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ABSTRACT 

In this study, the stress analysis of the cylindrically curved beam, which is functionally graded for thermal load 

in radial direction, has been analytically analyzed. The temperature distribution varies steadily state as a function 

of the radial coordinate. The beam is assumed to be in the plane strain state. The elasticity modulus of the 

functionally graded beam is assumed to vary with the power law in relation to the thickness of the beam. In 

addition, the effect of the vary in the power law parameter and with the general mixture law, all material 

properties of the beam (modulus of elasticity, density, thermal expansion coefficient, thermal conductivity 

coefficient and yield stress) except for Poisson's ratio change in radial direction. Thus, all material properties of 

the beam vary depending on the power law. Beam; stresses under positive, negative and homogeneous 

temperatures were examined. Stress analysis is considered according to Von Mises yield criterion.  

Keywords: : Functionally graded materials (FGM); Curved beam; Thermal stress; Von Mises yield criteria  

Silindirik Eğri Eksenli FDM Kirişte Isıl Gerilmeler 

ÖZET 

Bu çalışmada, radyal doğrultuda sıcaklığa maruz fonksiyonel derecelendirilmiş malzemeden yapılmış silindirik 

olarak eğri eksenli kirişin gerilme analizi analitik olarak incelenmiştir. Sıcaklık dağılımı kararlı ve dengeli bir 

durum ve radyal koordinatın bir fonksiyonudur.  Eğri eksenli kiriş düzlem şekil değiştirme durumunda olduğu 

varsayılmaktadır. Elastisite modülü üstel kuvvete göre kirişin kalınlığı doğrultusu boyunca değişmektedir. Buna 

ek olarak üstel kuvvet etkisi ve genel karışım kanunu birlikte uygulanarak kirişin diğer malzeme özellikleri 

(elastisite modülü, yoğunluk, ısıl genleşme katsayısı, ısıl iletim katsayısı ve akma dayanımı) Poisson oranı hariç 

radyal doğrultu boyunca değişmektedir. Bu durumda bütün malzeme özellikleri üstel kanuna göre değişmektedir. 

Pozitif, negatif ve homojen sıcaklıklar altında kirişte oluşan gerilmeler incelenmiştir. Gerilme analizi için von 

Mises akma kriteri uygulanmıştır.  

Anahtar Kelimeler: Fonksiyonel derecelendirilmiş malzemeler (FDM), eğri eksenli kiriş, von Mises akma 

kriteri 

1. INTRODUCTION 

Curved beams are frequently used in engineering, and these structures are often 

subjected to mechanical and thermal loads. Therefore, many researchers examined 

deformation behaviors of these structures under different loads. Deformation behavior of 

curved beams and methods to increase the material limits of such bars under varying loads 

have received significant attention by researchers. Elastic analysis of wide curved bar has 

been given by Timoshenko and Goodier (1970). Shaffer and House (1957, 1954) have been 

obtained equations for the elastic-plastic stress distribution a perfectly plastic wide curved bar 

and displacements a perfectly plastic incompressible material wide curved bar subjected to 

pure bending. Arslan and Mack (2014) presented analytical solutions for the elastic-plastic 

behavior of the panel under the thermal load. Analytical solution of linear hardening elastic-

plastic material in the work are investigated (Dadras, 2001; Eraslan and Arslan, 2008) and 

obtained the behavior for nonlinear hardening material by Arslan and Eraslan (2010). The 



classical shell theory has studied the nonlinear behavior of curved panels under pressure and 

temperature (Librescu et al., 2000; Duc and Van Tung, 2010). Kiani et al. (2012) investigated 

the dynamic behavior of the functionally graded panel in the radial direction subjected to 

thermal and mechanical loads. Dryden (2007) studied elastic bending stresses of functionally 

graded curved bars. Mohammadi and Dryden (2008) investigated the the thermoelastic stress 

field in a functionally graded curved beam. Their work is obtained analtically where the radial 

variation of the stiffness is represented by a fairly general form. Eraslan and Akis (2006) have 

analytical solutions for plane stress and plane strain for the functionally graded rotating shaft 

and solid disk. 

In this study, analytical solutions for the stress analysis in cylindrically curved FGM 

beam are derived under assumption of plane strain state. The analytical solution for the elastic 

limit and displacements of the curved FGM beam subjected to thermal and mechanical loads 

is obtained. It is assumed that the material properties of the beam (modulus of elasticity, 

density, coefficient of thermal expansion, coefficient of thermal conduction and yield stress) 

are varied in radial direction depending on the power law. 

2. MATERIAL and METHOD 

Stress analysis cylindrically FGM curved beam with a rectangular cross section (see 

Fig. 1) under plane strain condition is investigated. In addition, the beam is fixed in the 

cylindrical direction by rigid supports and these supports allow displacement on the end 

surfaces of the beam, but the radius of curvature of the central surface of the beam remains 

constant. Figure 1 shows the geometry of the curved beam with the inner radius a and the 

outer radius b. 

