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Abstract. Let X be a nonempty set and X2 be the Cartesian square of X.
Some semigroups of binary relations generated by partitions of X2 are stud-
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1. Introduction

Let X be a set. A binary relation on X is a subset of the Cartesian square

X2 = X ×X = {〈x, y〉 : x, y ∈ X}.

The composition of binary relations ψ and γ on X is a binary relation ψ◦γ ⊆ X×X
for which 〈x, y〉 ∈ ψ ◦ γ holds if and only if there is z ∈ X such that 〈x, z〉 ∈ ψ and
〈z, y〉 ∈ γ. It is well-known that ◦ is an associative operation on the set of binary
relations on X.

Recall that a semigroup is a pair (S, ∗) consisting of a nonempty set S and an
associative operation ∗ : S × S → S which is called the multiplication on S. As
usual, we use the symbol x ∗ y instead of ∗〈x, y〉 to indicate the result of applying
∗ to 〈x, y〉. A semigroup S = (S, ∗) is a monoid if there is e ∈ S such that

e ∗ s = s ∗ e = s

for every s ∈ S. In this case we say that e is the identity element of the semigroup
(S, ∗). A zero of a semigroup (S, ∗) is an element θ ∈ S for which

θ ∗ s = s ∗ θ = θ

holds for every s ∈ S. A set A ⊆ S is a set of generators of (S, ∗) if, for every
s ∈ S, there is a finite sequence s1, . . . , sk of elements of A such that

s = s1 ∗ . . . ∗ sk.
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A nonempty subset B of S is a subsemigroup of (S, ∗) if x ∗ y ∈ B holds for all x,
y ∈ B.

We denote by BX = (BX , ◦) the semigroup of all binary relations defined on
a set X such that the composition ◦ of relations is the multiplication on BX . It
is well-known that every semigroup (H, ∗) is isomorphic to a subsemigroup of BX
for a suitable X. The properties of BX have been investigated by many mathe-
maticians [4, 5, 8–10, 21, 23, 26, 28, 29, 31–34, 36, 38, 39]. In particular, the minimal
generating sets for BX were considered in [7] and [24]. The so-called complete semi-
groups of binary relations are investigated by Yasha Diasamidze, Shota Makharadze
et al. (see, for example, [1, 3, 8, 11–16]).

Following [27] we say that a set B of binary relations on a set X is transitive if
for every 〈x, y〉 ∈ X × X there is R ∈ B such that 〈x, y〉 ∈ R. A homomorphism
Φ: S → BX of (S, ∗) is called transitive if Φ(S) is a transitive set of relations. A
faithful representation of a semigroup (S, ∗) by binary relations is a monomorphism
S → BX .

Solving a longstanding problem formulated in [35] Ralph McKenzie and Boris
Schein prove that all semigroups have faithful transitive representations [27]. Like
every outstanding result, the McKenzie-Shein theorem raises a series of related ques-
tions. According to this theorem, for every semigroup (H, ∗) there are a monomor-
phism Φ: S → BX and a set A of generators of S such that Φ(A) is a cover of X2.
What can be said about the properties of this cover? In particular, under what
conditions is Φ(A) a partition of X2?

Definition 1.1. A monomorphism Φ: S → BX is d-transitive (disjoint-transitive)
if there is a set A of generators of (S, ∗) such that {Φ(a) : a ∈ A} is a partition of
the set X2 and, if (S, ∗) contains a zero element θ, the equality Φ(θ) = ∅ holds.

It is clear that every d-transitive monomorphism S → BX is a faithful and
transitive representation of (S, ∗).

The following problem seems to be interesting and this is the main object of
research in the paper.

Problem 1.2. Describe the algebraic structure of semigroups (H, ∗) admitting
d-transitive monomorphisms H → BX .

The paper is organized as follows.
In Section 2 we consider some basic partitions of Cartesian squares of sets and

describe properties of these partitions.
The main results of the paper are formulated and proved in Section 3 and Sec-

tion 4. Theorem 3.2, Proposition 3.11 and Theorem 4.6 give us a “purely algebraic”
description of some classes of semigroups H admitting d-transitive monomorphisms
H → BX for suitable X.
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Examples of semigroups H which have no d-transitive monomorphisms H → BX
are given in Proposition 3.9 and Proposition 4.14.

2. Partitions of Cartesian square

Let X be a nonempty set and P = {Xj : j ∈ J} be a set of nonempty subsets of
X. The set P is a partition of X if we have⋃

j∈J
Xj = X and Xj1 ∩Xj2 = ∅

for all distinct j1, j2 ∈ J . In what follows we will say that the sets Xj , j ∈ J are
the blocks of P .

We say that partitions P = {Xj : j ∈ J} and Q = {Xi : i ∈ I} of a set X are
equal if and only if there is a bijective mapping f : J → I such that Xj = Xf(j)

holds for every j ∈ J .

Example 2.1. Let X and Y be a nonempty sets. If a mapping Ψ: X → Y is
surjective, then the set

PΨ−1 := {Ψ−1(y) : y ∈ Y } (2.1)

is a partition of X with blocks Ψ−1(y), y ∈ Y . Conversely, if P = {Xj : j ∈ J} is a
partition of X, then the mapping F : X → J defined by(

F (x) = j
)
⇔
(
x ∈ Xj

)
is surjective and the equality P = PF−1 holds.

Let X be a set. A binary relation R ⊆ X ×X is an equivalence relation on X if
the following conditions hold for all x, y, z ∈ X:

(i) 〈x, x〉 ∈ R, the reflexive law;
(ii) (〈x, y〉 ∈ R)⇔ (〈y, x〉 ∈ R), the symmetric law;

(iii) ((〈x, y〉 ∈ R) and (〈y, z〉 ∈ R))⇒ (〈x, z〉 ∈ R), the transitive law.

If R is an equivalence relation on X, then an equivalence class is defined as a
subset [a]R of X having the form

[a]R = {x ∈ X : 〈x, a〉 ∈ R}, a ∈ X. (2.2)

There exists the well-known, one-to-one correspondence between the equivalence
relations and the partitions (see, for example, [25, Chapter II, § 5] or [19, Proposi-
tion 1.4.6]).

Proposition 2.2. Let X be a nonempty set. If P = {Xj : j ∈ J} is a partition of
X and RP is a binary relation on X such that, for every 〈x, y〉 ∈ X ×X,(

〈x, y〉 ∈ RP
)
⇔
(
∃j ∈ J(x ∈ Xj and y ∈ Xj)

)
,
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then RP is an equivalence relation on X with equivalence classes Xj. Conversely,
if R is an equivalence relation on X, then the set PR of all distinct equivalence
classes [a]R is a partition of X with blocks [a]R.

Remark 2.3. If X = ∅, then we have X ×X = ∅, so that ∅ can be considered
as a unique equivalence relation on ∅. It should be noted that there is no partition
of ∅ because every block of each partition is nonempty by definition.

In the following, we systematically use the notation RP for the equivalence re-
lation corresponding to partition P and the notation PR for the partition cor-
responding to equivalence relation R. In particular, for every nonempty set X,
Proposition 2.2 implies the equality

P = PRP (2.3)

if P is a given partition of X and, respectively, the equality

R = RPR (2.4)

if R is a given equivalence relation on X.
The trivial examples of equivalence relations on X are the Cartesian square X2

and the diagonal ∆X of X,

∆X := {〈x, x〉 : x ∈ X}.

If X is nonempty, then we have

P∆X
= {{x} : x ∈ X}.

Moreover, for a partition P = {Xj : j ∈ J} of X, the equality P = PX2 holds if
and only if |J | = 1.

In the following proposition starting from a partition P of a set X we define a
partition P ⊗ P of the Cartesian square X2.

Proposition 2.4. Let X be a nonempty set and P = {Xj : j ∈ J} be a partition
of X. Write

P ⊗ P := {Xj1 ×Xj2 : 〈j1, j2〉 ∈ J2}, (2.5)

where Xj1 ×Xj2 is the Cartesian product of Xj1 and Xj2 , and J2 is the Cartesian
square of J . Then P ⊗ P is a partition of the Cartesian square X2 with blocks
Xj1 ×Xj2 , 〈j1, j2〉 ∈ J2.

