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1. INTRODUCTION

Let (Ω,A, ν) be a measurable space consisting of a set Ω, a σ -algebra A of subsets of Ω and a
countably additive and positive measure ν on A with values in R ∪ {∞} . For a ν-measurable
function w : Ω→ R, with w (x) ≥ 0 for ν -a.e. (almost every) x ∈ Ω, consider the Lebesgue space

Lw (Ω, ν) := {f : Ω→ R, f is ν-measurable and
∫

Ω

w (x) |f (x)| dν (x) <∞}.

For simplicity of notation we write everywhere in the sequel
∫

Ω
wdν instead of

∫
Ω
w (x) dν (x) .

Assume also that
∫

Ω
wdν = 1. We have Jensen’s inequality

(1.1)
∫

Ω

w (Φ ◦ f) dν ≥ Φ

(∫
Ω

wfdν

)
,

where Φ : [m,M ] → R is a continuous convex function on the closed interval of real numbers
[m,M ] , f : Ω→ [m,M ] is ν-measurable and such that f,Φ ◦ f ∈ Lw (Ω, ν) .
We say that the pair of measurable functions (f, g) are synchronous on Ω if

(1.2) (f (x)− f (y)) (g (x)− g (y)) ≥ 0

for ν-a.e. x, y ∈ Ω. If the inequality reverses in (1.2), the functions are called asynchronous on Ω.
If (f, g) are synchronous on Ω and f, g, fg ∈ Lw (Ω, ν) then the following inequality, that is
known in the literature as Čebyšev’s Inequality, holds

(1.3)
∫

Ω

wfgdν ≥
∫

Ω

wfdν

∫
Ω

wgdν,

where w (x) ≥ 0 for ν-a.e. (almost every) x ∈ Ω and
∫

Ω
wdν = 1.

In this paper we establish some inequalities for synchronous functions that are a mixture be-
tween Čebyšev’s and Jensen’s inequality. Applications for f -divergence measure and some
particular instances including Kullback-Leibler divergence, Jeffreys divergence and χ2-divergence
are also given.
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2. INEQUALITIES FOR SYNCHRONOUS FUNCTIONS

We have the following inequality for synchronous functions:

Theorem 2.1. Let Φ, Ψ : [m,M ] → R be two synchronous functions on [m,M ] and w ≥ 0 a.e. on Ω
with

∫
Ω
wdν = 1. If g : Ω → [m,M ] is ν-measurable and such that g, Φ ◦ g, Ψ ◦ g, (Φ ◦ g) (Ψ ◦ g) ∈

Lw (Ω, ν) , then ∫
Ω

w (Φ ◦ g) (Ψ ◦ g) dν + Φ

(∫
Ω

wgdν

)
Ψ

(∫
Ω

wgdν

)
(2.4)

≥ Φ

(∫
Ω

wgdν

)∫
Ω

w (Ψ ◦ g) dν + Ψ

(∫
Ω

wgdν

)∫
Ω

w (Φ ◦ g) dν.

If the functions (Φ,Ψ) are asynchronous, then the inequality in (2.4) reverses.

Proof. Since Φ, Ψ are synchronous on [m,M ] and
∫

Ω
wgdν ∈ [m,M ] , then we have[

Φ (g (x))− Φ

(∫
Ω

wgdν

)][
Ψ (g (x))−Ψ

(∫
Ω

wgdν

)]
≥ 0

for ν-a.e. x ∈ Ω.
This is equivalent to

Φ (g (x)) Ψ (g (x)) + Φ

(∫
Ω

wgdν

)
Ψ

(∫
Ω

wgdν

)
(2.5)

≥ Φ

(∫
Ω

wgdν

)
Ψ + Ψ

(∫
Ω

wgdν

)
Φ (g (x))

for ν-a.e. x ∈ Ω.
Now, if we multiply (2.5) by w ≥ 0 a.e. on Ω and integrate, we deduce the desired result
(2.4). �

Remark 2.1. If the functions Φ, Ψ : [m,M ] → R have the same monotonicity (opposite mono-
tonicity) on [m,M ] , then they are synchronous (asynchronous) and the inequality (2.4) holds for any
g ∈ Lw (Ω, ν) .

If Φ, Ψ : [m,M ] → R are two synchronous functions on [m,M ], xi ∈ [m,M ] and wi ≥ 0,
i ∈ {1, ..., n} with

∑n
i=1 wi = 1, then by applying the inequality (2.4) for the discrete counting

measure, we have
n∑
i=1

wiΦ (xi) Ψ (xi) + Φ

(
n∑
i=1

wixi

)
Ψ

(
n∑
i=1

wixi

)
(2.6)

≥ Φ

(
n∑
i=1

wixi

)
n∑
i=1

wiΨ (xi) + Ψ

(
n∑
i=1

wixi

)
n∑
i=1

wiΦ (xi) .

Example 2.1. Let w ≥ 0 a.e. on Ω with
∫

Ω
wdν = 1.

a). If p, q > 0 (< 0) and g : Ω → [0,∞) is ν-measurable and such that g, gp, gq, gp+q ∈ Lw (Ω, ν) ,
then ∫

Ω

wgp+qdν +

(∫
Ω

wgdν

)p(∫
Ω

wgdν

)q
(2.7)

≥
(∫

Ω

wgdν

)p ∫
Ω

wgqdν +

(∫
Ω

wgdν

)q ∫
Ω

wgpdν.

