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ABSTRACT. Some inequalities for synchronous functions that are a mixture between Ceby3ev’s and Jensen’s in-
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Leibler divergence, Jeffreys divergence and x2-divergence are also given.
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1. INTRODUCTION

Let (Q, A, v) be a measurable space consisting of a set 2, a o -algebra A of subsets of {2 and a
countably additive and positive measure v on A with values in R U {oo} . For a v-measurable
function w : @ — R, with w () > 0 for v -a.e. (almost every) x € €, consider the Lebesgue space

L, (Q,v) :={f:Q =R, fisv-measurable and / w (z)|f (z)|dv (z) < oo}
Q

For simplicity of notation we write everywhere in the sequel [, wdv instead of [, w (z) dv (x).
Assume also that [, wdv = 1. We have Jensen’s inequality

(1.1) /Qw(@of)dz/z@)(/ﬂwfdy),

where @ : [m, M] — R is a continuous convex function on the closed interval of real numbers
[m, M], f: Q — [m, M] is v-measurable and such that f,® o f € L,, (2,v).
We say that the pair of measurable functions (f, g) are synchronous on 2 if

(12) (f (@) = f(y) (g(x) —g(y)) =0

for v-a.e. z, y € Q. If the inequality reverses in (1.2), the functions are called asynchronous on 2.
If (f, g) are synchronous on 2 and f, g, fg € L, (,v) then the following inequality, that is
known in the literature as Cebysev’s Inequality, holds

(1.3) /wfgdl/z/wfdu/wgdy,
Q Q Q

where w (z) > 0 for v-a.e. (almost every) z € Q and [, wdv = 1.

In this paper we establish some inequalities for synchronous functions that are a mixture be-
tween Cebygev’s and Jensen’s inequality. Applications for f-divergence measure and some
particular instances including Kullback-Leibler divergence, Jeffreys divergence and x2-divergence
are also given.
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2. INEQUALITIES FOR SYNCHRONOUS FUNCTIONS
We have the following inequality for synchronous functions:

Theorem 2.1. Let @, U : [m, M| — R be two synchronous functions on [m, M| and w > 0 a.e. on §
with [ wdy = 1.1f g : Q@ — [m, M] is v-measurable and such that g, ® o g, Wo g, (Pog) (Pog) €
L, (Q,v), then

2.4) /Qw(CI)og) (qxog)du+<1>(/ﬂwgdy>\p(/ﬂwgdy>
z@(/ngdu)/ﬂw(qfog)du+\1/(/ngdu>/ﬂw(q>og)dy.

If the functions (®, ) are asynchronous, then the inequality in (2.4) reverses.

Proof. Since ®, ¥ are synchronous on [m, M| and fQ wgdy € [m, M], then we have

o) - [ wa)| v v ([ woar)] 20
for v-a.e. z € Q.

This is equivalent to

25) ® (90 ¥ (g ) + @ [ wgdv ) ( [ wgav)
>0 (/ngdy) U4 </ngdu) ® (g ()
for v-a.e. x € Q.

Now, if we multiply (2.5) by w > 0 a.e. on Q and integrate, we deduce the desired result
(2.4). O

Remark 2.1. If the functions ®, ¥ : [m,M] — R have the same monotonicity (opposite mono-
tonicity) on [m, M|, then they are synchronous (asynchronous) and the inequality (2.4) holds for any
g€ Ly, (Q,v).

If ®, U : [m, M] — R are two synchronous functions on [m, M], z; € [m,M] and w; > 0,
i € {1,...,n} with 31" w; = 1, then by applying the inequality (2.4) for the discrete counting
measure, we have

Example 2.1. Let w > 0 a.e. on Q with [, wdv = 1.

a). If p, ¢ > 0 (< 0)and g : Q — [0, 00) is v-measurable and such that g, g?, g9, g*T9 € L, (Q,v),
then

2.7) /ng“qdu + (/Q wgdu)p (/Q wgdu)q
> (/ngdz/>p/ﬂwquu+ </ngdz/)q/ﬂwgpdz/.

Ifp>0(<0),and g < (> 0) then the inequality (2.7) reverses.
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b. Ifa, B8 > 0(<0)and g : Q@ — R is v-measurable and such that g, exp (ag), exp (8g),
exp ((a+ B) g) € Ly (Q,v), then

(2.8) /Qwexp((oz—kﬁ)g) dv + exp ((oz—kﬁ)/gwgdu)

> exp (a/ﬁwgdu)/ﬂwexp (Bg) dv + exp (B/ngdu)/gwexp (ag) dv.