The proof is simple and we omit it here.

Example 2.5. Let X be a nonempty set and let

P∆X
= {{x} : x ∈ X}
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be a partition of X corresponding to the diagonal ∆X on X. Then P∆X
⊗ P∆X

is
a partition of X2 corresponding to the diagonal on X2,

P∆X
⊗ P∆X

= P∆X2 = {{〈x, y〉} : 〈x, y〉 ∈ X2}.

Proposition 2.6. Let X be a nonempty set. If R is an equivalence relation on X
and PR = {Xj : j ∈ J} is the corresponding partition of X, then the equality

R =
⋃
j∈J

X2
j (2.6)

holds.

Proof. Let R be an equivalence relation on X and PR = {Xj : j ∈ J}. The set⋃
j∈J X

2
j is a subset of X2 and, consequently, it is a binary relation on X. By

Proposition 2.2, for every 〈x1, y1〉 ∈ R there is j1 ∈ J such that x1 ∈ Xj1 and
y1 ∈ Xj1 , i.e.,

〈x1, y1〉 ∈ X2
j1 ⊆

⋃
j∈J

X2
j .

It implies the inclusion
R ⊆

⋃
j∈J

X2
j . (2.7)

Now let 〈x0, y0〉 be an arbitrary point of
⋃
j∈J X

2
j . Then there is j0 ∈ J such that

〈x0, y0〉 ∈ X2
j0
, which means x0 ∈ Xj0 and y0 ∈ Xj0 . Since {Xj : j ∈ J} is the par-

tition corresponding to R, we have 〈x0, y0〉 ∈ R by Proposition 2.2. Consequently,
the inclusion ⋃

j∈J
X2
j ⊆ R

holds. The last inclusion and (2.7) imply (2.6). �

Example 2.7. Let X be a nonempty set. Then the equality

∆X = {{x} × {x} : x ∈ X}

holds.

For every partition P = {Xj : j ∈ J} of a nonempty set X we define a partition
P ⊗ P 1 of X2 as

P ⊗ P 1 := {RP } ∪ {Xj1 ×Xj2 : 〈j1, j2〉 ∈ ∇J}, (2.8)

where ∆J is the diagonal of J and ∇J := J2 \∆J . We will also consider partitions
P ⊗ PS and P ⊗ P 1

S defined by the rules:

(i) A subset B of X2 is a block of P ⊗ PS if and only if there are j1, j2 ∈ J
such that

B = (Xj1 ×Xj2) ∪ (Xj2 ×Xj1); (2.9)
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(ii) A subset B of X2 is a block of P ⊗ P 1
S if and only if either B = RP or

there are distinct j1, j2 ∈ J such that (2.9) holds.

0 1
3

2
3

1

1
3

2
3

1

Figure 1. The partition P⊗P 1
S corresponding to trichotomy P =

{X0, X1, X2}. Here RP is white, R1 is orange, R2 is green and R3

is violet.

Example 2.8. Let R be the field of real numbers and let

X := {x ∈ R : 0 6 x 6 1}, X0 :=

{
x ∈ R : 0 6 x 6

1

3

}
,

X1 :=

{
x ∈ R :

1

3
< x <

2

3

}
, X2 :=

{
x ∈ R :

2

3
6 x 6 1

}
.

Then the trichotomy P = {X0, X1, X2} is a partition of X. Write

R1 := (X0 ×X1) ∪ (X1 ×X0), R2 := (X0 ×X2) ∪ (X2 ×X0),

R3 := (X1 ×X2) ∪ (X2 ×X1), RP :=

2⋃
j=0

X2
j .

Then P ⊗ P 1
S = {RP , R1, R2, R3} holds (see Figure 1).

The partitions P ⊗ P , P ⊗ P 1, P ⊗ PS and P ⊗ P 1
S can be characterized as

the smallest elements of corresponding subsets of the partially ordered set of all
partitions of X2.

Definition 2.9. Let X be a nonempty set and let P1 and P2 be partitions of X.
The partition P1 is finer than the partition P2 if the inclusion

[x]RP1
⊆ [x]RP2

holds for every x ∈ X, where RP1 and RP2 are equivalence relations corresponding
to P1 and P2 respectively.

If P1 is finer than P2, then we write P1 6X P2 and say that P1 is a refinement
of P2.
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Remark 2.10. Using Proposition 2.6, we see that if P1 and P2 are partitions of
X, then P1 is a refinement of P2 if and only if the inclusion RP1

⊆ RP2
holds.

Example 2.11. Let X be a nonempty set and let P be a partition of X. Then

P ⊗ P 6X2 P ⊗ P 1 6X2 P ⊗ P 1
S

and

P ⊗ P 6X2 P ⊗ PS 6X2 P ⊗ P 1
S

hold.

Recall that a reflexive and transitive binary relation 4 on a set Y is a partial
order on Y if the following antisymmetric law(

〈x, y〉 ∈4 and 〈y, x〉 ∈4
)
⇒ (x = y)

holds for all x, y ∈ Y .
In what follows, for partial order 4, we write x 4 y instead of 〈x, y〉 ∈4.
The following proposition is well-known (see, for example, [25, Example 4, § 9

Chapter 2]) and directly follows from Remark 2.10.

Proposition 2.12. Let X be a nonempty set and let Π(X) be the set of all parti-
tions of X. Then the binary relation “to be finer than” is a partial order on Π(X).

Remark 2.13. The partially ordered set (Π(X),6X) of all partitions of X is a
complete lattice (see Section 13.3 of [2]). The theory of lattices of partitions of a
given set was developed by Oystein Ore in [30]. In particular, Ore has characterized
the lattices which are isomorphic to lattice (Π(X),6X) for some set X. It was
shown by Philip M. Whitman [37] that every lattice is isomorphic to a sublattice
of (Π(X),6X) for a suitable X.

The following lemma is straightforward.

Lemma 2.14. Let X be a nonempty set and let P1, P2 ∈ Π(X). Then the following
statements are equivalent.

(i) P1 6X P2.
(ii) If Ψ1 : X → Y1 and Ψ2 : X → Y2 are surjective mappings such that

P1 = PΨ−1
1

and P2 = PΨ−1
2

(see (2.1)), then there is a surjective mapping Φ: Y1 → Y2 for which

Ψ2(x) = Φ(Ψ1(x))

holds for every x ∈ X.
(iii) Each block of P2 is a union of some blocks of P1.
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Definition 2.15. Let X be a nonempty set, let R be an equivalence relation on
X and let Φ be a mapping with domain X2. The mapping Φ is R-coherent if the
implication (

〈x1, x3〉 ∈ R and 〈x2, x4〉 ∈ R
)
⇒
(
Φ(x1, x2) = Φ(x3, x4)

)
(2.10)

is valid for all x1, x2, x3, x4 ∈ X.

For a given set X and a given equivalence relation R on X, we denote by Coh(R)

the class of all surjective, R-coherent mappings with domain X2.
Now we recall a notion of the smallest element of a subset of a partially ordered

set. Let (Y,4) be a partially ordered set and let A ⊆ Y . An element a∗ ∈ A is
called to be the smallest element of A if

a∗ 4 a

holds for every a ∈ A. It is easy to see that the smallest element of A is unique if
it exists.

The following simple theorem characterizes P ⊗P as the smallest element of the
set of all partitions of X2 generated by mappings belonging to Coh(RP ).

Theorem 2.16. Let X be a nonempty set and let Q = {Xj : j ∈ J} be a partition
of X. Then the inequality

Q⊗Q 6X2 PF−1 (2.11)

holds for every F ∈ Coh(RQ) and, moreover, there is F0 ∈ Coh(RQ) such that the
equality

Q⊗Q = PF−1
0

holds.

