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 Graphical Abstract 

This article proposes a prognostic and diagnostic coupling framework based on the OSA-CBM for photovoltaic 

generators (PVG).  

 
Figure. The seven layers of OSA-CBM architecture 

Aim 

This paper proposes a method for estimating the lifespan of photovoltaic modules using an OSA / CBM architecture. 

Design &Methodology 

For this, we apply a diagnostic - prognosis coupling strategy on the monitoring of real data from several power plants.  

 Originality 

The real-time calculation of the lifespan of photovoltaic power plants facilitated by the diagnostic-prognosis coupling 

applied to real data.  

Findings 

The framework allows real-time knowledge of the performance of monitored photovoltaic plants.  

Conclusion 

Based on the test results, the OSA-CBM coupling algorithm effectively implements various prognostic, diagnostic and 

monitoring functions to present information and recommendations on the “Presentation” layer to the human user. 

However, the effectiveness of this framework depends on the functions involved (speed, robustness, precision.  
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dayalı Prognostik ve Teşhis Birleştirme Çerçevesi 
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1MIS laboratory, University of Picardie Jules Verne, Amiens, France 

2Department of Mechanical, Mechatronics and Manufacturing Engineering, University of Engineering and Technology, Lahore 
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ÖZ 

Bu makale, fotovoltaik jeneratörler (PVG) için OSA-CBM'ye (Koşul Bazlı Bakım için Açık Sistem Mimarisi) dayalı bir prognostik 

ve tanısal birleştirme çerçevesi önermektedir. İlk olarak, bu çalışma bazı PVG performans bozulma çalışmalarını ve temel bozulma 

göstergelerini sunar. Edinim sisteminden kaynaklanan sapmaları ve hataları önlemek için Loess veri analizi yöntemiyle ilişkili 

bozulma göstergesi olarak Düzeltilmiş performans oranını (CPR) seçiyoruz. Ardından, teşhis ve prognostik süreçleri birleştirmenin 

ana yöntemleri açıklanır: Watch Dog, Teşhis Sistemlerinde Prognostik İyileştirmeler (PEDS), Entegre Öngörücü Bakım Sistemleri 

(SIMP) ve OSA-CBM. Yedi özel katmana sahip bu son strateji, her iki sürecin birlikte çalışmasına izin verir. İzleme sistemi, 

PVG'lerin sağlık göstergelerini sağlar ve sonuçlar insan operatöre iade edilir. CPR'nin yıllık azaltma oranı ve azaltma oranı (Rd), 

önerilen birleştirme çerçevesini kontrol etmemize izin verir. Bu yaklaşım, IEA PVPS Task13 veritabanından dört fotovoltaik 

kurulumda toplanan deneysel verilerle doğrulanmıştır. 

Anahtar Kelimeler: Çerçeve, prognostik, teşhis, düzeltilmiş performans oranı, loess. 

Prognostic and Diagnostic Coupling Framework Based 

on OSA-CBM strategy for Photovoltaic Generators 

ABSTRACT 

This article proposes a prognostic and diagnostic coupling framework based on the OSA-CBM (Open System Architecture for 

Condition Based Maintenance) for photovoltaic generators (PVG). At First, this work presents some PVGs performance 

degradation studies and the main degradation indicators. We select the Corrected performance ratio (CPR) as degradation indicator 

associated with the Loess data analysis method to avoid aberrations and errors from acquisition system. Then, the main methods 

of coupling diagnostic and prognostic processes are explained: Watch Dog, Prognostic Enhancements to Diagnosis Systems 

(PEDS), Integrated Predictive Maintenance Systems (SIMP) and OSA-CBM. This last strategy with its seven specialized layers 

permits the interoperability of both processes. The monitoring system provides health indicators of PVGs and results are returned 

to human operator. The annual reduction rate of the CPR and reduction rate (Rd), allows us controlling the proposed coupling 

framework. This approach is validated with experimental data collected on four photovoltaic installations from the IEA PVPS 

Task13 database. 

Keywords: Framework, prognostic, diagnostic, corrected performance ratio, loess.