If p > 0(< 0), and q < (> 0) then the inequality (2.7) reverses.
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b). If α, β > 0 (< 0) and g : Ω → R is ν-measurable and such that g, exp (αg) , exp (βg) ,
exp ((α+ β) g) ∈ Lw (Ω, ν) , then∫

Ω

w exp ((α+ β) g) dν + exp

(
(α+ β)

∫
Ω

wgdν

)
(2.8)

≥ exp

(
α

∫
Ω

wgdν

)∫
Ω

w exp (βg) dν + exp

(
β

∫
Ω

wgdν

)∫
Ω

w exp (αg) dν.

If α > 0(< 0), and β < (> 0) then the inequality (2.8) reverses.
c). If p > 0 and g : Ω→ (0,∞) is ν-measurable and such that g, gp, ln g, gp ln g ∈ Lw (Ω, ν) , then∫

Ω

wgp ln gdν +

(∫
Ω

wgdν

)p
ln

(∫
Ω

wgdν

)
(2.9)

≥
(∫

Ω

wgdν

)p ∫
Ω

w ln gdν + ln

(∫
Ω

wgdν

)∫
Ω

wgpdν.

If p < 0, then the inequality (2.9) reverses.

Corollary 2.1. Let Φ : [m,M ] → R be a measurable function on [m,M ] and w ≥ 0 a.e. on Ω and∫
Ω
wdν = 1. If g : Ω→ [m,M ] is ν-measurable and such that g, Φ ◦ g, (Φ ◦ g)

2 ∈ Lw (Ω, ν) , then

(2.10)
1

2

[∫
Ω

w (Φ ◦ g)
2
dν + Φ2

(∫
Ω

wgdν

)]
≥ Φ

(∫
Ω

wgdν

)∫
Ω

w (Φ ◦ g) dν.

We observe that the inequality (2.10) is of interest only if Φ
(∫

Ω
wgdν

)
6= 0. In this case, by

dividing with Φ2
(∫

Ω
wgdν

)
> 0, we get

(2.11)
1

2

[∫
Ω
w (Φ ◦ g)

2
dν

Φ2
(∫

Ω
wgdν

) + 1

]
≥
∫

Ω
w (Φ ◦ g) dν

Φ
(∫

Ω
wgdν

) .

Remark 2.2. Let Φ : [m,M ] → R be a convex function on [m,M ] and w ≥ 0 a.e. on Ω with∫
Ω
wdν = 1. If g : Ω → [m,M ] is ν-measurable and such that g, Φ ◦ g, (Φ ◦ g)

2 ∈ Lw (Ω, ν) and
Φ
(∫

Ω
wgdν

)
> 0, then by (2.11) we have

(2.12)
1

2

[∫
Ω
w (Φ ◦ g)

2
dν

Φ2
(∫

Ω
wgdν

) + 1

]
≥
∫

Ω
w (Φ ◦ g) dν

Φ
(∫

Ω
wgdν

) ≥ 1.

This implies that

(2.13)

∫
Ω
w (Φ ◦ g)

2
dν

Φ2
(∫

Ω
wgdν

) ≥ 1.

This inequality obviously holds for functions Φ : [m,M ] → R that are square convex, namely Φ2 is
convex. There are examples of convex functions Φ : [m,M ] → R for which Φ2 is not convex and
Φ
(∫

Ω
wgdν

)
> 0 holds. Indeed, if we consider Φ : [−k, k] → R, Φ (t) = t2 − 1 for k > 1 then

Φ2 (t) =
(
t2 − 1

)2 is convex on
[
−k,−

√
3

3

]
∪
[√

3
3 , k

]
and concave on

(√
3

3 ,
√

3
3

)
. Now, observe that

for g (t) = t, Ω = [0, k], w (t) = 1
k we have∫

Ω

wgdν =
1

k

∫ k

0

tdt =
k

2

and

Φ

(∫
Ω

wgdν

)
= Φ

(
k

2

)
=
k2

4
− 1
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which is positive for k > 2.
This shows that the Jensen’s type inequality (2.13) holds for larger classes than the square convex func-
tions, namely for convex functions Φ for which we have Φ

(∫
Ω
wgdν

)
> 0.

Corollary 2.2. Let Φ : [m,M ]→ R be a monotonic nondecreasing function on [m,M ] and w ≥ 0 a.e.
on Ω and

∫
Ω
wdν = 1. If g : Ω→ [m,M ] is ν-measurable and such that g,Φ◦g, g (Φ ◦ g) ∈ Lw (Ω, ν) ,

then

(2.14)
∫

Ω

wg (Φ ◦ g) dν ≥
∫

Ω

wgdν

∫
Ω

w (Φ ◦ g) dν.

Remark 2.3. We observe that, under the assumptions of Corollary 2.2 and if g : Ω→ [m,M ] is convex
and

∫
Ω
wgdν > 0, then we get from (2.14) that

(2.15)

∫
Ω
wg (Φ ◦ g) dν∫

Ω
wgdν

≥
∫

Ω

w (Φ ◦ g) dν ≥ Φ

(∫
Ω

wgdν

)
.