Proof. Let F ∈ Coh(RQ). Inequality (2.11) holds if and only if we have

Xj1 ×Xj2 ⊆ F−1(F (x1, x2)) (2.12)

for every 〈x1, x2〉 ∈ X×X, where Xj1×Xj2 is a block of Q⊗Q such that 〈x1, x2〉 ∈
Xj1 ×Xj2 . Suppose 〈x3, x4〉 is an arbitrary point of Xj1 ×Xj2 . Then we have

x1, x3 ∈ Xj1 and x2, x4 ∈ Xj2 ,

that implies 〈x1, x3〉 ∈ RQ and 〈x2, x4〉 ∈ RP . Since F is RQ-coherent, the equality
F (x1, x2) = F (x3, x4) holds. Thus, we have

〈x3, x4〉 ∈ F−1(F (x1, x2)).

Inclusion (2.12) follows.
Let us consider F0 : X2 → J2 such that(

F0(x, y) = 〈j1, j2〉
)
⇔
(
x ∈ Xj1 and y ∈ Xj2

)
(2.13)
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is valid for every 〈x, y〉 ∈ X2. Let x1, x2, x3, x4 belong to X. If 〈x1, x3〉 ∈ RQ and
〈x2, x4〉 ∈ RQ then, by Proposition 2.6, there are j1 ∈ J and j2 ∈ J such that

x1, x3 ∈ Xj1 and x2, x4 ∈ Xj2 .

Using these membership relations and (2.13) we obtain

F0(x1, x2) = 〈j1, j2〉 = F0(x3, x4).

Hence, F0 ∈ Coh(RQ) holds. It follows from (2.13) that

Q⊗Q = {F−1
0 (〈j1, j2〉) : 〈j1, j2〉 ∈ J2}.

�

Example 2.17. Let X be a nonempty set and let

P = P∆X
= {{x} : x ∈ X}

be a partition of X corresponding to the diagonal ∆X on X. Then P ⊗ P is a
partition corresponding to the diagonal ∆X2 on X2 (see Example 2.5). Hence, the
inequality

P ⊗ P 6X2 Q (2.14)

holds for every partition Q ∈ Π(X2) and, consequently, every mapping with domain
X2 is ∆X -coherent.

Recall that for every nonempty A ⊆ BX we write SA for the subsemigroup of
(BX , ◦) having A as a set of generators.

Proposition 2.18. If a semigroup (H, ∗) admits a d-transitive monomorphism
H → BX , then there are an equivalence relation R on X and a mapping Φ ∈ Coh(R)

such that (H, ∗) and SA are isomorphic with A = PΦ−1 .

Proof. Let F : H → BX be a d-transitive monomorphism of (H, ∗) and let A be a
set of generators of H such that

Q := {F (a) : a ∈ A}

is a partition of X2. As in Example 2.17, we see that the inequality

P ⊗ P 6X2 Q

holds with P = {{x} : x ∈ X}. Now the proposition follows from Theorem 2.16. �

LetX be a nonempty set and letR be an equivalence relation onX. Let us denote
by Coh1(R) a subclass of mappings of the class Coh(R) such that Φ ∈ Coh1(R) if
and only if Φ ∈ Coh(R) and

Φ(x, x) = Φ(y, y) holds for all x, y ∈ X.
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Analogously to Theorem 2.16 we can characterize P⊗P 1 as the smallest element
of the set of all partitions of X2 generated by mappings belonging to Coh1(RP ).

Theorem 2.19. Let X be a nonempty set and let Q = {Xj : j ∈ J} be a partition
of X. Then the inequality

Q⊗Q1 6X2 PF−1 (2.15)

holds for every F ∈ Coh1(RQ) and, moreover, there is F1 ∈ Coh1(RQ) such that
the equality

Q⊗Q1 = PF−1
1

(2.16)

holds.

Proof. Arguing as in the proof of inequality (2.11), it is easy to make sure that
(2.15) is true for every F ∈ Coh1(RQ).

Write
∇J := J2 \∆J and J2,1 := ∇J ∪ {∆J}, (2.17)

i.e., the diagonal ∆J is deleted from the Cartesian square J2 and the single-point
set {∆J} is added to the set–theoretic difference of J2 and ∆J . Let us consider
Ψ: J2 → J2,1 such that

Ψ
(
〈j1, j2〉

)
=

〈j1, j2〉, if j1 6= j2

∆J , if j1 = j2

and let F1 denote the composition

X2 F0−→ J2 Ψ−→ J2,1,

where F0 : X2 → J2 is defined by (2.13). Then F1 belongs to Coh1(RQ) and (2.16)
holds. �

Let X be a nonempty set and let Q be a partition of the set X2, Q ∈ Π(X2).
We say that Q is symmetric if the equivalence(

〈x, y〉 ∈ B
)
⇔
(
〈y, x〉 ∈ B

)
is valid for each block B of Q and every 〈x, y〉 ∈ X2. Thus Q is a symmetric
partition of X2 if every block of Q is a symmetric binary relation on X.

The following proposition shows that, for every P ∈ Π(X), the partition P ⊗PS
defined by (2.9) is the smallest symmetric partition of X2 with refinement P ⊗ P .

Proposition 2.20. Let X be a nonempty set and let P = {Xj : j ∈ J} be a
partition of X. Then P ⊗ PS is symmetric and the inequality

P ⊗ P 6X2 P ⊗ PS (2.18)

holds and, moreover, if Q is an arbitrary symmetric partition of X2 such that

P ⊗ P 6X2 Q, (2.19)
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then we also have

P ⊗ PS 6X2 Q. (2.20)

Proof. It follows directly from the definition of P⊗PS that (2.18) holds and P⊗PS
is symmetric.

Suppose Q ∈ Π(X2) is symmetric and satisfies (2.19). Let 〈x, y〉 be an arbitrary
point of X2. Then there are j1, j2 ∈ J such that

〈x, y〉 ∈ (Xj1 ×Xj2) ∪ (Xj2 ×Xj1). (2.21)

Similarly, there is a block B of Q such that

〈x, y〉 ∈ B. (2.22)

There is also a block of P ⊗ P which contains 〈x, y〉. Using (2.21) we can suppose,
for definiteness, that this is the block Xj1 ×Xj2 ,

〈x, y〉 ∈ Xj1 ×Xj2 .

The last membership relation, (2.22) and inequality (2.19) imply

Xj1 ×Xj2 ⊆ B. (2.23)

Now to prove (2.20) it suffices to show that

(Xj2 ×Xj1) ⊆ B.

For every binary relation R ⊆ X ×X the converse relation R−1 is defined as

R−1 := {〈y, x〉 : 〈x, y〉 ∈ R}.

A binary relation R is symmetric if and only if R = R−1. From (2.23) it follows
that

Xj2 ×Xj1 = (Xj1 ×Xj2)−1 ⊆ B−1.

Since B is symmetric, the equality B = B−1 holds. The inclusion

Xj2 ×Xj1 ⊆ B

follows. �

Let X be a nonempty set. A mapping Φ with domain X2 is symmetric if the
equality Φ(x, y) = Φ(y, x) holds for all x, y ∈ X.

Lemma 2.21. Let X be a nonempty set and let Φ be a surjective mapping with
domain X2. Then the mapping Φ is symmetric if and only if PΦ−1 is a symmetric
partition of X2.

Proof. It follows directly from the definitions. �
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Let R be an equivalence relation on X. Denote by CohS(R) the class of all
symmetric mappings Φ ∈ Coh(R). The following theorem characterizes P ⊗ PS as
the smallest element of the set of all partitions of X2 generated by mappings from
CohS(RP ).

Theorem 2.22. Let X be a nonempty set and let Q = {Xj : j ∈ J} be a partition
of X. Then the inequality

Q⊗QS 6X2 PF−1 (2.24)

holds for every F ∈ CohS(RQ) and, moreover, there is F1 ∈ CohS(RQ) such that
the equality

Q⊗QS = PF−1
1

(2.25)

holds.

Proof. Let F ∈ CohS(RQ). By Theorem 2.16, we have the inequality

Q⊗Q 6X2 PF−1 . (2.26)

Since F is a symmetric mapping, the partition PF−1 is symmetric by Lemma 2.21.
Using Proposition 2.20, we see that inequality (2.24) follows from (2.26).