1. INTRODUCTION  

Now-a-days the future of renewable energies insured and 

unchallenged. Among them, solar energy is based on 

photovoltaic panels (PV) whose performance has 

gradually increased. However, the electrical production 

of many photovoltaic panels has not been monitored with 

a prognostic function, or with diagnostic function, or a 

coupling of both to ensure better efficiency. Without this 

type of control function, the occurrence of faults will not 

induce only power losses, but it could  

also lead to safety risks, which would reduce the 

reliability of the PV system. The first maintenance 

strategies to optimize the availability of a system were 

based on conditional or preventive maintenance. The 

implementation of the monitoring allowed access to  

quantities informing permanently on the state of health of 

the system through indicators of degradation. With them, 

it becomes possible to evaluate the performance and 

monitor its degradation until the appearance of a failure. 

If the diagnostic process allows the detection and 

localization of faults, the prognostic allows following the 

degradation to identify the moment of failure and to 

know the remaining life of the equipment. Linking 

diagnostic and prognostic processes is an innovative 

advancement in maintenance strategies. 

Indeed, all information from the two processes on the 

state of health of the system is used to improve support 

for maintenance decisions. There are several approaches 

of coupling (WatchDog, PEDS, SIMP, OSA-CBM ...) 

allowing this interoperability; they are based on the 
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nature of the information available but also on the 

methods used by the two processes. These coupling 

methods will be developed with the respective features 

and advances. Then, a coupling strategy following the 

Open System Architecture for Condition Based 

Maintenance is proposed. In this strategy, the reduction 

rate Rd of the CPR degradation indicator is applied to 

control the coupling algorithm between the two 

processes. Our approach is tested on monitoring data 

from four PV plants of IEA PVPS task13 database. 

 

2. EVALUATION OF PVGS DEGRADATION  

The selection of  degradation indicator representing the 

performance of a PV installation is treated by [3] [4] who 

implement the Performance Ratio (PR) indicator to know 

the evolution of the performance of a PV plant (equation 

1). Moreover, the adapted form of PR, the CPR takes into 

account both the effects of temperature and irradiance 

(equation 2) [5]. Data acquisitions depend on multiple 

hazards that can interfere with data readability. It is 

important to correct acquisitions fluctuations without 

affecting measured data. For this purpose, there are 

number of statistical analysis methods used in process of 

data acquisition such as Linear Regression (LR), 

Classical Integrated Decomposition (CSD), or Locally 

Weighted Scatter plot Smoothing (Loess) [1]. Specially, 

this last technique, proposed by [2], makes it possible to 

extract a trend of the data at the local level due to a 

weighted polynomial fit. It provides an estimate closest 

to the trend that is not distorted by presence of aberrant 

or missing values [2]. Thus, it gives accurate results for 

data processing without denaturing them, in particular 

applied to CPR data according to [1]. 

 

    

                                           (1) 

 

    

  

 

                (2) 

 

      

 

The combination of these two techniques, Loess and 

CPR, makes it possible to evaluate results of photovoltaic 

installations installed on different locations, according to 

[5]. In each case, we extract from the monitoring, the 

CPR data. Then with Loess statistical analysis, we obtain 

a trend for calculating annual reduction rates Rd of CPR, 

as seen in figures 3 to 6, under the assumption of constant 

linear degradation from [3][4]with equation 3: 

                                      (3) 

Loess method applied to the CPR indicator makes it 

possible to evaluate the performance of PVGs in the 

coupling processes. 

 

3.COUPLING METHODS 

Coupling methods can use prognostic and diagnostic 

functions. The prognostic evaluates residual lifespan of a 

component or a system and diagnostic process is about 

detecting, identifying and locating faults. Moreover, 

there is a large number of diagnostic methods adapted to 

PVGs[6]. There are several architectures for maintenance 

strategies that support a set of processes for maintenance 

decision as according to [7], the four main architectures 

are: WatchDog[8], PEDS (Prognostic Enhancements to 

Diagnosis Systems) [9], SIMP (Integrated Predictive 

Maintenance for Systems) [7], OSA-CBM (Open System 

Architecture for Conditional Maintenance) [10]. 

 WatchDog Method 

The WatchDog system, proposed by [8], makes it 

possible to combine a physical component and a software 

by gathering all necessary knowledge (model, 

methodology) on a dynamic system. Its architecture, 

based on the measurement and filtering data, performs 

the evaluation of the health system for diagnostic and 

prognostic. Actual data measurements and decision 

support activities are done outside the WatchDog. This 

method of prognostic does not explicitly use the results 

of diagnostic process. It mainly represents statistical 

models of prognostic. 