Example 2.2. Let w ≥ 0 a.e. on Ω with
∫

Ω
wdν = 1.

a). If p ≥ 1 and g : Ω→ [m,M ] is ν-measurable and such that g, gp, gp+1 ∈ Lw (Ω, ν) , then

(2.16)

∫
Ω
wgp+1dν∫
Ω
wgdν

≥
∫

Ω

wgpdν ≥
(∫

Ω

wgdν

)p
.

b). If α > 0 and g : Ω → [m,M ] is ν-measurable and such that g, exp (αg) , g exp (αg) ∈ Lw (Ω, ν) ,
then

(2.17)

∫
Ω
wg exp (αg) dν∫

Ω
wgdν

≥
∫

Ω

w exp (αg) dν ≥ exp

(
α

∫
Ω

wgdν

)
.

Corollary 2.3. Let Φ, Ψ : [m,M ] → R be two synchronous functions on [m,M ] , Ψ also convex on
[m,M ] and w ≥ 0 a.e. on Ω with

∫
Ω
wdν = 1. If g : Ω → [m,M ] is ν-measurable and such that g,

Φ ◦ g, Ψ ◦ g, (Φ ◦ g) (Ψ ◦ g) ∈ Lw (Ω, ν) and Φ
(∫

Ω
wgdν

)
> 0, then

(2.18)
∫

Ω

w (Φ ◦ g) (Ψ ◦ g) dν ≥ Ψ

(∫
Ω

wgdν

)∫
Ω

w (Φ ◦ g) .

Proof. From (2.4) and Jensen’s inequality for Ψ we have∫
Ω

w (Φ ◦ g) (Ψ ◦ g) dν + Φ

(∫
Ω

wgdν

)
Ψ

(∫
Ω

wgdν

)
≥ Φ

(∫
Ω

wgdν

)∫
Ω

w (Ψ ◦ g) dν + Ψ

(∫
Ω

wgdν

)∫
Ω

w (Φ ◦ g)

≥ Φ

(∫
Ω

wgdν

)
Ψ

(∫
Ω

wgdν

)
+ Ψ

(∫
Ω

wgdν

)∫
Ω

w (Φ ◦ g)

and the inequality (2.18) is obtained. �

Let Φ, Ψ : [m,M ] → R be two synchronous functions on [m,M ] , Ψ also convex on [m,M ]. If
xi ∈ [m,M ] and wi ≥ 0, i ∈ {1, ..., n} with

∑n
i=1 wi = 1, then by applying the inequality (2.18)

for the discrete counting measure, we have

(2.19)
n∑
i=1

wiΦ (xi) Ψ (xi) ≥ Ψ

(
n∑
i=1

wixi

)
n∑
i=1

wiΦ (xi) .
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Example 2.3. Let w ≥ 0 a.e. on Ω with
∫

Ω
wdν = 1.

a). If p > 0, q ≥ 1 and g : Ω→ [0,∞) is ν-measurable and such that g, gp, gq, gp+q ∈ Lw (Ω, ν) , then
by (2.18) we have

(2.20)

∫
Ω
wgp+qdν∫
Ω
wgp

≥
(∫

Ω

wgdν

)q
.

b). If α, β > 0 and g : Ω→ R is ν-measurable and such that g, exp (βg) , exp ((α+ β) g) ∈ Lw (Ω, ν) ,
then by (2.18) we have

(2.21)

∫
Ω
w exp ((α+ β) g) dν∫

Ω
w exp (βg)

≥ exp

(
α

∫
Ω

wgdν

)
.

c). If p ≥ 1 and g : Ω → (0,∞) is ν-measurable and such that g, ln g, gp ln g ∈ Lw (Ω, ν) , then by
(2.18) we have

(2.22)
∫

Ω

wgp ln gdν ≥
(∫

Ω

wgdν

)p ∫
Ω

w ln gdν.

3. AN ASSOCIATED FUNCTIONAL

Let Φ, Ψ : I → R be two measurable functions on the interval I and w ≥ 0 a.e. on Ω with∫
Ω
wdν = 1. If g : Ω→ I is ν-measurable and such that g,Φ◦g,Ψ◦g, (Φ ◦ g) (Ψ ◦ g) ∈ Lw (Ω, ν) ,

then we can consider the following functional

F (Φ,Ψ; g, w)(3.23)

:=

∫
Ω

w (Φ ◦ g) (Ψ ◦ g) dν + Φ

(∫
Ω

wgdν

)
Ψ

(∫
Ω

wgdν

)
− Φ

(∫
Ω

wgdν

)∫
Ω

w (Ψ ◦ g) dν −Ψ

(∫
Ω

wgdν

)∫
Ω

w (Φ ◦ g) dν.

In particular, if g, Φ ◦ g, Ψ ◦ g, (Φ ◦ g)
2 ∈ Lw (Ω, ν) , we have

F (Φ; g, w)(3.24)

:=

∫
Ω

w (Φ ◦ g)
2
dν + Φ2

(∫
Ω

wgdν

)
− 2Φ

(∫
Ω

wgdν

)∫
Ω

w (Φ ◦ g) dν

≥ 0.

Theorem 3.2. Let Φ, Ψ : I → R be two measurable functions on I and w ≥ 0 a.e. on Ω with∫
Ω
wdν = 1. If g : Ω→ I is ν-measurable and such that g,Φ◦g,Ψ◦g, (Φ ◦ g)

2
, (Ψ ◦ g)

2 ∈ Lw (Ω, ν) ,
then

(3.25) F2 (Φ,Ψ; g, w) ≤ F (Φ; g, w)F (Ψ; g, w) .