Ifa > 0(< 0),and 5 < (> 0) then the inequality (2.8) reverses.
c).Ifp>0and g:Q — (0,00) is v-measurable and such that g, g*, Ing, g* Ing € L,, (Q,v), then

P
(2.9 / wgP In gdv + (/ wgdy> In (/ wgdu)
Q Q Q
P
> </ wgdu) /wlnng—Hn (/ wgdv)/u)gpdu.
Q Q Q Q

If p < 0, then the inequality (2.9) reverses.

Corollary 2.1. Let @ : [m, M| — R be a measurable function on [m, M) and w > 0 a.e. on Q and
Jowdv =1.1f g : Q — [m, M] is v-measurable and such that g, ® o g, (P o 9)2 € Ly, (,v), then

(2.10) H/ﬂw@ogfdwqﬂ </ngdz/>] 2@</ngdl/>/ﬂw(®og)du.

We observe that the inequality (2.10) is of interest only if ® ( [, wgdr) # 0. In this case, by
dividing with ®2 ([, wgdv) > 0, we get
Jow (®og)*dv Jow (®og)dv
2 (] wady) & (Jp wgdv)
Remark 2.2. Let ® : [m,M] — R be a convex function on [m,M] and w > 0 a.e. on Q with

Jowdv = 1. If g : Q — [m, M] is v-measurable and such that g, ® o g, (P o 9)° € Ly (Q,v) and
® ([, wgdv) > 0, then by (2.11) we have

fQ w (P o g)2 dv
¥ [y wgdo)

.11) %

1 Jow (®og)dv

212 & (Joy wgdv)

This implies that

fQ (Pog) 2 dv >
P2 (wigdz/)

This inequality obviously holds for functions ® : [m, M| — R that are square convex, namely &2 is
convex. There are examples of convex functions ® : [m, M] — R for which ®? is not convex and
® (fo, wgdv) > 0 holds. Indeed, if we consider ® : [—k,k] — R, ®(t) = ¢* — 1 for k > 1 then

P2(t) = (1* - 1)2 is convex on [—k, —?} U [@, k:} and concave on (@, ?) . Now, observe that
forg(t) =t,Q=1[0,k], w(t) = 1 we have

I k
wgdy = f/ tdt = —
/sz k Jo 2
k k2
) =0 )=—-1

(2.13)

and
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which is positive for k > 2.
This shows that the Jensen’s type inequality (2.13) holds for larger classes than the square convex func-
tions, namely for convex functions ® for which we have @ ( [, wgdv) > 0.

Corollary 2.2. Let ® : [m, M] — R be a monotonic nondecreasing function on [m, M| and w > 0 a.e.
on Q and fQ wdy = 1.If g : Q@ — [m, M| is v-measurable and such that g, ®og, g (P o g) € L,, (2, v),
then

(2.14) /ng (®og)dy> /ngdy/ﬂw(@ o g)dv.

Remark 2.3. We observe that, under the assumptions of Corollary 2.2 and if g : Q — [m, M] is convex
and [, wgdv > 0, then we get from (2.14) that

(2.15) W>/ﬂw(@og)dy>@</ﬂw9du).

Example 2.2. Let w > 0 a.e. on Q with [, wdv = 1.
a). Ifp>land g : Q — [m, M) is v-measurable and such that g, g, g"*! € Ly, (Q,v), then

fQ 'Ll)ngrldl/ p
(2.16) =t > / wgPdy > /wgdu .
Jo wydv Q Q

b). Ifa>0and g : Q — [m, M] is v-measurable and such that g, exp (ag) , gexp (ag) € Ly, (Q,v),
then

d
(2.17) fQ wgexp (ag) dv > / wexp (ag) dv > exp <a/ wgdz/> .
fg wgdv Q Q

Corollary 2.3. Let &, ¥ : [m, M] — R be two synchronous functions on [m, M|, U also convex on
[m, M] and w > 0 a.e. on Q with fQ wdy = 1. If g : Q — [m, M] is v-measurable and such that g,
Pog,Vog, (Pog)(Vog) e Ly (Qv)and ® ([, wgdv) > 0, then

(2.18) /Qw(fbog)(\llog)dz/zlll(/ngdl/>/gw(<l>og).