Let

J × JS :=
{
{〈j1, j2〉, 〈j2, j1〉} : 〈j1, j2〉 ∈ ∇J

}
∪∆J , (2.27)

where ∇J = J2 \∆J . Let us consider the surjection Ψ: J2 → J × JS such that

Ψ(j1, j2) =

{〈j1, j1〉}, if j1 = j2

{〈j1, j2〉, 〈j2, j1〉}, if j1 6= j2.
(2.28)

Write F1 for the composition

X2 F0−→ J2 Ψ−→ J × JS ,

where F0 is defined by (2.13). Then F1 belongs to CohS(RQ) and equality (2.25)
holds. �

Let X be a nonempty set and let P = {Xj : j ∈ J} be a partition of X. Recall
that P ⊗ P 1

S is a partition of X2 with the blocks B such that either B = RP or
there are distinct j1, j2 ∈ J for which

B = (Xj1 ×Xj2) ∪ (Xj2 ×Xj1)

holds.
The following proposition shows that P ⊗P 1

S is the smallest symmetric partition
with refinement P ⊗ P 1.
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Proposition 2.23. Let X be a nonempty set and let P be a partition of X. Then
P ⊗ P 1

S is symmetric and the inequality

P ⊗ P 1 6X2 P ⊗ P 1
S (2.29)

holds and, moreover, if Q is an arbitrary symmetric partition of X2 such that

P ⊗ P 1 6X2 Q, (2.30)

then we also have

P ⊗ P 1
S 6X2 Q. (2.31)

Proof. It follows directly from the definitions of P ⊗ P 1
S and P ⊗ P 1 that P ⊗ P 1

S

is symmetric and (2.29) holds.
Suppose Q ∈ Π(X2) is symmetric and satisfies (2.30). Then we evidently have

P ⊗ P 6X2 Q. (2.32)

By Proposition 2.20, inequality (2.32) implies the inequality

P ⊗ PS 6X2 Q. (2.33)

Inequality (2.31) follows from (2.33) and (2.30) because every block of P ⊗ P 1
S is a

block of P ⊗ P 1 or a block of P ⊗ PS . �

Let X be a nonempty set and let R be an equivalence relation on X. We will
denote by Coh1

S(R) the class of all symmetric mappings Φ ∈ Coh(R) satisfying the
equality

Φ(x, x) = Φ(y, y)

for all x, y ∈ X. It is clear that the equality

Coh1
S(R) = CohS(R) ∩ Coh1(R) (2.34)

holds for every nonvoid X and every equivalence relation R on X.

Theorem 2.24. Let X be a nonempty set and let Q = {Xj : j ∈ J} be a partition
of X. Then the inequality

Q⊗Q1
S 6X2 PΦ−1 (2.35)

holds for every Φ ∈ Coh1
S(RQ) and, moreover, there is Φ1 ∈ Coh1

S(RQ) such that
the equality

Q⊗Q1
S = PΦ−1

1
(2.36)

holds.
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Proof. Let Φ ∈ Coh1
S(RP ). Then, by (2.34), we obtain that PΦ−1 is a symmetric

partition of X2. Since Φ ∈ Coh(RP ) holds, Theorem 2.19 implies

Q⊗Q1 6X2 PΦ−1 . (2.37)

Inequality (2.35) follows from Φ ∈ CohS(RQ), Proposition 2.23 and (2.37).
Let us find Φ1 ∈ Coh1

S(RQ) such that (2.36) holds. Similarly (2.17) and (2.27),
we define J × J1

S ∈ Π(X2) as

J × J1
S := ∇J ∪

{
∆J

}
.

Let us consider the mapping Ψ1 : J × JS → J × J1
S defined such that

Ψ1(〈j, j〉) = {∆J} and Ψ1({〈j1, j2〉, 〈j2, j1〉}) = {〈j1, j2〉, 〈j2, j1〉}

hold for every j ∈ J and all distinct j1, j2 ∈ J . Write Φ1 for the composition

X2 F0−→ J2 Ψ−→ J × JS
Ψ1−−→ J × J1

S ,

where F0 and Ψ are defined by (2.13) and (2.28), respectively. Then Φ1 belongs to
Coh1

S(RQ) and satisfies equality (2.36). �

The results of the present section are quite elementary and should be known to
experts in the theory of relations in one form or another. Note also that these results
can be naturally generalized to the case of partitions of the set XK for arbitrary
K with |K| > 2. The partitions P ⊗P , P ⊗P 1, P ⊗PS and P ⊗P 1

S of X2 can also
be described as Cartesian products of disjoint unions of complete graphs with in-
terpretation of RP -coherent mappings as homomorphisms of corresponding graphs.
(See, for example, [20] and [17] for some results related to Cartesian products and,
respectively, morphisms of graphs.)

The algebraic structure of the subsemigroups of BX generated by P ⊗P , P ⊗P 1

and P ⊗ PS ,P ⊗ P 1
S will be described in Section 3 and, respectively, Section 4 of

the paper.

3. Semigroups generated by finest partitions of Cartesian squares

Let (S, ∗) be a semigroup. If S is a single-point set, S = {e}, then we consider
that e is the identity element of (S, ∗). The usual convention says that (S, ∗) must
have at least two elements to posses a zero (see, for example, [18]).

An element i ∈ S is an idempotent element of (S, ∗) if

i2 = i ∗ i = i.

It is clear that the identity element e and the zero θ are idempotents. We will say
that e and θ are the trivial idempotent elements.
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Definition 3.1. Let (S, ◦) and (H, ∗) be semigroups. A mapping F : S → H is a
homomorphism if

F (s1 ◦ s2) = F (s1) ∗ F (s2)

holds for all s1, s2 ∈ S. If a homomorphism is injective, then it is a monomorphism.
The bijective homomorphisms are called the isomorphisms.

The semigroups S and H are isomorphic if there is an isomorphism F : S → H.

Recall that, for every nonempty set Q of binary relations on a set X, we denote
by SQ a subsemigroup of BX having Q as a set of generators. In particular, if Q is
a partition of X2, then every block of Q is a binary relation on X so that we can
consider the semigroup SQ.

Now let P be a partition of X. Then P ⊗P is a partition of X2 and our first goal
is to describe the algebraic structure of the semigroup SP⊗P up to isomorphism.

Theorem 3.2. Let (H, ∗) be a semigroup. The following two statements are equiv-
alent.

(i) There are a nonempty set X and a partition P of X such that the semi-
group (SP⊗P , ◦) is isomorphic to (H, ∗).

(ii) The semigroup (H, ∗) satisfies the following conditions.
(ii1) (H, ∗) contains a zero element θ if |H| > 2.
(ii2) The equality

x ∗ y = θ (3.1)

holds for all distinct idempotent elements x, y ∈ H.
(ii3) If il and ir are nontrivial idempotent elements of H, then there

is a unique nonzero a ∈ H such that

a = il ∗ a ∗ ir. (3.2)

(ii4) If |H| > 2 holds, then for every nonzero a ∈ H there is a unique
pair (ila, ira) of nontrivial idempotent elements of H such that

a = ila ∗ a ∗ ira. (3.3)

Proof. (i) ⇒ (ii) Let P = {Xj : j ∈ J} be a partition of a set X such that the
semigroup (H, ∗) is isomorphic to (SP⊗P , ◦). We must prove that (H, ∗) satisfies
conditions (ii1)–(ii4). Since (H, ∗) and (SP⊗P , ◦) are isomorphic, it suffices to show
that the similar conditions hold for (SP⊗P , ◦). Let us do it.

First of all we note that conditions (ii1)− (ii4) are satisfied if |P | = 1. Suppose
|P | > 2 holds.

(ii1). The inequality |P | > 2 implies that there are two distinct Xj1 , Xj2 ∈ P .
Then we have Xj1 × Xj1 ∈ P ⊗ P and Xj2 × Xj2 ∈ P ⊗ P and Xj1 ∩ Xj2 = ∅.
Consequently

SP⊗P 3 (Xj1 ×Xj1) ◦ (Xj2 ×Xj2) = ∅.
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Thus SP⊗P contains the empty binary relation. This is the zero element of
(SP⊗P , ◦).