Proof. Observe that the following identity holds true

F (Φ,Ψ; g, w)(3.26)

=

∫
Ω

w (x)

[
Φ (g (x))− Φ

(∫
Ω

wgdν

)][
Ψ (g (x))−Ψ

(∫
Ω

wgdν

)]
dν (x) .
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Using the Cauchy-Bunyakovsky-Schwarz integral inequality we have∣∣∣∣∫
Ω

w (x)

[
Φ (g (x))− Φ

(∫
Ω

wgdν

)][
Ψ (g (x))−Ψ

(∫
Ω

wgdν

)]
dν (x)

∣∣∣∣(3.27)

≤

(∫
Ω

w (x)

[
Φ (g (x))− Φ

(∫
Ω

wgdν

)]2

dν (x)

)1/2

×

(∫
Ω

w (x)

[
Ψ (g (x))−Ψ

(∫
Ω

wgdν

)]2

dν (x)

)1/2

= F1/2 (Φ; g, w)F1/2 (Ψ; g, w) .

On utilizing (3.26) and (3.27) we deduce the desired result (3.25). �

For the functions Φ, Ψ : I → R, the n-tuples of real numbers x = (x1, ..., xn) ∈ In and the
probability distribution w = (w1, ..., wn) define the functionals

F (Φ,Ψ;x,w) :=

n∑
i=1

wiΦ (xi) Ψ (xi) + Φ

(
n∑
i=1

wixi

)
Ψ

(
n∑
i=1

wixi

)
(3.28)

− Φ

(
n∑
i=1

wixi

)
n∑
i=1

wiΨ (xi)−Ψ

(
n∑
i=1

wixi

)
n∑
i=1

wiΦ (xi)

and

(3.29) F (Φ;x,w) :=

n∑
i=1

wiΦ
2 (xi) + Φ2

(
n∑
i=1

wixi

)
− 2Φ

(
n∑
i=1

wixi

)
n∑
i=1

wiΦ (xi) .

From the inequality (3.25) we have

F2 (Φ,Ψ;x,w) ≤ F (Φ;x,w)F (Ψ;x,w) .

Theorem 3.3. Let Φ : I → R be an L-Lipschitzian function on I, with L > 0, namely it satisfies the
condition

|Φ (t)− Φ (s)| ≤ L |t− s| for any t, s ∈ I,

and w ≥ 0 a.e. on Ω with
∫

Ω
wdν = 1. If g : Ω → I is ν-measurable and such that g, g2, Φ ◦ g,

(Φ ◦ g)
2 ∈ Lw (Ω, ν) , then

(3.30) (0 ≤)F1/2 (Φ; g, w) ≤ LD (g, w) ,

where the dispersion D (g, w) is defined by

(3.31) D (g, w) :=

(∫
Ω

wg2dν −
(∫

Ω

wgdν

)2
)1/2

.
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Proof. By Lipschitz condition we have

F (Φ; g, w) =

∫
Ω

w (x)

[
Φ (g (x))− Φ

(∫
Ω

wgdν

)]2

dν (x)

≤ L2

∫
Ω

w (x)

(
g (x)−

∫
Ω

wgdν

)2

dν (x)

= L2

∫
Ω

w (x)

(
g2 (x)− 2

(∫
Ω

wgdν

)
g (x) +

(∫
Ω

wgdν

)2
)
dν (x)

= L2

[∫
Ω

w (x) g2 (x) dν (x)−
(∫

Ω

wgdν

)2
]

= L2D2 (g, w) .

�

Corollary 3.4. Let Φ : [m,M ]→ R be an absolutely continuous function on [m,M ] with

(3.32) ‖Φ′‖[m,M ],∞ := essupt∈[m,M ] |Φ
′ (t)| <∞

and w ≥ 0 a.e. on Ω with
∫

Ω
wdν = 1. If g : Ω → [m,M ] is ν-measurable and such that g, g2, Φ ◦ g,

(Φ ◦ g)
2 ∈ Lw (Ω, ν) , then

(3.33) (0 ≤)F1/2 (Φ; g, w) ≤ ‖Φ′‖[m,M ],∞D (g, w) .

The proof follows by Theorem 3.3 on observing that for and t, s ∈ [m,M ] we have

|Φ (t)− Φ (s)| =
∣∣∣∣∫ t

s

Φ′ (u) du

∣∣∣∣ ≤ |t− s| ‖Φ′‖[m,M ],∞ .

Corollary 3.5. Let Φ : I → R be an L-Lipschitzian function on I, with L > 0, and w ≥ 0 a.e. on Ω
with

∫
Ω
wdν = 1. If g : Ω→ I is ν-measurable and there exists the constant m, M ∈ I such that

(3.34) m ≤ g (x) ≤M for ν-a.e. x ∈ Ω,

then g, g2, Φ ◦ g, (Φ ◦ g)
2 ∈ Lw (Ω, ν) and

(3.35) (0 ≤)F1/2 (Φ; g, w) ≤ 1

2
(M −m)L.

The proof follows by (3.30) and the Grüss inequality that states that

(3.36) D (g, w) ≤ 1

2
(M −m)

provided that g satisfies the condition (3.34).

Corollary 3.6. Let Φ : I → R be Lipschitzian with constant L > 0, Ψ : I → R be Lipschitzian with
constant K > 0 and w ≥ 0 a.e. on Ω with

∫
Ω
wdν = 1. If g : Ω → I is ν-measurable and such that g,

Φ ◦ g, Ψ ◦ g, (Φ ◦ g)
2
, (Ψ ◦ g)

2 ∈ Lw (Ω, ν) , then

(3.37) |F (Φ,Ψ; g, w)| ≤ LKD2 (g, w) .