Proof. From (2.4) and Jensen’s inequality for ¥ we have

/Qw(@og)(@og)du—l—@(/ﬂwgdu)W(/ngdu)
><I></ngdl/>/ﬂw(\llog)d1/+\ll(/ngdy>/ﬂw(<1>og)
2@</ngdy>\lf(/gwgdl/>+\IJ</ngd1/)/Qw(<I>og)

and the inequality (2.18) is obtained. O
Let @, ¥ : [m, M] — R be two synchronous functions on [m, M|, ¥ also convex on [m, M]. If

z; € [m,M]and w; > 0,i € {1,...,n} with 37" | w; = 1, then by applying the inequality (2.18)
for the discrete counting measure, we have
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Example 2.3. Let w > 0 a.e. on Q with fQ wdy = 1.
a). Ifp>0,q>1land g: Q — [0,00) is v-measurable and such that g, g*, g, g**9 € L, (2, v) , then
by (2.18) we have

P+4ad q
(2.20) Jowg 0y wgdv | .
f P
o Wg Q

b). Ifa, B > 0and g : Q — Ris v-measurable and such that g, exp (Bg) ,exp ((a + B) g) € Ly, (Q,v),
then by (2.18) we have

Jowexp(a+Pg)dv (o
22D Jowexp (Bg) - p( /n 94 )

o). Ifp>1landg:Q — (0,00) is v-measurable and such that g, Ing, g’ lng € L,, (Q,v), then by
(2.18) we have

P
(2.22) / wgP In gdv > (/ wgdu> / wln gdv.
Q Q Q

3. AN ASSOCIATED FUNCTIONAL

Let ®, ¥ : ] — R be two measurable functions on the interval I and w > 0 a.e. on  with
Jowdv =1.1f g : Q — I is v-measurable and such that g, Pog, ¥og, (P o g) (P o g) € L, (Q,v),
then we can consider the following functional

(3.23) F(D,¥;g,w)

:/Qw(cpog)(qfog)dy+<1></gwgdy>qz(/gwgdy>
—<I>(/ngdu)/Qw(\lfog)dy—\ll</ﬂwgdy> /ﬂw(@ogmu

In particular, if g, o g, Pog, (Do g)2 € Ly, (2,v), we have

(3.24) F(®;g,w)
= 0g)*dv 2 v — v o v
.—/Qw((b g) dv+ @ (/ngd) 2@(/9wgd )/ﬂw(‘l’ g9)d
> 0.

Theorem 3.2. Let &, ¥ : I — R be two measurable functions on I and w > 0 a.e. on § with
fQ wdy = 1.If g : Q — I is v-measurable and such that g, ®og, Vog, (P o g)2 (To g)2 € L, (Qv),
then

(3.25) F2(2,¥;9,w) < F(D1g9,w) F (V3.9 0).
Proof. Observe that the following identity holds true
(3.26) F(®,¥;9,w)

~ [w@ @) -o ([ woar)] [ - v ([ )|,
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Using the Cauchy-Bunyakovsky-Schwarz integral inequality we have

62 |[w@|eww)-e( [ )] [waw) - ( [ )|
< (/Qwu) [wg(w))—@ (/ngdu)rdv<x>>1/2
x </£u%w)[W(Q(ID-—Q’(/Qude)]deCﬂ>lm
= F12(®;9,w) F'/2 (W3 9,w).
On utilizing (3.26) and (3.27) we deduce the desired result (3.25). O

For the functions ®, ¥ : I — R, the n-tuples of real numbers x = (z1,...,z,) € I" and the
probability distribution w = (wy, ..., w,,) define the functionals

(3.28) F(D,9;2,w) := i w;® (z;) U (x;) + P (i wixi> W (i wm)
- (Z wixi> Z () (Z wm) sz ()

and

(3.29) F(P;x,w) Z w; ®? (z;) + O (Z wixi> — 20 <Z wla:l> Z w;® (x;) .
i=1 i=1 i=1
From the inequality (3.25) we have

F2 (P, Uz, w) < F (@2, w) F (V;2,w).