In order to verify the fulfillment of (ii2)–(ii4), we note that

(Xj1 ×Xj2) ◦ (Xj3 ×Xj4) =

∅, if Xj2 6= Xj3

(Xj1 ×Xj4), if Xj2 = Xj3

(3.4)

holds for all Xj1 , Xj2 , Xj3 , Xj4 ∈ P . Thus every element of (SP⊗P , ◦) is either
empty or belongs to P ⊗ P .

(ii2). From (3.4) it follows that every nontrivial idempotent element i of
(SP⊗P , ◦) has the form i = Xj × Xj for some Xj ∈ P . Now (ii2) follows from
the equality Xj1 ∩Xj2 = ∅ which holds for all different Xj1 , Xj2 ∈ P .

(ii3). Let il and ir be nontrivial idempotent elements of (SP⊗P , ◦). Then there
are j1, j2 ∈ J such that

il := Xj1 ×Xj1 and ir := Xj2 ×Xj2 .

It is clear that (3.2) holds if a = Xj1 ×Xj2 . Suppose now that there is a nonzero
b ∈ H such that

b = il ∗ b ∗ ir. (3.5)

Then we can find j3, j4 ∈ J such that b = Xj3 ×Xj4 . This equality and (3.5) give
us

b = (Xj3 ×Xj3) ∗ b ∗ (Xj4 ×Xj4)

= (Xj1 ×Xj1) ∗ (Xj3 ×Xj3) ∗ b ∗ (Xj4 ×Xj4) ∗ (Xj2 ×Xj2) 6= ∅.

Using (ii2), we have Xj1 = Xj3 and Xj2 = Xj4 .
(ii4). Let a ∈ H be nonzero. It was shown above that there are Xj1 , Xj2 ∈ P

such that

a = Xj1 ×Xj2 .

Write

il := Xj1 ×Xj1 and ir := Xj2 ×Xj2 .

Now (3.3) follows from (3.4). The uniqueness of representation (3.3) can be proved
as above.

(ii) ⇒ (i) Let (H, ∗) satisfy condition (ii). Let E = E(H) be the set of all
idempotent elements of H and let P be the partition of E on the one-point subsets
of E,

P = {{i} : i ∈ E}.

We claim that the semigroup (SP⊗P , ◦) is isomorphic to (H, ∗). Using Proposi-
tion 2.4 and formula (3.4) we see that every element of (SP⊗P , ◦) is either empty or



SEMIGROUPS GENERATED BY PARTITIONS 161

has a form s = {i1}×{i2} for some i1, i2 ∈ E. From the definition of the Cartesian
product, we have the equality

{i1} × {i2} = {〈i1, i2〉},

thus

s = {〈i1, i2〉}, (3.6)

holds, where 〈i1, i2〉 ∈ E × E. Conditions (ii3) and (ii4) imply that there is a
bijection F : SP⊗P → H such that F (∅) = θ, where θ is the zero element of (H, ∗),
and F ({〈i1, i2〉}) = x, where x is a unique nonzero element of H such that

x = i1 ∗ x ∗ i2. (3.7)

It suffices to show that F : SP⊗P → H is an isomorphism. Let s1 and s2 belong to
SP⊗P . We must show that

F (s1) ∗ F (s2) = F (s1 ◦ s2). (3.8)

This equality is trivially valid if s1 = ∅ or s2 = ∅. Suppose now that s1 6= ∅ 6= s2

but

s1 ◦ s2 = ∅ (3.9)

holds. Using (3.6) we can find i1,1, i1,2, i2,1, i2,2 ∈ E such that

s1 = {〈i1,1, i1,2〉} and s1 = {〈i2,1, i2,2〉}. (3.10)

From (3.9) it follows that i1,2 6= i2,1. By (ii3), there are the unique nonzero x1 and
x2 ∈ H such that

x1 = i1,1 ∗ x1 ∗ i1,2 and x2 = i2,1 ∗ x2 ∗ i2,2. (3.11)

By definition of F , we have the equalities F (∅) = θ and F (si) = xi for i = 1, 2.
Now using (3.11), condition (ii2) and i1,2 6= i2,1 we obtain

F (s1) ∗ F (s2) = x1 ∗ x2 = i1,1 ∗ x1 ∗ (i1,2 ∗ i2,1) ∗ x2 ∗ i2,2
= i1,1 ∗ x1 ∗ θ ∗ x2 ∗ i2,2 = θ = F (∅).

Suppose now that s1, s2, s1 ◦ s2 are nonzero elements of (SP×P , ◦). Then (3.10)
and (3.11) hold with i1,2 = i2,1 and s1 ◦ s2 = {〈i1,1, i2,2〉}. It implies

F (s1) ∗ F (s2) = (i1,1 ∗ x1 ∗ i1,2) ∗ (i1,2 ∗ x2 ∗ i2,2) = x1 ∗ x2. (3.12)

Since i1,1, i1,2, i2,2 are idempotent, from (3.11) we have

i1,1 ∗ x1 ∗ i1,2 = i1,1 ∗ x1 and i2,1 ∗ x1 ∗ i2,2 = x1 ∗ i2,2.

Now using (3.12) we obtain

F (s1) ∗ F (s2) = i1,1 ∗ (x1 ∗ x2) ∗ i2,2. (3.13)



162 O. DOVGOSHEY

By definition of F , there is a unique nonzero y ∈ H such that

F ({〈i1,1, i2,2〉}) = y = i1,1 ∗ y ∗ i2,2.

Thus

F (s1 ◦ s2) = F (s1) ∗ F (s2)

holds for all s1, s2 ∈ SP⊗P . The implication (ii)⇒ (i) follows. �

Let us denote by H1 the class of all semigroups (H, ∗) satisfying conditions
(ii1)− (ii4) from Theorem 3.2.

Lemma 3.3. Let X be a set and let P be a partition of X with |P | > 2. Then the
equality

SP⊗P = {∅} ∪ P ⊗ P (3.14)

holds.

Proof. It follows from formula (3.4). �

Remark 3.4. Equality (3.14) does not hold if |P | = 1. In this case we have
SP⊗P = P ⊗ P .

Corollary 3.5. Every semigroup (H, ∗) ∈ H1 admits a d-transitive monomorphism
H → BX with a suitable set X.

Proof. By Theorem 3.2 for every (H, ∗) ∈ H1 there are X and P ∈ Π(X) such
that (H, ∗) and (SP⊗P , ◦) are isomorphic. From Lemma 3.3 and Definition 1.1 it
follows that the identity mapping Id : SP⊗P → BX , Id(s) = s for every s ∈ SP⊗P , is
a d-transitive monomorphism for every P ∈ Π(X). Consequently, if Φ: H → SP⊗P
is an isomorphism, then the mapping

H Φ−→ SP⊗P
Id−→ BX

is a d-transitive monomorphism. �

Analyzing the proof of Theorem 3.2 and using Example 2.5 we obtain the next
corollary.

Corollary 3.6. The following conditions are equivalent for every semigroup H.

(i) H ∈ H1.
(ii) There is a nonempty set X such that H and SP∆

X2
are isomorphic, where

P∆X2 is a partition of X2 corresponding to the diagonal on X2.

The last corollary claims that a semigroup H belongs to H1 if and only if there
is a nonempty set X such that H is generated by set of all single-point subsets of
X2.
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Corollary 3.7. Let H ∈ H1 and S ∈ H1 hold. Then H and S are isomorphic
semigroups if and only if |H| = |S|.

Using Lemma 3.3 and Remark 3.4, we obtain the following.

Corollary 3.8. If (H, ∗) ∈ H1 is finite, then |H| 6= 2 and there is a nonnegative
integer n such that |H| = n2 + 1. Conversely, if n 6= 1 is a nonnegative integer,
then there is (H, ∗) ∈ H1 such that |H| = n2 + 1.