 
Figure 1. Coordinate system used and curved beam 

2.1 Statement of the Problem  

The subject of the current investigation is a curved beam (see Fig. 1) with stress-free inner 

and outer cylindrical surfaces, 
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In the radial direction, the FGM curved beam is in plane strain state (εz = 0) and is radially 

displaced by varying T=T (r) temperature distribution. Displacement of the beam in the radial 

direction; 

0 : 0r r u                                                       (3)                                                                    

Since it is assumed that the initial middle surface where r0 = (a + b)/2 does not undergo a 

radial displacement. Moreover, the couple moments M that occur at the rigid supports at the 

angular direction can be defined as  
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2.2 Basic Equations 

The strain-displacement relations; 
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the equilibrium equation in the radial direction is; 
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Taking into account a variable modulus of elasticity ( )E E r  and a variable coefficient of 

thermal expansion ( )r  , but Poisson's ratio (v) constant, the generalized Hooke's law can 

given as; 
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In order to describe the material properties at any point of the FGM curved beam, general 

linear mixture law is used. The general linear rule of mixture reads 
 

0 0 1 1Pr ( ) Pr ( ) Pr ( )eff r V r V r                                                        (12) 

 

where Preff  denotes material property, and subscripts 0 (zero) and 1 specifies the volume 

fraction of material.  In addition, It has been suggested that there are pure components on the 

inner surface of the curved beam, 0 (zero) of the FGM curved beam, i.e., 𝑉0(𝑎) = 1 and with 

the index 1 indicating the second constituent, it is given as;  

1 0( ) 1 ( ).V r V r                                                                              (13) 



The modulus of elasticity is as follows:  
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Eqs. (13) and (14) are substituted in Eq. (12) and a straight forward the relation of the volume 

fraction coefficient of the constituent 0 are obtained. 
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Then, applying the rule of mixture Eq. (12), the coefficient of thermal expansion α(r) and the 

density ρ(r),the uniaxial yield limit σy(r), and the thermal conductivity k(r), respectively,  one 

obtains 
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where Pr = α, ρ, σy, and k, respectively. It is assumed that the Poisson’s ratio v is assumed to 

be constant. The properties of materials are connected to the radial coordinate. 

Basic equations for FGM beam can be obtained. First, using Eqs. (11), (14), (16), (17) and 

0z  , the axial stress as follows 
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integration of relation (Eq. 7) gives 

rf                                                                                               (19) 

where f is a function of θ only. Then, differentiating Eq. (6) with respect to θ and taking into 

account that both θ and u depend on r only, one obtains  
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and hence; 

1C r                                                                                          (21) 

with the (non-dimensional) constant of integration C1. Hence, based on Eqs. (5), (6), and 

Hooke’s law (9), (10), σr, and σθ can be expressed in terms of u and its derivative with respect 

to r (denoted by a prime), 
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where 
r  and   radial and circumferential stresses, respectively. Eqs. (22) and (23) are 

substituted in Eq. (8) to obtain the differential equation for displacement. 
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Its solution is 
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where C2 and C3 are constants of integration, and 
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Thereof, solving Eqs. (22) and (23), one finally obtains  
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and σz obtained from Eq. (18).  

In the above basic equations, the three constants of integration, C1, C2 and C3, must be 

determined. For the determination of these unknowns, the conditions Eqs. (1)-(3) are 

available. These conditions lead to 
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In this way, after the temperature field is determined, the strain and stress in the beam can be 

known. Furthermore, by substituting the circumferential stress σθ given in Eqs. (28) and (4), 

couple moment M is expressed as follows; 
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2.3 Temperature Field 

When the temperature change is regarded as steady state, the temperature increase of inner 

or outer surfaces is thought to increase slowly and is calculated independently from time. In 

this case, it is governed by the differential equation (Peng and Li; 2010). 
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                                                              (36) 

With the dependence of the thermal conductivity on the radius given by Eqs. (16) and (17), its 

solution is 
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where D1 and D2 are constants of integration. When the surface temperature at the inner and 

outer sides is prescribed as; 
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3. STRESS DISTRIBUTIONS AND EFFECT OF EXPONENTIAL PARAMETER  

With the equations obtained above, the stresses can be calculated. The von Mises yield 

criterion was used to determine the elastic limits and as follows; 
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Now, introducing the following non-dimensional quantities: 
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where, it should be remembered that the pure FGM component of index 0, r = a, represents a 

material parameter. The exponential grading index mext in the FGM beam is as follows; 
 

 
 

1ln
.

ln
ext

E
m

b
                                                                               (43) 

Thus, depending on whether E1>1 or E1<1, there hold the relations 0 extm m   or 

0extm m  respectively. 

3.1 Positive, Homogeneous and Negative Temperature Gradient  

Stress analysis for different temperature states of the aluminum/steel cylindrically 

curved FGM beam have been investigated analytically. Stress distributions are calculated 

according to different surface temperature conditions. To calculate numerically these 

equations, material properties and surface radius ratios are specified. In particular, a beam 

with radii ratio b/a=1.25, Poisson’s ratio ν=0.3, and E1/E0=2.86, α1/α0=0.72, k1/k0=0.21, 

σy,1/σy,0=6.67, ρ1/ρ0=2.86 is obtained.  