Theorem 3.3. Let ® : I — R be an L-Lipschitzian function on I, with L > 0, namely it satisfies the
condition

|®(t) — @ (s)| < L|t—s| foranyt,s € I,

and w > 0 a.e. on Qwith [wdv = 1.If g : Q@ — I is v-measurable and such that g, g*, ® o g,
(®o0g)® € Ly (Q,v), then

(3.30) (0 <) FY2 (®; g,w) < LD (g,w),

where the dispersion D (g, w) is defined by

o\ 1/2
(3.31) D (g,w) := </ng2dy— (/ngdu) ) )
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Proof. By Lipschitz condition we have

Fagw) = [w@|eo@) -0 (/ngdu)rdu (x)

2 [we (st~ [ wgdu)zdu (x)
= L2/Qw(x) <92 (x)2(/ﬂ wgdu)g(x)Jr (/Q wgdu)2> dv (z)
- [Lw<x>g2<x>du<z> (/ngduf

= L*D?(g,w).

IN

Corollary 3.4. Let ® : [m, M| — R be an absolutely continuous function on [m, M| with
(3.32) R N, 1), 00 7= €SSUP 1 [y ary |2 (£)] < 00

and w > 0 a.e. on Qwith [, wdv = 1.1f g : Q@ — [m, M| is v-measurable and such that g, g*, ® o g,
(®o0g)® € Ly (Q,v), then

(3.33) (0 <) FY2 (@5 9,w) < [|9']], ar1.00 D (95 W) -

The proof follows by Theorem 3.3 on observing that for and ¢, s € [m, M] we have

/: &' (u) du

Corollary 3.5. Let ® : I — R be an L-Lipschitzian function on I, with L > 0, and w > 0 a.e. on
with [, wdv = 1.1f g : Q — I is v-measurable and there exists the constant m, M € I such that

(3.34) m < g(z) < M for v-a.e. x €
then g, g2, ® o g, (P o g)? € Ly (Q,v) and

D () — D (s)] = <[t —s H‘I’/”[m,M],oo'

(3.35) (0<) F/? (®:g,0) < (M —m) L.
The proof follows by (3.30) and the Griiss inequality that states that
(3.36) D(g,w) < 3 (M —m)
provided that g satisfies the condition (3.34).

Corollary 3.6. Let @ : I — R be Lipschitzian with constant L > 0, ¥ : I — R be Lipschitzian with
constant K > 0 and w > 0 a.e. on Qwith [, wdv = 1.1f g : Q — I is v-measurable and such that g,

®og, Wog, (®og)?, (Vog)® € Ly (Qv), then

(3.37) |F (@, ¥;9,w)| < LKD? (g,w).

Moreover, if g : Q2 — I is v-measurable and there exists the constant m, M € I such that the condition
(3.34) is satisfied, then

(3.38) |F (@, ¥;9,w)| < = (M —m)’ LK.

B~ =
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The proof follows by (3.25), (3.30) and (3.35).

If ® : I — Ris Lipschitzian with constant L. > 0, ¥ : I — R is Lipschitzian with constant
K > 0, the n-tuples of real numbers z = (1, ...,x,) € I" then for any probability distribution
w = (wi, ..., wy) we have by (3.37) that

n n 2
(3.39) |F (D, ¥;z,w)| < LK (Z wzxf - (Z wl:172> ) .

i=1 i=1
If the interval I is closed, namely I = [m, M] and = = (21, ...,z,) € [m, M]" then by (3.38) we
get the simpler upper bound:

(3.40) |F (D, 0;2,w)| < = (M —m)* LK.

e~ =

Consider the functional

(3.41) Fyo (g w) i= /Q wgP dy + < /Q wgdu)p ( /Q wgdy)q
(o - ([ o] f oo

provided that g > 0, w > 0 a.e. on Q with [, wdv = 1, g, g*, g%, g**? € L, (Q,v) and p,
q € R\ {0}.
Assume that g : @ — [m, M] C (0, 00) and for p # 0 define the constants
MP=l ifp >1,
(3.42) A, (m, M) == |p| x
mP~t ifp < 1.
If we consider the function ® : [m, M] C (0,00) — (0,00), ® (t) = P then &’ (t) = ptP~! and

sup |9/ (6)] = Ay (m, M)
te[m,M]

as defined by (3.42).