Condition (ii2) of Theorem 3.2 implies that, for every (H, ∗) ∈ H1, the set
E = E(H) of all idempotent elements of (H, ∗) is a subsemigroup of H. The
following proposition shows that a d-transitive monomorphism E(H)→ BX exists
if and only if |H| = 1.

Proposition 3.9. Let (H, ∗) be a semigroup with a zero element θ. Suppose that
all elements of (H, ∗) are idempotent, and the equality

e1 ∗ e2 = θ (3.15)

holds for all distinct e1, e2 ∈ H. Then (H, ∗) does not admit any d-transitive
monomorphism of the form H → BX .

Proof. Suppose contrary that there is a d-transitive monomorphism Φ: H → BX .
Let A be a set of generators of (H, ∗) such that {Φ(a) : a ∈ A} is a partition of

X2. Let us define a subset A1 of the set A by the rule: a point a ∈ A belongs to
A1 if and only if there is x1 ∈ X such that

〈x1, x1〉 ∈ Φ(a).

We claim that the equality A1 = A holds. Indeed, suppose the set A \ A1 is
nonempty. Let b ∈ A \ A1. Then Φ(b) is a block of the partition {Φ(a) : a ∈ A}.
Hence, Φ(b) is a nonempty subset of X2. Let x1, x2 be points of X such that

〈x1, x2〉 ∈ Φ(b). (3.16)

Then there is a1 ∈ A1 for which

〈x1, x1〉 ∈ Φ(a1) (3.17)

holds. Since A1 ∩ (A \ A1) = ∅, we have a1 6= b. From (3.15), it follows that
a1 ∗ b = θ and, by Definition 1.1,

Φ(a1 ∗ b) = Φ(θ) = ∅. (3.18)

Since Φ is a homomorphism, Φ(a1 ∗ b) = Φ(a1)◦Φ(b) holds. From (3.16) and (3.17)
it follows that

〈x1, x2〉 ∈ Φ(a1) ◦ Φ(b),

that contradicts (3.18).
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For every a ∈ A define a subset Xa of the set X as

Xa := {x ∈ X : 〈x, x〉 ∈ Φ(a)}.

Since {Φ(a) : a ∈ A} is a partition of X2 and for every a ∈ A we have

∆X ∩ Φ(a) 6= ∅,

the set {Xa : a ∈ A} is a partition of X. Arguing as above, we see that the equality

Φ(a) = X2
a (3.19)

holds for every a ∈ A. The equality

X2 =
⋃
a∈A

Φ(a)

and (3.19) imply that
X2 =

⋃
a∈A

X2
a .

The last equality holds if and only if |A| = 1. The set A is a set of generators of
(H, ∗). Consequently, we have |H| = 1, contrary to θ ∈ H. �

Recall that a semigroup (H, ∗) is a group with zero if (H, ∗) contains a zero θ
and the set H \ {θ} is a group with respect to the multiplication ∗. The following
proposition is almost evident.

Proposition 3.10. Let (H, ∗) be a group with zero. Then (H, ∗) does not admit
any d-transitive monomorphism of the form H → BX .

Proof. Let e be the identity of the group H \ {θ}. If Φ: H → BX is a d-transitive
monomorphism with some nonempty set X, then Φ(θ) = ∅ and there is a set A
of generators of (H, ∗) such that P = {Φ(a) : a ∈ A} is a partition of X2. In
particular, the equality

θ = a1 ∗ . . . ∗ an (3.20)

holds with some a1, . . ., an ∈ A. Since every block Φ(a) of P is nonempty subset
of X2, equality Φ(θ) = ∅ implies that A is a subset of H\{θ}. Hence, every a ∈ A
has an inverse element a−1 ∈ H \ {θ}. Using equality (3.20), we obtain

θ = a−1
n ∗ . . . a−1

1 ∗ θ = (a−1
n ∗ . . . a−1

1 ) ∗ (a1 ∗ . . . ∗ an) = e.

Thus, θ = e and, consequently, θ ∈ H \ {θ}, contrary to the definition. �

Corollary 3.5 and Proposition 3.9 show, in particular, that the existence of d-
transitive monomorphism is not, in general, a hereditary property of semigroups.
Now we consider an example of a semigroup for which this property is hereditary.
Recall that a semigroup (H, ∗) is a right zero semigroup if x ∗ y = y holds for all
x, y ∈ H. The left zero semigroups are defined in a dual way (see, for example,
[6, p. 4]).
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Proposition 3.11. Let (H, ∗) be a right (left) zero semigroup. Then every sub-
semigroup S of (H, ∗) admits a d-transitive monomorphism S → BX for a suitable
set X.

Proof. Suppose (H, ∗) is a right zero semigroup. Since every subsemigroup of
(H, ∗) is also a right zero semigroup, it suffices to find a set X and d-transitive
monomorphism Φ: H → BX . Write X := H and

P := {X × {x} : x ∈ X}. (3.21)

Then P is a partition ofX2. Let us define a mapping Φ: H → BX as Φ(x) = X×{x}
for every x ∈ H. Then the equalities

Φ(x ∗ y) = Φ(y) = X × {y}

and
Φ(x) ◦ Φ(y) = (X × {x}) ◦ (X × {y}) = X × {y}

hold for all x, y ∈ H. Hence, Φ is a homomorphism. It is clear that Φ is injective
and Φ(H) = P . Since H is a set of generators of (H, ∗) and H has no zero element,
the mapping Φ is d-transitive monomorphism.

For the case when (H, ∗) is a left zero semigroup it suffices to consider the
partition {{x} ×X : x ∈ X} instead of the partition P defined by (3.21). �

Example 3.12. Let X = {x ∈ R : 0 6 x 6 1} and let P = {X0, X1, X2} be a
trichotomy of X defined in Example 2.8. Write

P r := {X ×X0, X ×X1, X ×X2}

and
P l := {X0 ×X,X1 ×X,X2 ×X}.

Then P r and P l are partitions of X2 (see Figure 2), and SP r is a right zero semi-
group, and SP l is a left zero semigroup.

To describe the algebraic structure of the semigroup SP⊗P 1 (see (2.8)) we recall
the procedure of “the adjunction of an identity element”.

Let (S, ∗) be an arbitrary semigroup and let {e} be a single-point set such that
e /∈ S. We can extend the multiplication ∗ from S to S ∪ {e} by the rule:

e ∗ e = e and e ∗ x = x ∗ e = x (3.22)

for every x ∈ S. Following [6] we use the notation

S1 :=

S, if (S, ∗) has an identity element

S ∪ {e}, otherwise.
(3.23)

It is clear that e is an identity element of (S1, ∗). Thus the semigroup (S1, ∗) is
obtained from (S, ∗) by “adjunction of an identity element to (S, ∗)”.
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P r

0 1
3

2
3

1

1

P l

0 1

1
3

2
3

1

Figure 2. The partitions P r and P l corresponding to the tri-
chotomy {X0, X1, X2}. Here X × X0 (X0 × X) is red, X × X1

(X1 ×X) is yellow and X ×X2 (X2 ×X) is blue.

Now we want to prove that for every nonempty set X and every partition P of
X, the semigroup (SP⊗P 1 , ◦) can be obtained from (SP⊗P , ◦) by adjunction of an
identity element.

Lemma 3.13. Let (H, ∗) belong to H1. Then (H, ∗) contains an identity element
if and only if |H| = 1.

Proof. If |H| = 1 holds, then H contains the identity element. Suppose now
|H| 6= 1. By condition (ii1) of Theorem 3.2, (H, ∗) contains a zero element θ. If e
is an identity element of H, then e 6= θ holds. By condition (ii4) of Theorem 3.2,
there exists a unique pair of idempotent elements ile, ire /∈ {θ, e} such that

e = ile ∗ e ∗ ire

holds. Now we obtain

ile = ile ∗ e = ile ∗ (ile ∗ e ∗ ire) = (ile ∗ ile) ∗ e ∗ ire = ile ∗ e ∗ ire = e.

