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A REGRESSION TYPE ESTIMATOR FOR MEAN ESTIMATION
UNDER RANKED SET SAMPLING ALONGSIDE THE

SENSITIVITY ISSUE

USMAN SHAHZAD, MUHAMMAD HANIF, NURSEL KOYUNCU,
AND AMELIA VICTORIA GARCIA LUENGO

Abstract. Koyuncu and Kadilar [7] introduced a family of estimators under
simple random sampling. In this article; we adapt these estimators for ranked
set sampling. Further, we suggest a regression-type estimator of population
mean utilizing available supplementary information under ranked set sampling
scheme alongside the sensitivity issue when the variate of interest is sensitive.
The bias and mean square error of the suggested estimator is determined theo-
retically for both situations. A simulation study has been done to demonstrate
the percentage relative effi ciency of proposed estimators over the adapted and
reviewed estimators.

1. Introduction

In sampling survey, the supplementary information is mostly utilized to enhance
precision of the estimators due to correlation between the study and the supple-
mentary variables. Many authors including Sisodia and Dwivedi [17], Singh and
Kakran [14], Upadhyaya and Singh [20], Tailor and Sharma [19], Koyuncu and
Kadilar [7] and Shahzad [13] have developed some estimators for estimation of the
population mean Ȳ under simple random sampling (SRS) scheme. But consider
a genuine circumstances where the study variate can’t be effectively measured or
is excessively costly, making it impossible to do as such, however can be ranked
effectively at no cost or extremely little cost. It is realized that the estimate of the
population mean utilizing ranked set sampling (RSS) is more productive than the
one acquired utilizing SRS.
McIntyre [8] introduced the concept of RSS. Many authors such as Samawi and

Muttlak [12], Bouza [1], Kadilar et al. [5] and Mehta and Mandowara [9] use judg-
mental RSS where ranking is done with respect to auxiliary variable X. Taking
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motivation from these we shall adapt Koyuncu and Kadilar [7] family of estimators
under RSS. We shall also propose a new regression type estimator for the estima-
tion of mean. Further, we shall discussed all the reviewed, adapted and proposed
estimators for the scramble response utilizing different scrambled response models
in upcoming sections.
In RSS scheme, m independent random set, each of size m are selected with

equal probability and with replacement from the population. The units of each
random set are ranked with respect to the characteristic of the study variable or
auxiliary variable. Then the smallest unit is selected from the first ordered set and
second smallest unit is selected from the second ordered and it is continued until
the unit with largest value is chosen from the mth set. This cycle maybe repeated
r times, so mr = n units have been measured during this process. In this paper we
assumed that we rank on the auxiliary variable, let (y[i], x(i)) denote ith judgment
ordering in the ith set for the study variable and ith set for the auxiliary variable.
Further let ȳ[n] = 1

n

∑n
i=1 y[i], x̄(n) = 1

n

∑n
i=1 x(i) are the sample means under RSS

and Ȳ , X̄ are population means for the study and auxiliary variables, respectively
.
To obtain the bias and mean squared error (MSE) expressions, let us define

ȳ[n] = (1 + eo)Ȳ , x̄(n) = (1 + e1)X̄. The expectations of e terms can be written as
follows:
E(eo) = E(e1) = 0
E(e2o) = λC2y −W 2

y[i]
= c0,

E(e21) = λC2x −W 2
x(i)

= c1,
E(eoe1) = λρCyCx −Wyx(i) = c01.
where

W 2
y[i]

=
1

m2rȲ 2

m∑
i=1

τ2y[i], W
2
x(i)

=
1

m2rX̄2

m∑
i=1

τ2x(i), Wyx(i) =
1

m2rX̄Ȳ

m∑
i=1

τyx(i), λ =
1

n
.

Further τyx(i) = (µy[i] − Ȳ )(µx(i) − X̄), τx(i) = (µx(i) − X̄), τy[i] = (µy[i] − Ȳ ).
Note that (µy[i], µx(i)) belongs to some specific distribution, depends upon order
statistic.
The traditional ratio estimator in RSS is given by

t̂1R.rss = ȳ[n]

[
X̄

x̄(n)

]
.