Proposition 3.1. Let g : Q@ — [m, M] C (0, 00) be v-measurable and p, ¢ € R\ {0} . Then we have
the inequality

1
(3.43) | Foa (g w)] < 5 (M = m)* A, (m, M) Ag (m, M).
The proof follows by Corollary 3.6 for the functions ® (¢) = t” and ¥ (¢) = t? for p, ¢ € R\ {0}.
Consider now the functional

P
(3.44) Fpn (g, w) 1= / wg? In gdv + (/ wgdu) In (/ wgdl/>
Q Q Q
p
— (/ wgdl/> /wlngdufln </ wgdu) / wgPdv,
Q Q Q Q

provided that p > 0 and g : 2 — (0,00) is v-measurable and such that g, ¢*, Ing, g’Ing €
L, (Q,v).
If we take the function W (t) = Int, t € [m, M] C (0,00) , then sup; ¢, ar [¥' (£)] = 7=

Using Corollary 3.6 for the functions ® (t) = t” and ¥ (¢) = Int¢ for p € R\ {0} we can state the
following result as well:
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Proposition 3.2. Let g : QO — [m, M] C (0, 00) be v-measurable and p € R\ {0} . Then we have the
inequality

1
(3.45) | Fpn (g, w0)] < g (M —m)* A, (m, M).

We have the following result:

Theorem 3.4. Let &, U : I — R be two measurable functions such that there exists the real constants
~, I with

o(t)—
y < 2O ()
W (t) =0 (s)
forae. t,s € Twitht # s.Ifg : Q — I is v-measurable and such that g, og, Vog, (P o 9)°,(¥og)e
Ly, (2, v), then we have the inequalities

(3.47) YF (V5 9,w) < F (2, ¥;9,w) < AF (V5 9,w).

(3.46)

Proof. My multiplying (3.46) with (W (t) — ¥ (s))* > 0 we get
V(T () = (5)* <[® (1) = D ()] [T () — ¥ (5)] < A(T(t) — ¥ (s))*

forae. t,s e Il.
This implies

(3.48) yw (x) (‘P (g (z)) - ¥ ( /Q wgd”) > 2
oy | e )
< tue) (v o)~ [ wgar) )

for v-a.e. x € Q.
Integrating the inequality (3.48) on 2 and making use of the equality (3.26) we deduce the
desired result (3.47). |

Corollary 3.7. Let ®, ¥ : [m,M] — R be continuous on [m, M| and differentiable on (m, M) .
Assume that U’ (t) # 0 forany t € (m, M) and

inf ((I)’(t))> 00 sup (q)l(t))<oo
in —00,
te(m.M) \ W' (1) te(mm) \ V' (1)

If g : Q — I is v-measurable and such that g, o g, Vo g, (Po 9)°,(Wog)? e Ly (1), then we
have the inequalities

. @' (1) . .
(3.49) te(lﬁ,fM) (W, (t)> F(¥;9,w) < F (@, ¥;9,w)

@’ (t)>
< su F(U;g,w).
- te(mPM) (‘I’/ (t) (¥5gw)

Proof. By Cauchy’s mean value theorem, for any ¢, s € [m, M| with ¢ # s there exists a ¢ between ¢
and s such that

() —D(s) ()

U(t)—W(s) ()
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Therefore, for any ¢, s € [m, M] with ¢t # s we have

inf ((I)/(t)) < ®(t) ~ 2(s) < sup ((I)/(t)).
etman \W (1)) = WO =T (5) = reomnn \ ¥ (1)
By applying Theorem 3.4 for v = inf¢ (1) (58) and I' = supye () (3—8) we get the

desired result (3.49). O

Remark 3.4. We observe that if &, ¥ : I — R are two measurable functions such that there exists the
positive constant © with

(3.50) <0

O (1) — 2 (s)
W (t) =W (s)
forae t,s € Twitht # sand g : Q — [ is v-measurable and such that g, ® o g, ¥ o g,
(®0g)*,(¥og)® € Ly (1), then we have the inequalities

(3.51) |F (2, ¥;9,w)| < OF (¥59,w).

Moreover, if ®, U are as in Corollary 3.7, then we have

|F(®,¥;g9,w)| < sup
te(m,M)

In the case of synchronous functions we can prove the following result as well:

Theorem 3.5. Let @, U : [m, M] — R be two synchronous functions on [m, M| and w > 0 a.e. on
with [, wdv = 1.1If g : Q — [m, M| is v-measurable and such that g, ® o g, W o g, (Pog) (Y oyg),
@0 g, [¥]og, (|®]og)(|¥]ocg) € Ly (2,v), then

(3.52) F(®,¥;9,w)
> max {|F (|®[, ¥;9,w)], |F (@, [¥]; g, w)|, [F (|2, |¥]; 9, w)[} > 0.
Proof. We use the continuity property of the modulus, namely
la —b| > |la] —1b||, a,b € R.