Moreover, if g : Ω→ I is ν-measurable and there exists the constant m, M ∈ I such that the condition
(3.34) is satisfied, then

(3.38) |F (Φ,Ψ; g, w)| ≤ 1

4
(M −m)

2
LK.
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The proof follows by (3.25), (3.30) and (3.35).
If Φ : I → R is Lipschitzian with constant L > 0, Ψ : I → R is Lipschitzian with constant
K > 0, the n-tuples of real numbers x = (x1, ..., xn) ∈ In then for any probability distribution
w = (w1, ..., wn) we have by (3.37) that

(3.39) |F (Φ,Ψ;x,w)| ≤ LK

 n∑
i=1

wix
2
i −

(
n∑
i=1

wixi

)2
 .

If the interval I is closed, namely I = [m,M ] and x = (x1, ..., xn) ∈ [m,M ]
n then by (3.38) we

get the simpler upper bound:

(3.40) |F (Φ,Ψ;x,w)| ≤ 1

4
(M −m)

2
LK.

Consider the functional

Fp,q (g, w) :=

∫
Ω

wgp+qdν +

(∫
Ω

wgdν

)p(∫
Ω

wgdν

)q
(3.41)

−
(∫

Ω

wgdν

)p ∫
Ω

wgqdν −
(∫

Ω

wgdν

)q ∫
Ω

wgpdν,

provided that g > 0, w ≥ 0 a.e. on Ω with
∫

Ω
wdν = 1, g, gp, gq, gp+q ∈ Lw (Ω, ν) and p,

q ∈ R\ {0} .
Assume that g : Ω→ [m,M ] ⊂ (0,∞) and for p 6= 0 define the constants

(3.42) ∆p (m,M) := |p| ×

 Mp−1 if p ≥ 1,

mp−1 if p < 1.

If we consider the function Φ : [m,M ] ⊂ (0,∞)→ (0,∞) , Φ (t) = tp then Φ′ (t) = ptp−1 and

sup
t∈[m,M ]

|Φ′ (t)| = ∆p (m,M)

as defined by (3.42).

Proposition 3.1. Let g : Ω → [m,M ] ⊂ (0,∞) be ν-measurable and p, q ∈ R\ {0} . Then we have
the inequality

(3.43) |Fp,q (g, w)| ≤ 1

4
(M −m)

2
∆p (m,M) ∆q (m,M) .

The proof follows by Corollary 3.6 for the functions Φ (t) = tp and Ψ (t) = tq for p, q ∈ R\ {0} .
Consider now the functional

Fp,ln (g, w) :=

∫
Ω

wgp ln gdν +

(∫
Ω

wgdν

)p
ln

(∫
Ω

wgdν

)
(3.44)

−
(∫

Ω

wgdν

)p ∫
Ω

w ln gdν − ln

(∫
Ω

wgdν

)∫
Ω

wgpdν,

provided that p > 0 and g : Ω → (0,∞) is ν-measurable and such that g, gp, ln g, gp ln g ∈
Lw (Ω, ν) .
If we take the function Ψ (t) = ln t, t ∈ [m,M ] ⊂ (0,∞) , then supt∈[m,M ] |Ψ′ (t)| = 1

m .

Using Corollary 3.6 for the functions Φ (t) = tp and Ψ (t) = ln t for p ∈ R\ {0} we can state the
following result as well:
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Proposition 3.2. Let g : Ω → [m,M ] ⊂ (0,∞) be ν-measurable and p ∈ R\ {0} . Then we have the
inequality

(3.45) |Fp,ln (g, w)| ≤ 1

4m
(M −m)

2
∆p (m,M) .

We have the following result:

Theorem 3.4. Let Φ, Ψ : I → R be two measurable functions such that there exists the real constants
γ, Γ with

(3.46) γ ≤ Φ (t)− Φ (s)

Ψ (t)−Ψ (s)
≤ Λ

for a.e. t, s ∈ I with t 6= s. If g : Ω→ I is ν-measurable and such that g,Φ◦g,Ψ◦g, (Φ ◦ g)
2
, (Ψ ◦ g)

2 ∈
Lw (Ω, ν) , then we have the inequalities

(3.47) γF (Ψ; g, w) ≤ F (Φ,Ψ; g, w) ≤ ΛF (Ψ; g, w) .

Proof. My multiplying (3.46) with (Ψ (t)−Ψ (s))
2 ≥ 0 we get

γ (Ψ (t)−Ψ (s))
2 ≤ [Φ (t)− Φ (s)] [Ψ (t)−Ψ (s)] ≤ Λ (Ψ (t)−Ψ (s))

2

for a.e. t, s ∈ I .
This implies

γw (x)

(
Ψ (g (x))−Ψ

(∫
Ω

wgdν

))2

(3.48)

≤ w (x)

[
Φ (g (x))− Φ

(∫
Ω

wgdν

)][
Ψ (g (x))−Ψ

(∫
Ω

wgdν

)]
≤ Λw (x)

(
Ψ (g (x))−Ψ

(∫
Ω

wgdν

))2

for ν-a.e. x ∈ Ω.
Integrating the inequality (3.48) on Ω and making use of the equality (3.26) we deduce the
desired result (3.47). �

Corollary 3.7. Let Φ, Ψ : [m,M ] → R be continuous on [m,M ] and differentiable on (m,M) .
Assume that Ψ′ (t) 6= 0 for any t ∈ (m,M) and

inf
t∈(m,M)

(
Φ′ (t)

Ψ′ (t)

)
> −∞, sup

t∈(m,M)

(
Φ′ (t)

Ψ′ (t)

)
<∞.