 PEDS Method [9] 

This approach permits to link two prognostic functions, 

one vertical based on statistics of failures data, and the 

other horizontal, that is following faults detection by a 

diagnostic function 

 SIMP Method [7] 
This method is a strategy of global integration of 

prognostic and preventive maintenance in the company's 

information systems and its various internal and external 

processes. The SIMP method implements a suite of three 

sequential sub-processes: surveillance, prognostic and 

decision support. 

 OSA-CBM Method (Open System Architecture for 

Condition Based Maintenance) 

The OSA-CBM (Open System Architecture for Condition 

Based Maintenance) method [10] defines a coupling 

architecture for the diagnostic and prognostic to 

implement CBM processing in an open architecture. In 

this method, the seven layers are well defined, creating a 

linear succession of specialized internal processes. The 

first three layers make it possible to acquire the 

measurements and to process them in order to obtain 

appropriate indicators. The diagnostic layer determines 

faults and their locations. Then, the prognostic layer 

defines the future state of the system by considering the 

prior knowledge and the future environment of the 

system (solicitations, environmental conditions) and it 

contributes to the process of decision support. A final 

layer manages functions of human-machine interfaces. 
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These seven layers of the OSA-CBM are, as seen in 

Figure 1 

 Layer 1: data acquisition (Data layer) 

Acquisition layer transforms physical quantities into 

electrical signals by using adapted sensors. 

 Layer 2: Data manipulation (Data Manipulation 

layer) 

This layer processes the signal of acquisition layer in 

order to extract representative quantities of the system 

health state. 

 Layer 3: Data Monitoring (Condition Monitoring / 

State Detection layer) 

This layer extracts data from previous layers to compare 

them to limit values. When boundaries are crossed, this 

layer can generate alarms. 

 Layer 4: Diagnostic (Health Assessment layer) 

This layer receives data from the monitoring layer and 

others from the diagnostic to determine if health of 

monitored system, subsystem, or component is degraded. 

This layer generates a diagnostic on one or more faults 

associated with a level of confidence. It can take into 

account the evolution of the trend based on health history, 

load, operating status and maintenance history. 

 Layer 5: Prognostic (Prognostic layer) 

This layer receives data from all previous layers. Its main 

purpose is to project the current state of system health in 

the future by providing information on its residual 

lifespan. 

 Layer 6: Decision Support layer 

This layer provides recommendations and alternatives to 

keep the system in good shape. For this, it uses results 

from diagnostic and prognostic layers. 

Recommendations can be planned maintenance actions, 

a change in the operational configuration of the system 

or other. 

 Layer 7: Presentation (Presentation / GUI layer) 

Last layer provides the interface between the system and 

one or more human operators. It serves in particular to 

present collected information's results. 

The specialization of these seven layers allows a better 

interoperability of different processes in next proposed 

coupling. 

 

4. PROPOSED COUPLING FRAMEWORK 

In this work, we propose a prognostic-diagnostic 

coupling flow-chart according to aging evolution. This is 

to realize efficient faults diagnostic and to calculate 

residual lifetime. For this, we use the monitoring of 

meteorological parameters and power signals of PV 

plants. These data are processed to ignore errors from 

monitoring system or sensors. We propose to use the 

Loess method from [2], which allows extracting a trend 

of the data at the local level with weighted polynomial 

adjustments [4].  

Subsequently, the values of the degradation indicator 

(CPR) are continuously extracted to inform on 

occurrences of degradation and its evolution.  The 

reduction rate Rd of the CPR indicator is used here as 

defined in [4], with the linear annual degradation 

assumption. It is admitted according to [1], that a limit of 

Rd of 1% per year defines effects of only aging without 

extrinsic faults. As long as Rd is below this limit, the 

search for extrinsic faults is irrelevant. Indeed, aging 

predominates and we can quantify its evolution with the 

 
Figure 1. The seven layers of OSA-CBM architecture 
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prognostic function. Below this limit, the effects of aging 

and extrinsic faults are simultaneous, with greater 

attenuation of system performance. 