Since @, ¥ are synchronous, then

653 |- ([ wear)] v v ([ o)
(@) - ( [ woar)|[w i) - v ([ o)

||q) (g (x))| - |(I) (fQ U’gd’/)“ ’\I’ (9 (m)) -V (fQ deV)‘
@ (g (2)) = @ (Jo wgdv)| ||¥ (g (2))] = | ([, wgdv)||

12 (g (@)] = | (Jo wydv) [[[[¥ (9 ()] = [¥ (Jo, wgdv) |
(12 (g (@) = | (Jg wgdv)]) (¥ (g (@) = ¥ (J wgdv))|

=1 (@ (g(@) =@ (Jowgdv)) (19 (g (@) =¥ (Jowgdv)])]

(12 (9 (@) = | (Jo wgdv)]) (19 (g @))] = [V (o wgev) )]

IV

for any z € Q.
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By using the identity (3.26) and the first branch in (3.53) we have
F (@, W59, w)

:/Qw(x) {@ (g(m))@(/ wgdyﬂ {W(g(m))@(/ﬂwydu)} dv (z)
o o)) -+ [ o)
T MR 0 R

= |[F (@[, ¥;9,w),

dv ()

which proves the first part of (3.52).
The second and third part of (3.52) can be proved in a similar way and the details are omitted.
(]

For the natural numbers n, m > 1 we consider the functions ® (t) = t?"*! and ¥ (¢) = t?m+!
for real numbers ¢t € R. These functions are monotonic increasing on R. If g : Q@ — R is v-
measurable and such that g, g?" 1, "+, g?mT2n+2 ¢ [ (Q,v), then by (3.52) we have the
inequality

(3.54) FOM 0 g )
> max {‘]7 ( NG ;g,w)

‘]_-( 2n+1 ’ |.|2m+1 ;g,w)

)

F (PP g w0)| b (2 0)

)

4. APPLICATIONS FOR f-DIVERGENCES

Let (X, A) be a measurable space satisfying |.4| > 2 and ;. be a o-finite measure on (X, A) . Let
P be the set of all probability measures on (X, A) which are absolutely continuous with respect
tou. For P,Q € P,letp = and q= dQ denote the Radon-Nikodym derivatives of P and @
with respect to p.

Two probability measures P, Q € P are said to be orthogonal and we denote this by @ L P if

P{q=0})=Q({p=0}) =1

Let f : [0,00) = (—00, 00] be a convex function that is continuous at 0, i.e., f (0) = lim, o f (u).
In 1963, I. Csiszér [3] introduced the concept of f-divergence as follows.

Definition 4.1. Let P, Q € P. Then

(455) @ = [ v |40 aw,

is called the f-divergence of the probability distributions ) and P.

Remark 4.5. Observe that, the integrand in the formula (4.55) is undefined when p (x) = 0. The way
to overcome this problem is to postulate for f as above that

wso or[19] = gtony [ ()] e x.

ul0
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We now give some examples of f-divergences that are well-known and often used in the liter-
ature (see also [2]).
For f continuous convex on [0, c0) we obtain the *-conjugate function of f by

1
rr=uf (1), ue )
and
F7(0) = lim f* (u).
It is also known that if f is continuous convex on [0, c0) then so is f*.

The following two theorems contain the most basic properties of f-divergences. For their
proofs we refer the reader to Chapter 1 of [17] (see also [2]).

Theorem 4.6 (Uniqueness and Symmetry Theorem). Let f, f1 be continuous convex on [0, o). We
have

17, (Q, P) = I; (@, P),
forall P, Q € P if and only if there exists a constant ¢ € R such that
fi(u) = f(u) +e(u—1),
for any u € [0, 00).

Theorem 4.7 (Range of Values Theorem). Let f : [0,00) — R be a continuous convex function on

[0, 00).
For any P, Q € P, we have the double inequality
(4.57) F) <I;(Q,P) < f(0)+f7(0).

(i) If P = Q, then the equality holds in the first part of (4.57).

If f is strictly convex at 1, then the equality holds in the first part of (4.57) if and only if P = Q;
(i) If Q L P, then the equality holds in the second part of (4.57).

If £(0) + f*(0) < oo, then equality holds in the second part of (4.57) if and only if Q L P.

The following result is a refinement of the second inequality in Theorem 4.7 (see [2, Theorem
3.