If g : Ω → I is ν-measurable and such that g, Φ ◦ g, Ψ ◦ g, (Φ ◦ g)
2
, (Ψ ◦ g)

2 ∈ Lw (Ω, ν) , then we
have the inequalities

inf
t∈(m,M)

(
Φ′ (t)

Ψ′ (t)

)
F (Ψ; g, w) ≤ F (Φ,Ψ; g, w)(3.49)

≤ sup
t∈(m,M)

(
Φ′ (t)

Ψ′ (t)

)
F (Ψ; g, w) .

Proof. By Cauchy’s mean value theorem, for any t, s ∈ [m,M ] with t 6= s there exists a c between t
and s such that

Φ (t)− Φ (s)

Ψ (t)−Ψ (s)
=

Φ′ (c)

Ψ′ (c)
.



118 S. S. Dragomir

Therefore, for any t, s ∈ [m,M ] with t 6= s we have

inf
t∈(m,M)

(
Φ′ (t)

Ψ′ (t)

)
≤ Φ (t)− Φ (s)

Ψ (t)−Ψ (s)
≤ sup
t∈(m,M)

(
Φ′ (t)

Ψ′ (t)

)
.

By applying Theorem 3.4 for γ = inft∈(m,M)

(
Φ′(t)
Ψ′(t)

)
and Γ = supt∈(m,M)

(
Φ′(t)
Ψ′(t)

)
we get the

desired result (3.49). �

Remark 3.4. We observe that if Φ, Ψ : I → R are two measurable functions such that there exists the
positive constant Θ with

(3.50)
∣∣∣∣Φ (t)− Φ (s)

Ψ (t)−Ψ (s)

∣∣∣∣ ≤ Θ

for a.e. t, s ∈ I with t 6= s and g : Ω → I is ν-measurable and such that g, Φ ◦ g, Ψ ◦ g,
(Φ ◦ g)

2
, (Ψ ◦ g)

2 ∈ Lw (Ω, ν) , then we have the inequalities

(3.51) |F (Φ,Ψ; g, w)| ≤ ΘF (Ψ; g, w) .

Moreover, if Φ, Ψ are as in Corollary 3.7, then we have

|F (Φ,Ψ; g, w)| ≤ sup
t∈(m,M)

∣∣∣∣Φ′ (t)Ψ′ (t)

∣∣∣∣F (Ψ; g, w) .

In the case of synchronous functions we can prove the following result as well:

Theorem 3.5. Let Φ, Ψ : [m,M ] → R be two synchronous functions on [m,M ] and w ≥ 0 a.e. on Ω
with

∫
Ω
wdν = 1. If g : Ω → [m,M ] is ν-measurable and such that g, Φ ◦ g, Ψ ◦ g, (Φ ◦ g) (Ψ ◦ g) ,

|Φ| ◦ g, |Ψ| ◦ g, (|Φ| ◦ g) (|Ψ| ◦ g) ∈ Lw (Ω, ν) , then

F (Φ,Ψ; g, w)(3.52)

≥ max {|F (|Φ| ,Ψ; g, w)| , |F (Φ, |Ψ| ; g, w)| , |F (|Φ| , |Ψ| ; g, w)|} ≥ 0.

Proof. We use the continuity property of the modulus, namely

|a− b| ≥ ||a| − |b|| , a, b ∈ R.

Since Φ, Ψ are synchronous, then[
Φ (g (x))− Φ

(∫
Ω

wgdν

)][
Ψ (g (x))−Ψ

(∫
Ω

wgdν

)]
(3.53)

=

∣∣∣∣Φ (g (x))− Φ

(∫
Ω

wgdν

)∣∣∣∣ ∣∣∣∣Ψ (g (x))−Ψ

(∫
Ω

wgdν

)∣∣∣∣
≥



∣∣|Φ (g (x))| −
∣∣Φ (∫

Ω
wgdν

)∣∣∣∣ ∣∣Ψ (g (x))−Ψ
(∫

Ω
wgdν

)∣∣∣∣Φ (g (x))− Φ
(∫

Ω
wgdν

)∣∣ ∣∣|Ψ (g (x))| −
∣∣Ψ (∫

Ω
wgdν

)∣∣∣∣∣∣|Φ (g (x))| −
∣∣Φ (∫

Ω
wgdν

)∣∣∣∣ ∣∣|Ψ (g (x))| −
∣∣Ψ (∫

Ω
wgdν

)∣∣∣∣
=



∣∣(|Φ (g (x))| −
∣∣Φ (∫

Ω
wgdν

)∣∣) (Ψ (g (x))−Ψ
(∫

Ω
wgdν

))∣∣∣∣(Φ (g (x))− Φ
(∫

Ω
wgdν

)) (
|Ψ (g (x))| −

∣∣Ψ (∫
Ω
wgdν

)∣∣)∣∣∣∣(|Φ (g (x))| −
∣∣Φ (∫

Ω
wgdν

)∣∣) (|Ψ (g (x))| −
∣∣Ψ (∫

Ω
wgdν

)∣∣)∣∣
for any x ∈ Ω.
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By using the identity (3.26) and the first branch in (3.53) we have

F (Φ,Ψ; g, w)

=

∫
Ω

w (x)

