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Abstract 
 
The purpose of this paper is to illustrate the use of the Laguerre wavelet method in the 
solution of Troesch’s equation, which is a stiff nonlinear equation. The unknown 
function is approximated by Laguerre wavelets and the equation is transformed into a 
system of algebraic equations. One of the advantages of the method is that it does not 
require the linearization of the nonlinear term. The problem is solved for different 
values of Troesch’s parameter (𝜇) and the results are compared with both the analytical 
and other numerical results to validate the accuracy of the method. 
 
Keywords: Laguerre Wavelet method, Troesch equation, Laguerre polynomial, 
Nonlinear differential equation. 
 
 

Troesch denkleminin çözümü için Laguerre dalgacık yöntemi 
 
 
Özet 
 
Bu makalenin amacı lineer olmayan Troesch denklemini Laguerre dalgacık yöntemini 
kullanarak çözmektir.  Bilinmeyen fonksiyon Laguerre dalgacıkları ile yaklaştırılarak 
denklem bir cebirsel denklem sistemine dönüştürülür.  Bu yöntemin avantajlarından 
biri, lineer olmayan terimin lineer hale dönüştürülmesine gerek kalmamasıdır.  
Denklem Troesch parametresinin farklı değerleri için çözülmüştür. Yöntemin etkin 
olduğunu göstermek için elde edilen sonuçlar gerek gerçek gerekse literatürdeki diğer 
sayısal sonuçlar ile karşılaştırılmıştır.  
 
Anahtar Kelimeler: Laguerre dalgacık yöntemi, Troesch denklemi, Laguerre polinomu, 
Lineer olmayan diferensiyel denklem. 
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1. Introduction 
 

Boundary value problems are used in several fields such as chemical physics, 
chemistry, biology, nanotechnology, natural science, and engineering.  One of the 
important problem is the well known Troesch’s problem which comes from the theory 
of gas porous electrodes.  This problem arises in some chemical reaction-diffusion and 
heat transfer processes as well as a plasma column under radiation pressure.  
  
In literature, several numerical methods have been employed to solve this nonlinear 
problem.  We can list these methods as:  Finite difference method [1], Chebyshev 
wavelet method [2], Chebysev collocation method [3], A finite-element approach based 
on cubic B-spline collocation [4], An accurate asymptotic approximation [5], Adomian 
decomposition method and the reproducing kernel method [6], Christov rational 
functions [7], Decomposition method [8], Differential transform method [9], High-
Order Difference Schemes [10], Homotopy perturbation method [11], Hybrid heuristic 
computing [12],  Jacobi-Gauss collocation method [13],  Laplace transform and a 
modified decomposition technique [14], Modified Homotopy perturbation method [15], 
Newton-Raphson-Kantorovich approximation  method [16], Optimal Homotopy 
asymptotic method [17], Perturbation Method and Laplace-Padé Approximation [18], 
Scott and the Kagiwada-Kalaba algorithms [19], Modified nonlinear Shooting method 
[20], Sinc-Collocation Method [21], sinc–Galerkin method [22], Variational iteration 
method [23, 24].  
 
Laguerre series are used in the solution of delayed single degree-of-Freedom oscillator 
problem [25], high- order linear Fredholm integro-differential equations [26], and 
pantograph-type Volterra integro-differential equations [27]. 
  
In this study, Laguerre wavelets is used in the solution of the Troesch’s problem.  The 
unknown function and its derivatives are approximated by the Laguerre wavelets and 
the nonlinear differential equation is transformed into a system of nonlinear system of 
equations.  The paper is organized as follows.  In Section 2, we introduce wavelets, the 
Laguerre wavelets and their properties.  In Section 3, we introduce the method of 
solving Troesch’s problem by Laguerre wavelets.  In Section 4, numerical results are 
presented. Some conclusions are drawn in Section 5. 
 
 
2. Laguerre wavelets 
 

2.1.Wavelets  
A single function 𝜑ሺ𝑡ሻ which is called mother wavelet is dilated (scaled) and translated 
by the parameters 𝑎 and 𝑏, respectively in order to generate a family of functions of the 
form [28] 

𝜑,ሺ𝑡ሻ ൌ |𝑎|ିభ
మ𝜑 ቀ௧ି


ቁ, 𝑎, 𝑏 ∈ 𝑅, 𝑎 ് 0. (1)

 
If the dilation parameter 𝑎 and translation paramater 𝑏 is restricted to 𝑎 ൌ 2ି and 𝑏 ൌ
𝑛2ି, then the wavelets 
 
𝜑,ሺ𝑡ሻ ൌ 2/ଶ𝜑ሺ2𝑡 െ 𝑛ሻ         
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form an orthonormal basis in Hilbert space 𝐿ଶሺ𝑅ሻ. 
 