Theorem 4.8. Let f be a continuous convex function on [0, 00) with f (1) = 0 (f is normalised) and
f(0)+ f*(0) < co. Then

(4.58) 0< I (Q,P) < S[f(O)+ [ (0]V(Q,P)
forany Q, P € P.

For other inequalities for f-divergence see [1], [4]-[15].
The concept of f-divergence can be extended in a similar way for non-convex functions.

DN | =

Theorem 4.9. Let f, h : [0,00) — R be synchronous and measurable on [0, c0). For any P, QQ € P we
have

(4.59) Ipn (Q,P) = f(1) In (Q, P) + h (1) Iy (Q, P) — f(1) h(1).
Moreover, if f is normalised, then
(4.60) I (Q,P) > h(1)I; (Q, P).

If both f and h are normalised, then
(4.61) 14 (Q.P) > 0.
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Proof. If we write the inequality (2.4) for the synchronous functions (®,¥) = (f,h), w = p,
qg= %,Q = X and v = u we have

[ (9w () ()
s () 5o o) L3

that is equivalent to the desired result (4.59).
The rest is obvious. U

An important divergence in Information Theory is the Kullback-Leibler divergence obtained for
the decreasing convex function f (¢t) = —Int,¢ > 0 and defined by

KL(P.Q)= [ phn (”) dp,
e q
forany P, Q € P.

If b : [0,00) — Ris a decreasing function with & (1) > 0, then by (4.60) we have the inequality

forany P,Q € P.
In particular, we have the following inequalities

(4.63) I_(ypm() (@, P) > KL (P,Q) >0

and

(4.64) I ooy (@, P) > KL (P,Q)exp(—a) >0
for p, a > 0.

Theorem 4.10. Let f, h : [0,00) — R be Lipschitzian on [0, c0) with the constants L and K, respec-
tively. For any P, Q) € P we then have

(4.65) 1150 (Q.P) = f () 10 (Q. P) = h (1) 11 (Q, P) + f (1) h (1)] < KLx*(Q, P)

where
2 1 q ? ¢
X p x P

is Karl Pearson’s x*-divergence.
Moreover, if f is normalised, then

(4.66) 10 (Q. P) = h (1) I; (Q, P)| < KLx* (Q, P).
If both f and h are normalised, then

(4.67) 1 (Q, P)| < KLx*(Q, P).
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Proof. If we write the inequality (3.25) for the functions (®,¥) = (f,h), w =p, g = %, Q=X
and v = y we have

o oy () o)
o) o ) o)
SLK(/X(;dul)a

that is equivalent to the desired result (4.65).
The rest is obvious. O

If some bounds for the likelihood ratio are known, then we can state the following results as
well.

Theorem 4.11. Let P, Q € P such that for 0 < r < 1 < R we have

(4.69) r < 4 < R p-ae on X.
p

If f, h : [r, R] — R are Lipschitzian on [r, R] with the constants L and K, then we have
(4.70) g (@, P) = f () In (Q, P) = h (1) I (Q, P) + f (1) h (1)]
< i (R—7)"KL.

Moreover, if f is normalised, then

1
(471) U (Q.P)=h(1) 1 (Q.P)| < § (R~r)° KL.
If both f and h are normalised, then
(4.72) [In (Q, P)| < i (R—7)*KL.

If we consider the convex function ¢ (t) = (¢ — 1) Int, then this function generates the Jeffreys
divergence measure
J(P,Q) = / (p—q)(Inp—Ing)dp
b's
where P, Q € P.
If we take f (t) = t—1, h (t) = Int then f is Lipschitzian with the constant 1 and h is Lipschitzian
with the constant * on [r, R] and by (4.72) we have

4.73) 0<J(PQ) < % (R—1)?

provided that P, Q) € P satisfy the condition (4.69).
The Neyman Chi-square distance is defined by

1 —q)° 2
G@ri=; [P [ Paoi—¢ra)

and generated by the convex function g (t) = (t;tl)z ,t>0.
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Now, consider the functions f () = % (¢t — 1)*and h (t) = 1 defined on the interval [r, R] . Then
f'(t)=t—1and

R—r r+ R
e (0] =max{1—r, =1} = E2T 4 [TER

Also I (t) = — % and

M) ==

tg&g]l )l

Then from (4.71) we have

1 (R */R—r |r+R
@74) @r) -e@p) st (Bo1) (B R )

provided that P, ) € P satisfy the condition (4.69).
Similar results may be obtained by utilizing (3.49), however the details are not presented here.
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