[
Φ (g (x))− Φ

(∫
Ω

wgdν

)][
Ψ (g (x))−Ψ

(∫
Ω

wgdν

)]
dν (x)

≥
∫

Ω

w (x)

∣∣∣∣(|Φ (g (x))| −
∣∣∣∣Φ(∫

Ω

wgdν

)∣∣∣∣)(Ψ (g (x))−Ψ

(∫
Ω

wgdν

))∣∣∣∣ dν (x)

≥
∣∣∣∣∫

Ω

w (x)

(
|Φ (g (x))| −

∣∣∣∣Φ(∫
Ω

wgdν

)∣∣∣∣)(Ψ (g (x))−Ψ

(∫
Ω

wgdν

))
dν (x)

∣∣∣∣
= |F (|Φ| ,Ψ; g, w)| ,

which proves the first part of (3.52).
The second and third part of (3.52) can be proved in a similar way and the details are omitted.

�

For the natural numbers n, m ≥ 1 we consider the functions Φ (t) = t2n+1 and Ψ (t) = t2m+1

for real numbers t ∈ R. These functions are monotonic increasing on R. If g : Ω → R is ν-
measurable and such that g, g2n+1, g2m+1, g2m+2n+2 ∈ Lw (Ω, ν) , then by (3.52) we have the
inequality

F
(

(·)2n+1
, (·)2m+1

; g, w
)

(3.54)

≥ max
{∣∣∣F (|·|2n+1

, (·)2m+1
; g, w

)∣∣∣ ,∣∣∣F ((·)2n+1
, |·|2m+1

; g, w
)∣∣∣ , ∣∣∣F (|·|2n+1

, |·|2m+1
; g, w

)∣∣∣} (≥ 0.)

4. APPLICATIONS FOR f -DIVERGENCES

Let (X,A) be a measurable space satisfying |A| > 2 and µ be a σ-finite measure on (X,A) . Let
P be the set of all probability measures on (X,A) which are absolutely continuous with respect
to µ. For P, Q ∈ P , let p = dP

dµ and q = dQ
dµ denote the Radon-Nikodym derivatives of P and Q

with respect to µ.
Two probability measures P, Q ∈ P are said to be orthogonal and we denote this by Q ⊥ P if

P ({q = 0}) = Q ({p = 0}) = 1.

Let f : [0,∞)→ (−∞,∞] be a convex function that is continuous at 0, i.e., f (0) = limu↓0 f (u) .
In 1963, I. Csiszár [3] introduced the concept of f -divergence as follows.

Definition 4.1. Let P, Q ∈ P . Then

(4.55) If (Q,P ) =

∫
X

p (x) f

[
q (x)

p (x)

]
dµ (x) ,

is called the f -divergence of the probability distributions Q and P.

Remark 4.5. Observe that, the integrand in the formula (4.55) is undefined when p (x) = 0. The way
to overcome this problem is to postulate for f as above that

(4.56) 0f

[
q (x)

0

]
= q (x) lim

u↓0

[
uf

(
1

u

)]
, x ∈ X.
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We now give some examples of f -divergences that are well-known and often used in the liter-
ature (see also [2]).
For f continuous convex on [0,∞) we obtain the ∗-conjugate function of f by

f∗ (u) = uf

(
1

u

)
, u ∈ (0,∞)

and
f∗ (0) = lim

u↓0
f∗ (u) .

It is also known that if f is continuous convex on [0,∞) then so is f∗.
The following two theorems contain the most basic properties of f -divergences. For their
proofs we refer the reader to Chapter 1 of [17] (see also [2]).

Theorem 4.6 (Uniqueness and Symmetry Theorem). Let f, f1 be continuous convex on [0,∞). We
have

If1 (Q,P ) = If (Q,P ) ,

for all P, Q ∈ P if and only if there exists a constant c ∈ R such that

f1 (u) = f (u) + c (u− 1) ,

for any u ∈ [0,∞).

Theorem 4.7 (Range of Values Theorem). Let f : [0,∞) → R be a continuous convex function on
[0,∞).
For any P, Q ∈ P , we have the double inequality

(4.57) f (1) ≤ If (Q,P ) ≤ f (0) + f∗ (0) .

(i) If P = Q, then the equality holds in the first part of (4.57).
If f is strictly convex at 1, then the equality holds in the first part of (4.57) if and only if P = Q;

(ii) If Q ⊥ P, then the equality holds in the second part of (4.57).
If f (0) + f∗ (0) <∞, then equality holds in the second part of (4.57) if and only if Q ⊥ P.

The following result is a refinement of the second inequality in Theorem 4.7 (see [2, Theorem
3]).

Theorem 4.8. Let f be a continuous convex function on [0,∞) with f (1) = 0 (f is normalised) and
f (0) + f∗ (0) <∞. Then

(4.58) 0 ≤ If (Q,P ) ≤ 1

2
[f (0) + f∗ (0)]V (Q,P )

for any Q, P ∈ P .

For other inequalities for f -divergence see [1], [4]-[15].
The concept of f -divergence can be extended in a similar way for non-convex functions.

Theorem 4.9. Let f, h : [0,∞)→ R be synchronous and measurable on [0,∞). For any P, Q ∈ P we
have

(4.59) Ifh (Q,P ) ≥ f (1) Ih (Q,P ) + h (1) If (Q,P )− f (1)h (1) .

Moreover, if f is normalised, then

(4.60) Ifh (Q,P ) ≥ h (1) If (Q,P ) .