Due to the main advantages, different wavelet types such as Haar wavelet [29], 
Chebyshev wavelet [30], Legendre wavelet [31-34] now attract great attention of 
researchers.  One of these advantages is that the wavelets are not periodic and do not 
continue to the infinity.  Additionally, the wavelets with compact support are 
compatible to model localized features in applications.  
 
2.2. Laguerre wavelets and properties 
If the dilation and translation parameters in Eq. (1) are chosen respectively as 𝑎 ൌ
2ିሺାଵሻ  and 𝑏 ൌ ሺ2𝑛  1ሻ2ିሺାଵሻ, then the Laguerre wavelets 𝜑ሺ𝑡ሻ ൌ
𝜑ሺ𝑡; 𝑘; 𝑛; 𝑚ሻ can be defined on [0, 1) for integers 𝑘  0;  𝑛 ൌ 0,1,2, … , 2 െ 1; 
 
 

𝜑ሺ𝑡ሻ ൌ  ൝2ሺାଵሻ ଶ⁄ 𝐿ሺ2ାଵ𝑡 െ 2𝑛 െ 1ሻ , if
𝑛

2  𝑡 ൏
𝑛  1

2

0 ,                         otherwise
  

 
 
where 𝑡 is the normalized time and 𝑚 ൌ 0, 1, 2, … , 𝑀 is the order of very well known 
Laguerre polynomials  𝐿ሺ𝑡ሻ; the dilation and translation parameters in Eq. (1) are 
respectively 𝑎 ൌ 2ିሺାଵሻ and 𝑏 ൌ ሺ2𝑛  1ሻ2ିሺାଵሻ. 
  
The Laguerre polynomials are 𝑚-th degree polynomials which satisfy the differential 
equation 
 
𝑥𝑦ᇱᇱሺ𝑥ሻ  ሺ1 െ 𝑥ሻ𝑦ᇱሺ𝑥ሻ  𝑚𝑦ሺ𝑥ሻ ൌ 0,   𝑥 ∈ ሺ0, ∞ሻ                  
 
and can be explicitly determined by the recurrence relation 
 
ሺ𝑚  2ሻ𝐿ሺାଶሻሺ𝑥ሻ ൌ ሺ2𝑚  3 െ 𝑥ሻ𝐿ሺାଵሻሺ𝑥ሻ െ ሺ𝑚  1ሻ𝐿ሺ𝑥ሻ                                      
 
with 𝐿ሺ𝑥ሻ ൌ 1 and 𝐿ଵሺ𝑥ሻ ൌ 1 െ 𝑥 , [35].  The first few Laguerre polynomials are 
listed as 
 
𝐿ሺ𝑥ሻ ൌ 1, 
𝐿ଵሺ𝑥ሻ ൌ 1 െ 𝑥, 

𝐿ଶሺ𝑥ሻ ൌ
1
2!

ሺ𝑥ଶ െ 4𝑥  2ሻ, 

𝐿ଷሺ𝑥ሻ ൌ
1
3!

ሺെ𝑥ଷ  9𝑥ଶ െ 18𝑥  6ሻ, 

𝐿ସሺ𝑥ሻ ൌ
1
4!

ሺ𝑥ସ െ 16𝑥ଷ  72𝑥ଶ െ 96𝑥  24ሻ, 

𝐿ହሺ𝑥ሻ ൌ
1
5!

ሺെ𝑥ହ  25𝑥ସ െ 200𝑥ଷ  600𝑥ଶ െ 600𝑥  120ሻ, 

 

𝐿ሺ𝑥ሻ ൌ
1
6!

ሺ𝑥 െ 36𝑥ହ  450𝑥ସ െ 2400𝑥ଷ  5400𝑥ଶ െ 4320𝑥  720ሻ. 
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As a natural result of the orthogonality of the Laguerre polynomials over the interval 
ሺ0, ∞ሻ, the Laguerre wavelets 𝜑ሺ𝑡ሻ  are orthogonal with respect to the dilated and 

translated weight function  𝑤ሺ𝑡ሻ ൌ 𝑤ሺ2ାଵ𝑡 െ 2𝑛 െ 1ሻ ൌ 𝑒ିሺଶೖశభ௧ିଶିଵሻ.  This is an 
essential property to expand a function 𝑓ሺ𝑡ሻ, defined on ሾ0,1ሻ as the infinite series of 
Laguerre wavelets  
 

𝑓ሺ𝑡ሻ ൌ   𝐴𝜑ሺ𝑡ሻ

ஶ

ୀ

ஶ

ୀ

, 

 
where 𝐴 are coefficients obtained by the inner product 𝐴 ൌ ൏ 𝑓ሺ𝑡ሻ, 𝜑ሺ𝑡ሻ  ൌ
 𝑤ሺ𝑡ሻ𝑓ሺ𝑡ሻ𝜑ሺ𝑡ሻ𝑑𝑡

ஶ
 .  If the series is truncated then it can be written as 

 

𝑓ሺ𝑡ሻ ൎ   𝐴𝜑ሺ𝑡ሻ
ெ

ୀ

ଶೖିଵ

ୀ

. 