The (MSE) of t̂1R.rss is

MSE(t̂1R.rss) = Ȳ 2 [c0 + c1 − 2c01] .

Mehta and Mandowara [9] adapted Sisodia and Dwivedi [17], Singh and Kakran
[14], Upadhyaya and Singh [20] estimators under RSS as follows

t̂1SD.rss = ȳ[n]

[
X̄ + Cx
x̄(n) + Cx

]
,
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t̂1SK.rss = ȳ[n]

[
X̄ + β2(x)

x̄(n) + β2(x)

]
,

t̂1UP1.rss = ȳ[n]

[
X̄Cx + β2(x)

x̄(n)Cx + β2(x)

]
,

t̂1UP2.rss = ȳ[n]

[
x̄(n)Cx + β2(x)

X̄Cx + β2(x)

]
.

The MSEs’of these estimators are as follows

MSE(t̂1SD.rss) = Ȳ 2
[
δ2SD.rssc0 + c1 − 2δSD.rssc01

]
,

MSE(t̂1SK.rss) = Ȳ 2
[
δ2SK.rssc0 + c1 − 2δSK.rssc01

]
,

MSE(t̂1UP1.rss) = Ȳ 2
[
δ2UP1.rssc0 + c1 − 2δUP1.rssc01

]
,

MSE(t̂1UP2.rss) = Ȳ 2
[
δ2UP2.rssc0 + c1 + 2δUP2.rssc01

]
where δSD.rss =

X̄

X̄ + Cx
, δSK.rss =

X̄

X̄ + β2(x)
, δUP1.rss = δUP2.rss =

X̄Cx
X̄Cx + β2(x)

.

The usual difference type estimator in RSS is given by

t̂1D.rss = ȳ[n] + d(X̄ − x̄(n)).

The MSE of t̂1D.rss is

MSE(t̂1D.rss) = Ȳ 2c0 + d2X̄2c1 − 2X̄Ȳ dc01.

The optimum value of d is

dopt =
Ȳ c01
X̄c1

.

Hence the minimum MSE after utilizing dopt is as follows

MSEmin(t̂1D.rss) = Ȳ 2
[
c0 −

c201
c1

]
. (1)

The MSEmin(t̂1D.rss) is similar to MSE of regression estimator i.e. t̂1Reg.rss =

ȳ[n] + β̂(X̄ − x̄(n)). Taking motivation from Tailor and Sharma [19], Mehta and
Mandowara [9] also introduced an estimator under RSS scheme. The minimum
MSE of their estimator was equivalent toMSEmin(t̂1D.rss). Note that when dopt is

unknown we can use sample regression coeffi cient i.e. β̂ =
λ(Ĉyx − Ŵyx(i))R̂

(Ĉ2x − Ŵ 2
x(i)

)
; see

Singh et al. [15], where R̂ =
ȳ[n]

x̄(n)
.
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2. Adapted family of estimators under RSS

We adapt Koyuncu and Kadilar [7] family of estimators to RSS scheme as follows

t̂1kk.rss = wȳ[n]

[ (
X̄a+ b

)
α
(
x̄(n)a+ b

)
+ (1− α)

(
X̄a+ b

)]g (2)

where a(6= 0), b are either real numbers of functions of the known parameters of
the auxiliary variable and g, α, w are suitable chosen scalars such that the MSE
of t̂1kk.rss is minimum. We can generate some new estimators from t̂1kk.rss using
suitable scalars as given in Table1.