If both f and h are normalised, then

(4.61) Ifh (Q,P ) ≥ 0.
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Proof. If we write the inequality (2.4) for the synchronous functions (Φ,Ψ) = (f, h), w = p,
g = q

p , Ω = X and ν = µ we have∫
X

pf

(
q

p

)
h

(
q

p

)
dµ+ f

(∫
X

qdµ

)
h

(∫
X

qdµ

)
≥ f

(∫
X

qdµ

)∫
X

ph

(
q

p

)
dµ+ h

(∫
X

qdµ

)∫
X

pf

(
q

p

)
dµ

that is equivalent to the desired result (4.59).
The rest is obvious. �

An important divergence in Information Theory is the Kullback-Leibler divergence obtained for
the decreasing convex function f (t) = − ln t, t > 0 and defined by

KL (P,Q) =

∫
X

p ln

(
p

q

)
dµ,

for any P, Q ∈ P .
If h : [0,∞)→ R is a decreasing function with h (1) ≥ 0, then by (4.60) we have the inequality

(4.62) I−h ln(·) (Q,P ) ≥ h (1)KL (P,Q) ≥ 0

for any P, Q ∈ P .
In particular, we have the following inequalities

(4.63) I−(·)p ln(·) (Q,P ) ≥ KL (P,Q) ≥ 0

and

(4.64) I− exp(−α·) ln(·) (Q,P ) ≥ KL (P,Q) exp (−α) ≥ 0

for p, α > 0.

Theorem 4.10. Let f, h : [0,∞) → R be Lipschitzian on [0,∞) with the constants L and K, respec-
tively. For any P, Q ∈ P we then have

(4.65) |Ifh (Q,P )− f (1) Ih (Q,P )− h (1) If (Q,P ) + f (1)h (1)| ≤ KLχ2 (Q,P )

where

χ2 (Q,P ) =
1

2

∫
X

p

(
q

p
− 1

)2

dµ =

∫
X

q2

p
dµ− 1

is Karl Pearson’s χ2-divergence.
Moreover, if f is normalised, then

(4.66) |Ifh (Q,P )− h (1) If (Q,P )| ≤ KLχ2 (Q,P ) .

If both f and h are normalised, then

(4.67) |Ifh (Q,P )| ≤ KLχ2 (Q,P ) .
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Proof. If we write the inequality (3.25) for the functions (Φ,Ψ) = (f, h), w = p, g = q
p , Ω = X

and ν = µ we have∣∣∣∣∫
X

pf

(
q

p

)
h

(
q

p

)
dµ+ f

(∫
X

qdµ

)
h

(∫
X

qdµ

)
(4.68)

−f
(∫

X

qdµ

)∫
X

ph

(
q

p

)
dµ− h

(∫
X

qdµ

)∫
X

pf

(
q

p

)
dµ

∣∣∣∣
≤ LK

(∫
X

q2

p
dµ− 1

)
,

that is equivalent to the desired result (4.65).
The rest is obvious. �

If some bounds for the likelihood ratio are known, then we can state the following results as
well.

Theorem 4.11. Let P, Q ∈ P such that for 0 < r < 1 < R we have

(4.69) r ≤ q

p
≤ R µ-a.e. on X.

If f, h : [r,R]→ R are Lipschitzian on [r,R] with the constants L and K, then we have

|Ifh (Q,P )− f (1) Ih (Q,P )− h (1) If (Q,P ) + f (1)h (1)|(4.70)

≤ 1

4
(R− r)2

KL.

Moreover, if f is normalised, then

(4.71) |Ifh (Q,P )− h (1) If (Q,P )| ≤ 1

4
(R− r)2

KL.

If both f and h are normalised, then

(4.72) |Ifh (Q,P )| ≤ 1

4
(R− r)2

KL.

If we consider the convex function g (t) = (t− 1) ln t, then this function generates the Jeffreys
divergence measure

J (P,Q) :=

∫
X

(p− q) (ln p− ln q) dµ

where P, Q ∈ P .
If we take f (t) = t−1, h (t) = ln t then f is Lipschitzian with the constant 1 and h is Lipschitzian
with the constant 1

r on [r,R] and by (4.72) we have

(4.73) 0 ≤ J (P,Q) ≤ 1

4r
(R− r)2

provided that P, Q ∈ P satisfy the condition (4.69).
The Neyman Chi-square distance is defined by

χ2
N (Q,P ) :=

1

2

∫
X

(p− q)2

q
dµ =

∫
X

p2

q
dµ− 1 = χ2 (P,Q)

and generated by the convex function g (t) = (t−1)2

2t , t > 0.
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Now, consider the functions f (t) = 1
2 (t− 1)

2 and h (t) = 1
t defined on the interval [r,R] . Then

f ′ (t) = t− 1 and

max
t∈[r,R]

|f ′ (t)| = max {1− r,R− 1} =
R− r

2
+

∣∣∣∣r +R

2
− 1

∣∣∣∣ .
Also h′ (t) = − 1

t2 and

max
t∈[r,R]

|h′ (t)| = 1

r2
.

Then from (4.71) we have

(4.74)
∣∣χ2
N (Q,P )− χ2 (Q,P )

∣∣ ≤ 1

4

(
R

r
− 1

)2(
R− r

2
+

∣∣∣∣r +R

2
− 1

∣∣∣∣)
provided that P, Q ∈ P satisfy the condition (4.69).
Similar results may be obtained by utilizing (3.49), however the details are not presented here.
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