These surface temperature differences (
b aT T T   ) have been investigated in 

accordance with the exponential parameter m, ΔT>0, ΔT=0 and ΔT<0. Fig.2a presents the 

stresses, circumferential and radial displacements for 1.60,m  �̅�𝑎 = 0 and ∆�̅� = 1.683 the 

elastic limits in the curved FGM beam. The radial displacement is equal to zero where the 

center of curvature of the beam is the same as in equation 3. In addition, the radial stress is 

equal to zero as indicated in Eqs.1, 2 on the inner and outer surfaces of the beam. 

Circumferential and radial stresses vary from positive to negative. The volume ratio of the 

aluminum on the outer surface of the beam is calculated as 76.9% and the volume ratio of 

steel as 23.1%. The onset of the yield would occur at the inner surface of curved FGM beam. 

Fig.2b shows the stresses, circumferential and radial displacements for 1.60,m  �̅�𝑎 = 1.026 

and ∆�̅� = 0 the elastic limits in the curved FGM beam. Angular stress and radial 

displacement vary linearly from negative to positive value. The axial stress is negative. The 

onset of the yield would occur at the inner surface of curved FGM beam. Fig.2c determines 

the stresses, circumferential and radial displacements for 1.60,m  �̅�𝑎 = 0.885 and ∆�̅� =

−0.885 the elastic limits in the curved FGM beam. The onset of the yield would occur at the 

inner surface of curved FGM beam. Fig.3a shows the stresses, circumferential and radial 

displacements for 2.40,m  �̅�𝑎 = 0 and ∆�̅� = 1.728 the elastic limits in the curved FGM 

beam. The volume ratio of the aluminum on the outer surface of the beam is calculated as 

61.8% and the volume ratio of steel as 38.2%. The onset of the yield would occur at the inner 

surface of curved FGM beam. Fig.3b presents the stresses, circumferential and radial 

displacements for 2.40,m  �̅�𝑎 = 1.026 and ∆�̅� = 0 the elastic limits in the curved FGM 

beam. The onset of the yield would occur at the inner surface of curved FGM beam. Fig.3c 

presents the stresses, circumferential and radial displacements for 2.40,m  �̅�𝑎 = 0.879 and 

∆�̅� = −0.879 the elastic limits in the curved FGM beam. The onset of the yield would occur 

at the inner surface of curved FGM beam. Fig.4a determines the stresses, circumferential and 

radial displacements for 3.20,m  �̅�𝑎 = 0 and ∆�̅� = 1.807 the elastic limits in the curved 

FGM beam. The volume ratio of the aluminum on the outer surface of the beam is calculated 

as 43.8% and the volume ratio of steel as 56.2%. The onset of the yield would occur at the 

inner surface of curved FGM beam. Fig.4b shows the stresses, circumferential and radial 



displacements for 3.20,m  �̅�𝑎 = 1.025 and ∆�̅� = 0 the elastic limits in the curved FGM 

beam. The onset of the yield would occur at the inner surface of curved FGM beam. Fig.4c 

presents the stresses, circumferential and radial displacements for 3.20,m  �̅�𝑎 = 0.875 and 

∆�̅� = −0.875 the elastic limits in the curved FGM beam. The onset of the yield would occur 

at the inner surface of curved FGM beam. 

 

 

Figure 2. The distribution of stresses, circumferential, radial displacements and elastic limits for 

1.60m   (a) Positive temperature (b) Homogenous temperature (c) Negative temperature 

 

Figure 3. The distribution of stresses, circumferential, radial displacements and elastic limits 

for 2.40m  (a) Positive temperature (b) Homogenous temperature (c) Negative 

temperature 

 

 

Figure 4. The distribution of stresses, circumferential, radial displacements and elastic limits 

for 3.20m   (a) Positive temperature (b) Homogenous temperature (c) Negative 

temperature 

4. CONCLUSION 

In this study, an analytical solution is investigated the stress analysis of the 

Aluminum/Steel curved FGM beam in the plane strain state under temperature in radial 

direction. It is considered that the temperature distribution changes as a function of the radial 

coordinate and is in steady state.  The modulus of elasticity varies with the thickness of the 

(c) (b) (a) 

(c) (b) (a) 

(c) (b) (a) 



beam according to the power law. Accordingly, by applying the general mixture law, the 

thermal expansion, the heat transfer coefficient and the volume fraction vary depending on the 

exponential parameter (except Poisson ratio). 

In particular, the effect of the exponential parameter values has been studied in detail, 

taking into account the radial direction of all properties of the materials (except for Poisson's 

ratio), depending on the general mixture law. It has been found that depending on the FGM 

beam exponential parameter, the elastic limit can be reached increasing temperature gradient 

at the inner surface, at the outer surface, or at both surfaces simultaneously. 

Finally, although the closed-form solution given above requires certain assumptions for 

boundary conditions, it is quite remarkable that the remaining numerical effort is limited to 

the integration of the terms, which mainly include the analytically derived temperature field. 
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