Table 1. Family members of t̂1kk.rss for (α = 1)

Est. a b

t̂1kk.rss1 = wȳ[n]

[
X̄

x̄(n)

]
1 0

t̂1kk.rss2 = wȳ[n]

[
X̄ + Cx
x̄(n) + Cx

]
1 Cx

t̂1kk.rss3 = wȳ[n]

[
X̄β2(x) + Cx
x̄(n)β2(x) + Cx

]
β2(x) Cx

t̂1kk.rss4 = wȳ[n]

[
X̄Cx + β2(x)

x̄(n)Cx + β2(x)

]
Cx β2(x)

t̂1kk.rss5 = wȳ[n]

[
X̄β1(x) + Sx
x̄(n)β1(x) + Sx

]
β1(x) Sx

t̂1kk.rss6 = wȳ[n]

[
X̄β2(x) + Sx
x̄(n)β2(x) + Sx

]
β2(x) Sx

t̂1kk.rss7 = wȳ[n]

[
X̄ + ρ

x̄(n) + ρ

]
1 ρ

t̂1kk.rss8 = wȳ[n]

[
X̄ + β2(x)

x̄(n) + β2(x)

]
1 β2(x)

Note that Kadilar et al. [5] estimator is also a member of t̂1kk.rss family, denoted
by t̂1kk.rss1 in Table [1]. The MSE of t̂1kk.rss is given by

MSE(t̂1kk.rss) = Ȳ 2 + w2δBkk
− 2wδAkk

,

where

δAkk.rss
= Ȳ 2

[
1 +

g(g + 1)

2
α2v2c1 − gαvco1

]
,

δBkk.rss
= Ȳ 2

[
1 + co +

(
2g2 + g

)
α2v2c1 − 4gαvco1

]
.
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which is minimum for

wopt =
δAkk.rss

δBkk.rss

.

The minimum MSE of t̂1kk.rss is given by

MSEmin(t̂1kk.rss) =

[
Ȳ 2 −

δA2
kk.rss

δBkk.rss

]
. (3)

3. Suggested regression type estimator under RSS

We propose the following estimator under RSS as follows

t̂1N = w1

{
ȳ[n] + β̂(X̄ − x̄(n))

}
+ w2

(
X̄ − x̄

)
, (4)

where w1 and w2 are the two unknown weights. Expanding right hand side of t̂1N ,
we obtain:

t̂1N − Ȳ = w1Ȳ
{

1 + eo −R′β̂e1
}
− w2X̄e1 − Ȳ .

The bias of t̂1N is
B(t̂1N ) = (w1 − 1)Ȳ .

The MSE of t̂1N is

MSE(t̂1N ) = Ȳ 2 + w21δAN
+ w22δBN

+ 2w1w2δCN − 2w1δDN
,

where

δAN
= Ȳ 2

[
1 + co +R

′2β2c1 − 2β2R
′
co1

]
,

δBN
= X̄2c1,

δCN = X̄Ȳ [βR
′
c1 − co1],

δDN
= Ȳ 2,

R
′

=
X̄

Ȳ
.

which is minimum for

wopt1 =

[
δBN

δDN

δAN
δBN

− δ2CN

]
,

and

wopt2 =

[
− δCN δDN

δAN
δBN

− δ2CN

]
.

Using optimum values, the minimum MSE of t̂1N is given by

MSEmin(t̂1N ) =

[
Ȳ 2 −

δBN
δ2DN

δAN
δBN

− δ2CN

]
. (5)
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4. Sensitivity issue under RSS

The questions related to drug addiction, reckless driving, illegal income and in-
discriminate gambling are known as sensitive questions. In these circumstances, we
can’t expect a truthful direct response from people. Many authors like Eichhron
and Hayre [3], Pollock and Bek [10], Saha [11] and Diana and Perri [2] have studied
the mean of a sensitive study variate without utilizing supplementary information.
Further, Sousa et al. [18] introduced traditional mean per unit estimator for the
case of scramble response. Gupta et al. [4] introduced traditional regression and
generalized regression estimator assuming the problem of sensitivity. Koyuncu et
al. [6] also done the work in this context by introducing exponential-type estima-
tors.
Suppose Z be the response of study variable Y . Than to obtain the MSE expres-
sions, let us define z̄[n] = (1 + ez)Z̄. Using these terms the expectaions are given by
E(ez) = 0,
E(e2z) = λC2z −W 2

z[i]
= cz,

E(eze1) = λρzxCzCx −Wzx(i) = cz1.

where W 2
z[i]

=
1

m2rZ̄2
∑m

i=1 τ
2
z[i], Wzx(i) =

1

m2rX̄Z̄

∑m
i=1 τzx(i), λ =

1

n
.