Thus ile = e holds contrary to ile /∈ {θ, e}. �

Theorem 3.14. Let (L, ·) be a semigroup. The following statements are equivalent.

(i) There are a set X and a partition P of X such that the semigroup
(SP⊗P 1 , ◦) is isomorphic to (L, ·).

(ii) There is a semigroup (H, ∗) ∈ H1 such that (L, ·) and (H1, ∗) are isomor-
phic.

Tacking into account Theorem 3.2, we obtain the following equivalent reformu-
lation of Theorem 3.14.

Theorem 3.15. Let X be a set and let P = {Xj : j ∈ J} be a partition of X.
Then the semigroups (S1

P⊗P , ◦) and (SP⊗P 1 , ◦) are isomorphic, where (S1
P⊗P , ◦) is

obtained from (SP⊗P , ◦) by adjunction of an identity element.
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Proof. The case |J | = 1 is trivial.
Let |J | > 2 hold. In this case, by Lemma 3.13, (SP⊗P , ◦) does not contain any

identity element. It is easy to see that

P ⊗ P− := {Xj1 ×Xj2 : 〈j1, j2〉 ∈ ∇J},

where ∇J = J2 \∆J , is a set of generators of the semigroup (SP⊗P , ◦). Indeed, the
equality

X2
j1 = (Xj1 ×Xj2) ◦ (Xj2 ×Xj1)

holds for all j1, j2 ∈ J . Hence, we have P ⊗ P ⊆ SP⊗P− . Since P ⊗ P is a set of
generators of (SP⊗P , ◦) and

P ⊗ P− ⊆ P ⊗ P

holds, the equality (SP⊗P− , ◦) = (SP⊗P , ◦) follows.
For every (Xj1 ×Xj2) ∈ P ⊗ P we evidently have

(Xj1 ×Xj2) ◦RP = (Xj1 ×Xj2) ◦

⋃
j∈J

X2
j


=
⋃
j∈J

(Xj1 ×Xj2) ◦X2
j = Xj1 ×Xj2

and, similarly,

RP ◦ (Xj1 ×Xj2) = Xj1 ×Xj2

holds. Moreover, we have

RP ◦RP =

⋃
j∈J

X2
j

 ◦
⋃
j∈J

X2
j


=
⋃
i,j∈J

X2
i ◦X2

j =
⋃
j∈J

X2
j = RP

and RP /∈ SP⊗P . Since {RP } = SP⊗P 1 \ SP⊗P and RP is the identity element
of (SP⊗P 1 , ◦), the semigroup (SP⊗P 1 , ◦) is obtained by adjunction of the identity
element RP to (SP⊗P , ◦). �

Corollary 3.16. Let X be a nonempty set and let P be a partition of X with
|P | > 2. Then we have

SP⊗P 1 = {∅} ∪ {RP } ∪ P ⊗ P.

The proof of the next corollary is similar to the proof of Corollary 3.5.

Corollary 3.17. Let (H, ∗) belong to H1. Then (H1, ∗) admits a d-transitive
monomorphism H1 → BX for a suitable set X.
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4. Semigroups generated by finest symmetric partitions of Cartesian
squares

In what follows we say that a subsemigroup H1 of a semigroup (H, ∗) is an ideal
of H if

H1 ∗ H ⊆ H1 and H ∗H1 ⊆ H1

holds, where we write

A ∗B := {x ∗ y : x ∈ A, y ∈ B} (4.1)

for all nonempty subsets A and B of H. An ideal H1 of a semigroup H is proper if
|H1| > 1 and H 6= H1 hold.

Lemma 4.1. Let C be an ideal of a semigroup (H, ∗) and let θ be the zero of C.
Then θ is also the zero of H.

Proof. Let a belong to H \ C. Then θ ∗ a belongs to C because θ ∈ C and C is an
ideal of H. Consequently, we have

θ = θ ∗ (θ ∗ a) = (θ ∗ θ) ∗ a = θ ∗ a.

Similarly we obtain a ∗ θ = θ. Thus, θ is a zero of (H, ∗). �

A semigroup is a band if every element of this semigroup is idempotent. (This
notion was introduced in [22].) For every (H, ∗) ∈ H1 the set E = E(H) is a
commutative band (this band was consider above in Proposition 3.9). A right (left)
zero semigroup is an example of non-commutative band (see Proposition 3.11).

If the set E(H) of all idempotent elements of a semigroup H is a band, then the
set E(H1) is also a band.

Example 4.2. Let P = {Xj : j ∈ J} be a partition of a nonempty set X and let
|J | > 2. Then the sets E(SP⊗P 1) and E(SP⊗P ) are commutative bands,

E(SP⊗P 1) = {∅} ∪ {RP } ∪ {X2
j : j ∈ J}, E(SP⊗P ) = {∅} ∪ {X2

j : j ∈ J}.

Every commutative band (E, ∗) has a natural partial order 6 defined by

(i2 6 i1)⇔ (i1 ∗ i2 = i1). (4.2)

A colored Hasse diagram of (E,6) is plotted in Figure 3 for the case when E is
the band of all idempotents of SP⊗P 1 and P = {X0, X1, X2} is the trichotomy
introduced in Example 2.8. A standard definition of the Hasse diagram for finite
partially ordered sets can be found in [19, p. 15].

Definition 4.3. Let (H, ∗) be a semigroup and let C be an ideal of (H, ∗). The
semigroup (H, ∗) is a band of subsemigroups with core C if there is a partition
{Hα : α ∈ Ω} of the set H \ C such that every Hα is a subsemigroup of H and
Hα1 ∗ Hα2 ⊆ C holds for all distinct α1, α2 ∈ Ω.
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Figure 3. RP is white, X2
0 is red, X2

1 is yellow, X2
2 is blue, and

∅ is black.

If H is a band of semigroups with core C, then we write

H ≈ {Hα : α ∈ Ω} t {C}.

Example 4.4. Let {(Hα, ∗α) : α ∈ Ω} be a nonempty set of disjoint semigroups
and (C, ◦) be a semigroup with the zero element θ and such that

C ∩ Hα = ∅

holds for every α ∈ Ω. Let us define a binary operation ∗ on

H := C ∪

(⋃
α∈Ω

Hα

)
as

x ∗ y =


x ◦ y, if x, y ∈ C

x ∗α y, if x, y ∈ Hα, α ∈ Ω

θ, otherwise.

(4.3)

It is easy to prove that ∗ is associative. Hence, (H, ∗) is a semigroup, and, in
addition, from (4.3) it follows directly that

H ≈ {Hα : α ∈ Ω} t {C}.

Example 4.5. Let (C, ◦) and (S, ·) be disjoint semigroups and let H = C∪S. Write

x ∗ y =


x ◦ y, if x, y ∈ C

x · y, if x, y ∈ S

x, if x ∈ C and y ∈ S

y, if y ∈ C and x ∈ S.

(4.4)

Then ∗ : H×H → H is an associative operation, and (H, ∗) is a band of semigroups
with core C.
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The defined above band of subsemigroups with given core can be considered as a
special case of the union of band of semigroups (see, for example, [6, p. 25]). Recall
that a semigroup (H, ∗) is a union of band of subsemigroups Hα, α ∈ Ω if

PH := {Hα : α ∈ Ω} (4.5)

is a partition of H and Hα ∗ Hα ⊆ Hα holds for every α ∈ Ω and, moreover, for
every pair of distinct α, β ∈ Ω there is γ ∈ Ω such that Hα ∗ Hβ ⊆ Hγ .

The next theorem gives us a characterization of subsemigroups of BX generated
by partitions P ⊗ PS of X2 (see formula (2.9) and Proposition 2.20).

In what follows we denote by θ a zero element of semigroup (H, ∗).

Theorem 4.6. Let (H, ∗) be a semigroup and let E = E(H) be the set of all idem-
potent elements of (H, ∗). Then the following conditions (i) and (ii) are equivalent.

(i) There is a nonempty set X and a partition P of X such that |P | > 2 and
the semigroup (H, ∗) is isomorphic to (SP⊗PS , ◦).