 
 
3. Application to Troesch’s problem  
 
In this section, we consider Troesch’s problem and discuss the implementation of the 
Laguerre wavelet method.  
 
A boundary value problem (BVP) of Troesch’s equation is introduced by the second 
order nonlinear differential equation and boundary conditions 
 
𝑢ᇱᇱሺ𝑡ሻ ൌ 𝜇 sinhሺ𝜇𝑢ሺ𝑡ሻሻ,  𝑡 ∈ ሾ0,1ሿ,              (2) 
𝑢ሺ0ሻ ൌ 0, 𝑢ሺ1ሻ ൌ 1.                (3) 
 
Here, positive constant  𝜇 is called Troesch’s parameter. The closed form solution of 
Eq. (2) and Eq. (3) is given by means of Jacobian elliptic function  𝑠𝑐ሺ𝜇|𝑟ሻ as 
 

𝑢ሺ𝑡ሻ ൌ ଶ

ఓ
sinhିଵ ቂ௨ᇱሺሻ

ଶ
 𝑠𝑐ሺ𝜇𝑡|𝑟ሻቃ                    

 

where 𝑟 ൌ 1 െ ଵ

ସ
 ൫𝑢ᇱሺ0ሻ൯

ଶ
 and  𝑠𝑐ሺ𝜇|𝑟ሻሺ1 െ 𝑟ሻ

భ
మ ൌ sinhሺఓ

ଶ
 ሻ [36]. In order to solve 

Troesch’s problem, we expand the solution of Eq. (2) in terms of Laguerre wavelets in 
the form 
 

𝑢ሺ𝑡ሻ ൌ ∑ ∑ 𝐴𝜑ሺ𝑡ሻெ
ୀ

ଶೖିଵ
ୀ                     (4) 

 
where 𝐴 are unknown coefficients to be determined. In order to find these 
coefficients we express the boundary conditions in Eq. (3) by using Eq. (4) as 

𝑢ሺ0ሻ ൌ   𝐴𝜑ሺ0ሻ ൌ 0

ெ

ୀ

ଶೖିଵ

ୀ

 (5) 

𝑢ሺ1ሻ ൌ   𝐴𝜑ሺ0ሻ ൌ 1

ெ

ୀ

ଶೖିଵ

ୀ

 (6) 
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These boundary conditions provide two algebraic equations to be solved for 2ሺ𝑀  1ሻ 
unknown coefficients 𝐴.  For other 2ሺ𝑀  1ሻ െ 2 equations, we rewrite the 
differential equation in Eq.(2) in the form 
 

  𝐴𝜑
ᇱᇱ ሺ𝑡ሻ െ 𝜇 sinh 𝜇   𝐴𝜑ሺ𝑡ሻ

ெ

ୀ

ଶೖିଵ

ୀ

 ൌ 0

ெ

ୀ

ଶೖିଵ

ୀ

 (7)

 
and we use the roots, 𝑡, of shifted Chebyshev polynomials 𝑈ଶೖሺெାଵሻ as collocation 

points in  Eq. (7) 
 

∑ ∑ 𝐴𝜑
ᇱᇱ ሺ𝑡ሻ െ 𝜇 sinh ቂ𝜇 ∑ ∑ 𝐴𝜑ሺ𝑡ሻெ

ୀ
ଶೖିଵ
ୀ ቃ ൌ 0ெ

ୀ
ଶೖିଵ
ୀ                         (8) 

 
for 𝑖 ൌ 1,2, … , 2ሺ𝑀  1ሻ െ 2.   The system of algebraic equations in Eqs. (5), (6) and 
(8) can be solved for the same number of unknown coefficients for 𝐴, 𝑛 ൌ
0, 1 , 2, … , 2 െ 1;  𝑚 ൌ 0, 1, 2, … , 𝑀 by using MATLAB tools.  The approximate 
solution of BVP in Eqs. (2)-(3) is determined with the obtained values of 𝐴, by 

𝑢ሺ𝑡ሻ ൌ ∑ ∑ 𝐴𝜑ሺ𝑡ሻெ
ୀ

ଶೖିଵ
ୀ . 