Further τzx(i) = (µz[i] − Z̄)(µx(i) − X̄), τz[i] = (µz[i] − Z̄).

The estimator t̂1R.rss for the case of scrambled response is given by

ẑR.rss = z̄[n]

[
X̄

x̄(n)

]
.

The MSE of ẑR.rss is

MSE(ẑR.rss) = Z̄2 [cz + c1 − 2cz1] .

Mehta and Mandowara [9] estimators for scramble response can be written as
follows

ẑSD.rss = z̄[n]

[
X̄ + Cx
x̄(n) + Cx

]
,

ẑSK.rss = z̄[n]

[
X̄ + β2(x)

x̄(n) + β2(x)

]
,

ẑUP1.rss = z̄[n]

[
X̄Cx + β2(x)

x̄(n)Cx + β2(x)

]
,

ẑUP2.rss = z̄[n]

[
x̄(n)Cx + β2(x)

X̄Cx + β2(x)

]
.

The MSEs’of these estimators are

MSE(ẑSD.rss) = Z̄2
[
δ2SD.rsscz + c1 − 2δSD.rsscz1

]
,

MSE(ẑSK.rss) = Z̄2
[
δ2SK.rsscz + c1 − 2δSK.rsscz1

]
,
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MSE(ẑUP1.rss) = Z̄2
[
δ2UP1.rsscz + c1 − 2δUP1.rsscz1

]
,

MSE(ẑUP2.rss) = Z̄2
[
δ2UP2.rsscz + c1 + 2δUP2.rsscz1

]
.

The difference-estimator in RSS is as follows

ẑD.rss = z̄[n] + d(X̄ − x̄(n)).

The MSE of ẑD.rss is

MSE(ẑD.rss) = Z̄2cz + d2X̄2c1 − 2X̄Z̄dcz1.

The optimum value of d is

dopt =
Z̄cz1
X̄c1

.

Hence the minimum MSE after utilizing dopt is as follows

MSEmin(ẑD.rss) = Z̄2
[
cz −

c2z1
c1

]
. (6)

4.1. Adapted family of estimators for scrambled response under RSS.
The adapted family of estimators i.e. ẑkk.rss for the scramble response is as follows:

ẑkk.rss = wz̄[n]

[ (
X̄a+ b

)
α
(
x̄(n)a+ b

)
+ (1− α)

(
X̄a+ b

)]g . (7)

The definitions of the parameters in ẑkk.rss are same with t̂1kk.rss. Also one can
generate new estimators using suitable scalars from ẑkk.rss as given in Table2. The
MSE of ẑkk.rss is given by

MSE(ẑkk.rss) = Z̄2 + w2δBkk
− 2wδAkk

,

where

δAkk.rss
= Z̄2

[
1 +

g(g + 1)

2
α2v2c1 − gαvco1

]
,

δBkk.rss
= Z̄2

[
1 + cz +

(
2g2 + g

)
α2v2c1 − 4gαvco1

]
which is minimum for

wopt =
δAkk.rss

δBkk.rss

.

MSEmin(ẑkk.rss) =

[
Z̄2 −

δA2
kk.rss

δBkk.rss

]
. (8)
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Table 2. Family members of ẑkk.rss for (α = 1)

Est. a b

ẑkk.rss1 = wz̄[n]

[
X̄

x̄(n)

]
1 0

ẑkk.rss2 = wz̄[n]

[
X̄ + Cx
x̄(n) + Cx

]
1 Cx

ẑkk.rss3 = wz̄[n]

[
X̄β2(x) + Cx
x̄(n)β2(x) + Cx

]
β2(x) Cx

ẑkk.rss4 = wz̄[n]

[
X̄Cx + β2(x)

x̄(n)Cx + β2(x)

]
Cx β2(x)

ẑkk.rss5 = wz̄[n]

