.024779 0.024334 0.004512 0.004090 0.025153 0.024688 0.004752 0.004157 

ME
  

1.337451 1.331815 1.327961 1.322621 1.339448 1.333842 1.342863 1.331561 

   1.5 0.2 1.7 

MSE
  

0.017565 0.018109 0.002539 0.002490 0.017126 0.017705 0.002557 0.002444 

ME
  

1.498704 1.518280 1.512414 1.509669 1.499594 1.519100 1.526108 1.517694 

MSE
  

0.042597 0.041880 0.004467 0.004129 0.041346 0.040578 0.004640 0.004015 

ME
  

1.746877 1.740578 1.727203 1.723297 1.750987 1.744673 1.760201 1.742276 

100 

    1 0.2 1.3 

MSE
  

0.006377 0.006567 0.002105 0.002038 0.006410 0.006578 0.002117 0.002047 

ME
  

1.001266 1.011215 1.010638 1.007478 1.000161 1.010111 1.012450 1.009195 

MSE
  

0.011376 0.011256 0.002109 0.002000 0.011323 0.011212 0.002142 0.002006 

ME
  

1.319785 1.316903 1.315156 1.312507 1.318482 1.315603 1.319924 1.314472 

   1.5 0.2 1.7 

MSE
  

0.008430 0.008578 0.001210 0.001198 0.008551 0.008667 0.001242 0.001220 

ME
  

1.499987 1.509782 1.507014 1.505567 1.498607 1.508401 1.511918 1.507702 

MSE
  

0.019095 0.018908 0.002055 0.001963 0.019217 0.019037 0.002139 0.001993 

ME
  

1.724503 1.721269 1.714866 1.712890 1.723307 1.720076 1.727521 1.718894 
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Table 2.Mean estimates and MSEs for parameters of Weibull distribution ( , 1.5)a k   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           ML:Maximum likelihood estimation 
1 

BS:Bayes estimation under squared error loss function 
2 

BGE:Bayes estimation under general entropy loss function 
3 

BL:Bayes estimation under linex loss function 
4 

MSE


:MSEs for  parameter 
5 

MSE


: MSEs for  parameter 
6 

ME


: Mean estimate for  parameter
 7 

ME


: Mean estimate for β parameter
 8 

n    c  
 

 

  


 

ML  BS  BL  BGE  ML  BS  BL  BGE  

1.5a k   1.5a k    

20 

1 0.2 1.3 

MSE


 0.031708 0.035951 0.038618 0.035970 0.032481 0.037079 0.044535 0.036985 

ME


 0.999643 1.049293 1.027367 1.013366 1.002285 1.052084 1.080924 1.062769 

MSE


 0.082520 0.079692 0.051532 0.039886 0.077694 0.074972 0.053068 0.037289 

ME


 1.398143 1.385038 1.348326 1.339240 1.395629 1.382525 1.433962 1.395356 

1.5 0.2 1.7 

MSE


 0.042242 0.045765 0.021244 0.021252 0.043484 0.047233 0.025538 0.021656 

ME


 1.499223 1.547709 1.514314 1.512944 1.500617 1.549138 1.585814 1.557600 

MSE


 0.138847 0.133927 0.044144 0.039669 0.143650 0.138642 0.060878 0.039865 

ME


 1.832416 1.817573 1.742855 1.747999 1.835069 1.820249 1.906590 1.835203 

30 

1 0.2 1.3 

MSE


 0.022542 0.024529 0.027120 0.025402 0.021511 0.023501 0.027633 0.024488 

ME


 1.001508 1.034497 1.021067 1.011375 1.001393 1.034568 1.053076 1.041488 

MSE


 0.046899 0.045606 0.028794 0.025092 0.045804 0.044595 0.031058 0.024463 

ME


 1.366987 1.357906 1.335148 1.328881 1.362667 1.353607 1.385489 1.361996 

1.5 0.2 1.7 

MSE


 0.028042 0.029417 0.014015 0.014109 0.028327 0.029834 0.015692 0.014197 

ME


 1.496258 1.528779 1.507386 1.506154 1.498274 1.530752 1.554361 1.536279 

MSE


 0.077124 0.075157 0.026333 0.024567 0.079072 0.077009 0.032630 0.024385 

ME


 1.779187 1.768993 1.722547 1.725018 1.782831 1.772606 1.824999 1.782292 

50 

1 0.2 1.3 

MSE


 0.012965 0.013626 0.015186 0.014596 0.013297 0.014032 0.016086 0.014812 

ME


 1.000247 1.020112 1.012661 1.006556 1.001272 1.021225 1.032093 1.025302 

MSE


 0.025682 0.025224 0.016344 0.014963 0.024191 0.023777 0.016282 0.014135 

ME


 1.338425 1.332813 1.320102 1.316247 1.334954 1.329338 1.347366 1.334284 

1.5 0.2 1.7 

MSE


 0.017214 0.017837 0.008670 0.008626 0.016956 0.017379 0.008946 0.008523 

ME


 1.501041 1.520582 1.508192 1.507317 1.495978 1.515490 1.529296 1.518751 

MSE


 0.043107 0.042340 0.015477 0.014722 0.042769 0.042030 0.017263 0.014501 

ME


 1.750684 1.744389 1.717540 1.718807 1.748588 1.742281 1.771790 1.747976 

100 

1 0.2 1.3 

MSE


 0.006467 0.006627 0.007423 0.007281 0.006479 0.006639 0.007546 0.007273 

ME


 0.999718 1.009684 1.006190 1.003023 0.999741 1.009707 1.015036 1.011711 

MSE


 0.011125 0.011022 0.007212 0.006964 0.010893 0.010792 0.007310 0.006836 

ME


 1.317081 1.314195 1.308198 1.306236 1.316845 1.313959 1.322612 1.316400 

1.5 0.2 1.7 

MSE


 0.008538 0.008688 0.004291 0.004268 0.008427 0.008561 0.004339 0.004206 

ME


 1.500520 1.510306 1.504310 1.503789 1.499575 1.509369 1.516190 1.510981 

MSE


 0.019582 0.019384 0.007306 0.007112 0.019062 0.018878 0.007567 0.006923 

ME


 1.725885 1.722650 1.709719 1.710240 1.723895 1.720668 1.734779 1.723475 
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