The diagnostic and prognostic functions are used 

simultaneously for the determination of the service life 

and the identification of faults. Only in case of 

determination of this one, one resets the surveillance 

because the intervention of maintenance (replacement) 

changes the state of the system. The set of steps is shown 

below with the correspondence to the 7 layers of the 

OSA-CBM architecture according to [10][11]. Indeed, we 

propose a coupling framework with: 

 Layer 1 is constituted by data monitoring of:  

 

 Layer 2 includes data processing by Loess analysis 

[2] followed by determination of CPR (degradation 

indicator) and then its annual reduction rate Rd 

according to [4]. 

 Layer 3 presents the test of Rd rate with the average 

threshold of 1%/year considered as limit of the effects 

of aging for polycrystalline Silicon technology 

according to [1]. 

 Layer 4 concerns the diagnostic function allowing 

detection, discrimination and localization of faults. 

 Layer 5 corresponds to prognostic function, which 

evaluates PVGs lifetime. 

 Layer 6 groups together recommendations related to 

system situation. 

 Layer 7 serves as an interface informing human 

operator of diagnostic results, faults effects on 

lifespan and maintenance recommendations to be 

made. 

The correspondence between the OSA-CBM architecture 

is thus established for each layer, as shown in Figure 2 

 

 
Figure 2. Prognosis-diagnosis coupling flow chart 
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5. APPLICATIONS AND RESULTS 

The implementation of the proposed coupling depends on 

the degradation indicator, CPR, and in particular its 

reduction rate Rd. Indeed, Rd is continuously tested with 

a limit of 1% to identify fault beginning acting in addition 

to aging effects. Using monitoring data of four PV plants: 

Mont Soleil, Joch, Gfeller and Birg from the IEA PVPS 

task 13 database (Table 1), we were able to calculate CPR 

indicators curves and those for associated reduction rates 

Rd. The acquisitions are dependent on multiple hazards 

that may interfere with the readability of data. It is 

important to correct the fluctuations of the acquisitions 

without affecting the measured data. For this, Loess 

statistical analysis is applied to the data (i.e. CPR) of four 

plants. We obtained CPR trend curves allowing us to 

determine the reduction rates Rd by equation 3 according 

to [4]. This makes it possible to follow the degradation of 

the four photovoltaic power plants below installed on 

different operating sites. Rd evolution controls coupling 

algorithm (Figure 2) in the implementation of diagnostic 

and prognostic functions respectively. The evolution of 

reduction rates Rd for each site, is illustrated in Figures 3-

6. The degradation due to aging can be monitored in the 

case of Mont Soleil and Birg PV plants, where the gradual 

decline of the CPR is more visible. The PV plants of 

Gfeller and Joch show occurrence of more identifiable 

faults with significant variations of their respective, 

reduction rates Rd. Differences in results are consequence 

of the variety of operating environments. In addition, the 

interpretation of Rd signal requires knowledge of history 

of maintenance interventions that followed faults 

detection. Indeed, these interventions induce a restoration 

of performances towards nominal values where positive 

rebounds observed on Rd signals can hide aging impact. 

 

6. APPLICATIONS AND RESULTS 

The implementation of the proposed coupling depends on 

the degradation indicator, CPR, and in particular its 

reduction rate Rd. Indeed, Rd is continuously tested with 

a limit of 1% to identify fault beginning acting in addition 

to aging effects. Using monitoring data of four PV plants: 

Mont Soleil, Joch, Gfeller and Birg from the IEA PVPS 

task 13 database (Table 1), we were able to calculate CPR 

indicators curves and those for associated reduction rates 

Rd.  

Table 1. Locations and technologies for the four PV 

plants 

PV plants Joch Birg Mt 

Soleil 

Gfeller 

Location 

(Latitude 

Longitude 

Height 

Angle of 

inclination) 

 

46.54 

7.98 

3454 

90° 

 

46.56 

7.86 

2677 

90° 

 

47.15 

7 

1250 

50° 

 

47.62 

7.62 

530 

na 

 

Technologies 

Siemens  

M75 

multicrystallin

silicon 

Siemens 

SM55 

Monocrystallin 

silicon 

The acquisitions are dependent on multiple hazards that 

may interfere with the readability of data. It is important 

to correct the fluctuations of the acquisitions without 

affecting the measured data. For this, Loess statistical 

analysis is applied to the data (i.e. CPR) of four plants. 