[
X̄β1(x) + Sx
x̄(n)β1(x) + Sx

]
β1(x) Sx

ẑkk.rss6 = wz̄[n]

[
X̄β2(x) + Sx
x̄(n)β2(x) + Sx

]
β2(x) Sx

ẑkk.rss7 = wz̄[n]

[
X̄ + ρ

x̄(n) + ρ

]
1 ρ

ẑkk.rss8 = wz̄[n]

[
X̄ + β2(x)

x̄(n) + β2(x)

]
1 β2(x)

4.2. Suggested regression type estimator for scrambled response under
RSS. The proposed estimator for the scramble response under RSS is given by

ẑN = w1

{
z̄[n] + β̂(X̄ − x̄(n))

}
+ w2

(
X̄ − x̄

)
. (9)

The bias of ẑN is

B(ẑN ) = (w1 − 1)Z̄.

The MSE of ẑN is given by

MSE(ẑN ) = Z̄2 + w21δAN
+ w22δBN

+ 2w1w2δCN − 2w1δDN
,

where

δAN
= Z̄2

[
1 + cz +R

′′2β2c1 − 2β2R
′′
co1

]
,

δBN
= X̄2c1,

δCN = X̄Z̄[βR
′′
c1 − co1],

δDN
= Z̄2,

R
′′

=
X̄

Z̄
.
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which is minimum for

wopt1 =

[
δBN

δDN

δAN
δBN

− δ2CN

]
,

and

wopt2 =

[
− δCN δDN

δAN
δBN

− δ2CN

]
.

Finally, using optimum values we obtain minimum MSE as follows

MSEmin(ẑN ) =

[
Z̄2 −

δBN
δ2DN

δAN
δBN

− δ2CN

]
. (10)

5. Simulation study

We use a real data set for simulation study available in Singh [16]. This data
set is already used by Mehta and Mandowara [9]. The data consists of agricultural
loans of all operating banks in different states of USA in 1997, where
Y : Real estate farm loans in 1997 in USA &
X : Non-real estate farm loans in 1997 in USA.

Note that in our simulation procedure we adapt Singh et al. [15] for the calcu-
lation of W 2

y[i]
, W 2

x(i)
and Wyx(i) , where

W 2
y[i]

=
1

m2r

m∑
i=1

(RDY [i]− 1)2,

W 2
x(i)

=
1

m2r

m∑
i=1

(RDX(i)− 1)2,

Wyx(i) =
1

m2r

m∑
i=1

(RDY [i]− 1)(RDX(i)− 1).

The expressions of RDY [i] are calculated as follows

RDY [1] = .25 + .08e1, RDY [2] = .50 + .08e2, RDY [3] = 1.00 + .08e3.

The expressions of RDX(i) are calculated as follows

RDX(1) = .25 + .05e1, RDX(2) = .50 + .05e2, RDX(3) = 1.00 + .05e3.

Further, ei for (i = 1, 2, 3) is normally distributed with zero mean and unit variance.
The steps of simulation the estimation of non-sensitive study variate are as fol-

lows

• Select a ranked set sample of size n = 12 using m = 3 distinct sets and
r = 4 cycles from the population containing N units.

• Estimate mean ŷ (say) through RSS.
• The whole process is repeated 3,000 times.
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• After that average MSE is calculated using MSE =

∑3000
i=1 (ŷ − Ȳ )2

3000
.

• Finally, percent relative effi ciency (PRE) is calculated as

PRE(.) =
MSE(t̂1D.rss)

MSE(.)
× 100.

For the case of sensitivity, we use
Pollock and Beck [10] model i.e. Z = Y + S2.
Eichhorn and Hayre [3] model i.e. Z = S1Y .
Saha [11] model i.e. Z = S1(Y + S2).
Diana and Perri [2] model i.e. Z = φ(Y +S2) + (1−φ)S1Y where φ ranges
[0,1]. In these models S1 and S2 are the scrambling variates. We assume
that S1 and S2 are uniformly distributed i.e. U(0, 1). Now we perform
the above mentioned simulation procedure for the scramble response by
replacing non-sensitive study variable Y with the sensitive study variable
i.e. Z. Note that all the above mentioned scrambled-response models are
applied one by one for the estimation of sensitive study variable.