 
4. Results and discussion  
In this Section, the problem given in Eqs. (2)-(3) is solved for two values of Troesch’s 
parameter.  Table 1 presents the absolute errors obtained by taking M = 4, 5 and 6.  We 
can see that the maximum absolute error for M = 4 is 10-4 , and for M = 6 maximum 
absolute error is obtained as 10-7.  One can say that the method yields high accuracy 
even with low degree polynomials. 
 
Table 1. Absolute errors for different values of M. 
 

it  Error for 
M = 6  

Error for 
M = 5

Error for 
M = 4 

 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1.02705262211567e-07 
2.04455795155267e-07 
3.08525196668352e-07 
4.13512608266053e-07 
5.16097657887737e-07 
6.20768004666594e-07 
7.37419484031499e-07 
8.40628852527559e-07 
7.64399135100291e-07 

6.50748263789081e-07 
1.31084622134736e-06 
1.97144941621596e-06 
2.62164521075414e-06 
3.28527395815348e-06 
3.99985017496274e-06 
4.71848371341732e-06 
5.10860093361210e-06 
4.22126587584781e-06

1.50597029199839e-05 
2.99308713823387e-05 
4.45469093270368e-05 
5.97260537494315e-05 
7.59601747001293e-05 
9.21456752845939e-05 
1.04237391663986e-04 
1.03799293054374e-04 
7.64257817268410e-05 

 

 
Table 2 presents the comparison of the numerical results of the proposed method taking 
M=6 with the Homotopy perturbation method (HPM) [11], Perturbation method with 
Pade approximation [18], Modified nonlinear shooting method (MNLSM) [20], and 
Variational iteration method (VIM) [24], as well as the analytical solution. One can see 
that even with a low degree polynomial, the proposed method has a better accuracy than 
these methods. 
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Table 2. Comparison of the present method with exact and other numerical solutions for  
µ = 0.5. 
 

it  Exact 
Sln.  

Present 
Method 

 

HPM[11] PM-Pade 
[18] 

MNLSM[20] VIM 
[24] 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.095944 
0.192128 
0.288794 
0.386184 
0.484547 
0.584133 
0.685201 
0.788016 
0.892854 

0.095944 
0.192128 
0.288794 
0.386185 
0.484547 
0.584133 
0.685201 
0.788017 
0.892854 

0.095948 
0.192135 
0.288804 
0.386196 
0.484559 
0.584145 
0.685212 
0.788025 
0.892859

0.095941 
0.192123 
0.288786 
0.386174 
0.484534 
0.584117 
0.685182 
0.787994 
0.892829 

0.095972  
0.192185  
0.288879  
0.386298  
0.484416  
0.584281  
0.685256  
0.788079  
0.892926  

0.100042 
0.200334 
0.301128 
0.402677 
0.505241 
0.609082 
0.714470 
0.821682 
0.931008 

 
Table 3 presents the numerical results of the present method and the same numerical 
methods used in the previous comparison for µ = 1. We again observe that the 
present method has a better accuracy for increasing value of the Troesch’s parameter. 
 
Table 3. Comparison of the present method with exact and other numerical solutions for  
µ = 1. 
 

it  Exact Sln.  Present 
Method  

HPM[11] PM-
Pade[18] 

MNLSM[20] VIM [24] 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.084661 
0.170171 
0.257393 
0.347222 
0.440599 
0.538534 
0.642128 
0.752608 
0.871362 

0.084668 
0.170186 
0.257417 
0.347254 
0.440639 
0.538582 
0.642187 
0.752676 
0.871426 

0.084934 
0.170697 
0.258133 
0.348116 
0.44157 
0.539498 
0.642987 
0.753267 
0.871733

0.871733
0.170260 
0.257531 
0.347413 
0.440849 
0.538848 
0.642508 
0.753043 
0.871811 

0.084730  
0.170310  
0.257603  
0.347506  
0.439937  
0.538905  
0.642093  
0.752558  
0.871310  

0.100167 
0.201339 
0.304541 
0.410841 
0.521373 
0.637362 
0.760162 
0.891287 
1.032460 

 
 
5. Conclusion  
 
In this study, Laguerre wavelets are used to solve the nonlinear Troesh problem.  The 
results are presented for several values of M and µ, and we observed that accurate 
numerical results are obtained by using quite small values of M.  Compared with other 
numerical results, it has  seen that the present method has a better accuracy.  
Furthermore, the application of the method does not require the approximation of the 
nonlinear terms, it is efficient and easy to implement. 
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