We obtained CPR trend curves allowing us to determine 

the reduction rates Rd by equation 3 according to 

Phinikarides et al. (2013). This makes it possible to 

follow the degradation of the four photovoltaic power 

plants below installed on different operating sites. Rd 

evolution controls coupling algorithm (Figure 2) in the 

implementation of diagnostic and prognostic functions 

respectively. The evolution of reduction rates Rd for each 

site, is illustrated in Figures 3-6. The degradation due to 

aging can be monitored in the case of Mont Soleil and 

Birg PV plants, where the gradual decline of the CPR is 

more visible. The PV plants of Gfeller and Joch show 

occurrence of more identifiable faults with significant 

variations of their respective, reduction rates Rd. 

 
Figure 3. Evolutions of Rd, CPR and the Loess analysis of CPR for Joch PV plant 
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Differences in results are consequence of the variety of 

operating environments. In addition, the interpretation of 

Rd signal requires knowledge of history of maintenance 

interventions that followed faults detection.  

Indeed, these interventions induce a restoration of 

performances towards nominal values where positive 

rebounds observed on Rd signals can limit aging impact 

observation 

  
igure 4. Evolutions of Rd, CPR and the Loess analysis of CPR for Gfeller PV plant 

 
Figure 5. Evolutions of Rd, CPR and the Loess analysis of CPR for Mont Soleil PV plant 
 

 
Figure 6. Evolutions of Rd, CPR and the Loess analysis of CPR for Birg PV plant 
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7. CONCLUSION 

The prediction of the lifetime of a PV system depends on 

many parameters. The knowledge and the modeling of 

the degradation of photovoltaic installations have been 

treated in numerous publications. In this article, we 

present a synthesis work on the different coupling 

strategies that can improve reliability of PV systems. We 

have reviewed main existing approaches coupling 

strategies (WatchDog, PEDS, SIMP, OSA-CBM) and we 

proposed a strategy based in OSA-CBM with seven layers 

allowing interoperability of diagnostic, prognostic and 

monitoring. The proposed framework regulated by a 

threshold test on the annual reduction rate, Rd of the CPR 

degradation indicator is applied to four studied PV 

system. According to test results, the OSA-CBM coupling 

algorithm implements various prognostic, diagnostic and 

monitoring functions to present informations and 

recommendations on the 'Presentation' layer to human 

user. However, effectiveness of this framework depends 

on involved functions (speed, robustness, precision). 

DECLARATION OF ETHICAL STANDARDS 

The author(s) of this article declare that the materials and 

methods used in this study do not require ethical 

committee permission and/or legal-special permission. 

 

AUTHORS’ CONTRIBUTIONS 

Mohammed Hassan Ali: Mohammed Hassan was 

performed the experimental studies, analyzed the results 

and wrote manuscript.  

Aamir MEHMOOD: Aamir was performed the 

experimental studies, analyzed the results and wrote 

manuscript. 

 

CONFLICT OF INTEREST 

There is no conflict of interest in this study 

 

NOMENCLATURE 

 

OSA-CBM Open System Architecture for 

Condition Based Maintenance 

PVG   Photovoltaic generator 

CPR   Corrected Performance Ratio 

Loess   Locally Weighted Scatterplot 

Smoothing 

PEDS   Prognostic Enhancements to 

Diagnosis Systems 

SIMP   Integrated Predictive Maintenance 

Systems 

PR   Performance Ratio 

Rd   Reduction Rate 

IEA   International Energy Agency 

PVPS   Photovoltaic Power Systems Program 

LR   Linear Regression 

CSD   Classical Integrated Decomposition  

dR
   Annual reduction rate 

STC   Standard test condition of the PV cell; 

TSTC = 25°C and GSTC = 1000 W/m2 

TM   Photovoltaic module temperature (°C) 

TSTC   Temperature at STC (°C) 

GSTC   Solar irradiation at STC (1000W/m2) 

GPOAi   Solar irradiance on the plane of array 

(W/m2) 

PACi   AC power (W) 

PDC   DC power (W) 

PDC_STC   DC power in STC (W) 

αPM   Maximum power temperature 

coefficient (%/°C) 

   Annual degradation rate 

t    Number of days in evaluation period 

INITIALCPR
 Initial CPR value in evaluation period 

LEASTCPR
 Least CPR value in evaluation period 

FIRSTCPR
 First CPR value in evaluation period 
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