Table 3. PREs for non-sensitive study variate

Est. PRE Est. PRE Est. PRE
t̂1R.rss 496.82 t̂1D.rss 100 t̂1kk.rss5 2340.71
t̂1SD.rss 501.36 t̂1kk.rss1 641.99 t̂1kk.rss6 1647.31
t̂1SK.rss 513.45 t̂1kk.rss2 647.54 t̂1kk.rss7 644.98
t̂1UP.rss1 510.29 t̂1kk.rss3 643.21 t̂1kk.rss8 662.28
t̂1UP.rss2 497.82 t̂1kk.rss4 658.42 t̂1N 4812.21

Table 4. PREs for sensitive study variate using Pollock and Bek
model (1976)

Est. PRE Est. PRE Est. PRE
ẑR.rss 442.45 ẑD.rss 100 ẑkk.rss5 933.63
ẑSD.rss 443.82 ẑkk.rss1 563.25 ẑkk.rss6 791.95
ẑSK.rss 447.46 ẑkk.rss2 564.66 ẑkk.rss7 564.17
ẑUP.rss1 446.51 ẑkk.rss3 563.56 ẑkk.rss8 568.39
ẑUP.rss2 442.76 ẑkk.rss4 567.41 ẑN 1093.47

6. Conclusion

In this article we have suggested regression-type estimator in ranked set sam-
pling and extended our work for the case of scramble response. The results of
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Table 5. PREs for sensitive study variate using Eichhorn and
Hayre model (1983)

Est. PRE Est. PRE Est. PRE
ẑR.rss 496.82 ẑD.rss 100 ẑkk.rss5 2340.71
ẑSD.rss 501.36 ẑkk.rss1 641.99 ẑkk.rss6 1647.31
ẑSK.rss 513.45 ẑkk.rss2 647.54 ẑkk.rss7 644.98
ẑUP.rss1 510.29 ẑkk.rss3 643.21 ẑkk.rss8 662.28
ẑUP.rss2 497.82 ẑkk.rss4 658.42 ẑN 4812.21

Table 6. PREs for sensitive study variate using Saha model (2007)

Est. PRE Est. PRE Est. PRE
ẑR.rss 486.44 ẑD.rss 100 ẑkk.rss5 1597.63
ẑSD.rss 489.29 ẑkk.rss1 615.62 ẑkk.rss6 1202.69
ẑSK.rss 496.88 ẑkk.rss2 618.93 ẑkk.rss7 617.56
ẑUP.rss1 494.89 ẑkk.rss3 616.35 ẑkk.rss8 627.72
ẑUP.rss2 487.07 ẑkk.rss4 625.42 ẑN 2653.81

Table 7. PREs for sensitive study variate using Diana and Perri
model (2010)

φ = 0.25 φ = 0.50 φ = 0.75
Est. PRE PRE PRE
ẑR.rss 515.48 490.26 519.88
ẑSD.rss 518.57 492.45 521.80
ẑSK.rss 526.79 498.25 526.89
ẑUP1.rss 524.64 496.73 525.56
ẑUP2.rss 516.17 490.75 520.31
ẑD.rss 100 100 100
ẑkk.rss1 651.80 607.29 639.74
ẑkk.rss2 655.39 609.70 641.76
ẑkk.rss3 652.59 607.82 640.19
ẑkk.rss4 662.42 614.41 645.72
ẑkk.rss5 1711.18 1298.61 1194.75
ẑkk.rss6 1285.40 1023.71 977.52
ẑkk.rss7 653.90 608.80 641.07
ẑkk.rss8 664.91 616.08 647.12
ẑN 2866.17 1825.57 1465.23

the simulation study, available in Table [3,4,5,6 & 7], show the superiority of sug-
gested estimator over Kadilar et al. [5], Koyuncu and Kadilar [7] and Mehta and
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Mandowara [9] estimators. Hence, it is recommended to utilize the suggested esti-
mator.
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