(ii) The semigroup (H, ∗) is a band of semigroups Hα with a core C,

H ≈ {Hα : α ∈ Ω} t {C},

and the following conditions hold.
(ii1) C belongs to H1.
(ii2) Every Hα is a group of order 2.
(ii3) E is a commutative band.
(ii4) If e1, e2 are two distinct nontrivial idempotent elements of C,

then there is a unique e ∈ E \ C such that

e1 = e1 ∗ e and e2 = e2 ∗ e. (4.6)

Conversely, if e ∈ E \ C, then there are exactly two distinct non-
trivial e1, e2 ∈ C ∩ E such that (4.6) holds.

(ii5) For every x ∈ E ∩ C and every y ∈ H \ E the equality x ∗ y = θ

(y ∗ x = θ) holds if and only if x ∗ y (y ∗ x) is idempotent.

Proof. (i) ⇒ (ii) Let P = {Xj : j ∈ J} be a partition of a set X with |P | > 2

and let (SP⊗PS , ◦) be isomorphic to (H, ∗). We must find a proper ideal C of (H, ∗)
such that C ∈ H1 and prove that H is a band with core C satisfying conditions
(ii2) − (ii5). Since (H, ∗) and (SP⊗PS , ◦) are isomorphic and SP⊗P belongs to
H1, it suffices to show that SP⊗PS is a band with core SP⊗P and that conditions
(ii2)− (ii5) hold with H = SP⊗PS and C = SP⊗P .

Suppose first |J | = 2. Then we have P = {X1, X2} and

P ⊗ P = {X2
1 , X

2
2 , X1 ×X2, X2 ×X1}

and
P ⊗ PS = {X2

1 , X
2
2 , (X1 ×X2) ∪ (X2 ×X1)}.
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Write for short

a1,1 = X2
1 , a2,2 = X2

2 , a1,2 = (X1 ×X2) ∪ (X2 ×X1).

In this notation we obtain

X1 ×X2 = a1,2 ◦ a2,2, X2 ×X1 = a1,2 ◦ a1,1 and ∅ = a1,1 ◦ a2,2. (4.7)

Lemma 3.3 and equalities (4.7) imply

SP⊗P = {a1,1, a2,2, a1,2 ◦ a2,2, a1,2 ◦ a1,1, a1,1 ◦ a2,2}. (4.8)

Thus SP⊗P is a subsemigroup of SP⊗PS . We notice that P⊗PS is a set of generators
of SP⊗PS , and P ⊗P is a set of generators of SP⊗P , and a1,2 is the unique element
of (P ⊗PS) \ (P ⊗P ). Consequently, the subsemigroup SP⊗P of SP⊗PS is an ideal
of SP⊗PS if and only if

a1,2 ◦ x ∈ SP⊗P and x ◦ a1,2 ∈ SP⊗P

hold for every x ∈ P ⊗ P . If x = a1,1 or x = a2,2, then a1,2 ◦ x ∈ SP⊗P follows
from (4.8). If

x = X2 ×X1 = a1,2 ◦ a1,1,

then, using the equality
a1,2 ◦ a1,2 = a1,1 ∪ a2,2 (4.9)

we obtain

a1,2 ◦ x = a1,2 ◦ (a1,2 ◦ a1,1) = (a1,2 ◦ a1,2) ◦ a1,1

= (a1,1 ∪ a2,2) ◦ a1,1 = a1,1, (4.10)

that implies a1,2 ◦ x ∈ SP⊗P . Thus a1,2 ◦ x ∈ SP⊗P holds for every x ∈ P ⊗ P .
Analogously we can prove that x ◦ a1,2 ∈ SP⊗P is valid for every x ∈ P ⊗ P .
Thus SP⊗P is an ideal of SP⊗PS . This ideal is proper because we have a1,2 ∈
SP⊗PS \ SP⊗P and SP⊗P is single-point if and only if |P | = 1.

A similar proof shows that for every P = {Xj : j ∈ J} with |J | > 3 the semigroup
SP⊗P is a proper ideal of SP⊗PS .

Let us prove that SP⊗PS is a band with core SP⊗P and verify conditions (ii2)−
(ii5).

Write for short
ai,j = (Xi ×Xj) ∪ (Xj ×Xi)

for all i, j ∈ J . Let a belong to SP⊗PS \ SP⊗P . Since SP⊗P is an ideal of SP⊗PS ,
the element a has a form

a = ai1,j1 ◦ ai2,j2 ◦ . . . ◦ ain,jn ,

where n is a positive integer number and

aik,jk ∈ (P ⊗ PS) \ (P ⊗ P ) (4.11)
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for every k ∈ {1, . . . , n}. We claim that a is an element of the cyclic semigroup

〈〈ai1,j1〉〉 = {ai1,j1 , a2
i1,j1 , a

3
i1,j1 , . . .}.

It is clear if n = 1. Let us consider the case n > 2. Condition (4.11) implies ik 6= jk

for every k ∈ {1, . . . , n}. It is easy to prove that

ai1,j1 ◦ ai2,j2 = ∅ (4.12)

holds if {i1, j1} ∩ {i2, j2} = ∅. Consequently, a ∈ SP⊗PS \ SP⊗P implies

|{i1, j1} ∩ {i2, j2}| > 1.

Let
|{i1, j1} ∩ {i2, j2}| = 1. (4.13)

Without loss of generality we can set j1 = j2. Then

i1 6= j1 6= i2 6= i1

and

ai1,j1 ◦ ai2,j2 = ai1,j1 ◦ aj1,i2

=
(

(Xi1 ×Xj1) ◦
(
(Xj1 ×Xi2) ∪ (Xi2 ×Xj1)

))
∪
(

(Xj1 ×Xi1) ◦
(
(Xj1 ×Xi2) ∪ (Xi2 ×Xj1)

))
= (Xi1 ×Xi2) ∪∅ = Xi1 ×Xi2 (4.14)

hold. Hence, if we have (4.13), then a ∈ SP⊗P holds, contrary to a ∈ SP⊗PS \SP⊗P .
Let us consider the case when

|{i1, j1} ∩ {i2, j2}| = 2.

The last equality holds if and only if {i1, j1} = {i2, j2}. In this case we obtain

ai1,j1 ◦ ai2,j2 = ai1,j1 ◦ ai1,j1 = a2
i1,j1

=
(
(Xi1 ×Xj1) ∪ (Xj1 ×Xi1)

)
◦
(
(Xi1 ×Xj1) ∪ (Xj1 ×Xi1)

)
= X2

i1 ∪X
2
j1 .

From Lemma 3.3 it follows that

ai1,j1 /∈ SP⊗P and a2
i1,j1 /∈ SP⊗P

if i1 6= j1. Similarly, it can be shown that

〈i1, j1〉 = 〈i3, j3〉, . . . , 〈i1, j1〉 = 〈in, jn〉.

The membership relation a ∈ 〈〈ai1,j1〉〉 follows.
It is easy to prove that every cyclic semigroup

〈〈ai,j〉〉 = {ai,j , a2
i,j , a

3
i,j , . . .}
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is a group of order 2. Indeed, we have

ai,j = (Xi ×Xj) ∪ (Xj ×Xi) 6= X2
i ∪X2

j = a2
i,j

and

a3
i,j = a2

i,j ◦ ai,j
=
(
X2
i ∪X2

j

)
◦
(
(Xi ×Xj) ∪ (Xj ×Xi)

)
= (Xi ×Xj) ∪ (Xj ×Xi) = ai,j ,

i.e., a3
i,j = ai,j . The last equality implies

(a2
i,j)

2 = a4
i,j = a3

i,j ◦ ai,j = ai,j ◦ ai,j = a2
i,j .

Thus 〈〈ai,j〉〉 = {ai,j , a2
i,j} is a group of order 2 with the identity element a2

i,j .
Suppose now that x1, x2 ∈ SP⊗PS \ SP⊗P . If there is 〈i, j〉 ∈ J2, i 6= j, such

that x1 ∈ 〈〈ai,j〉〉 and x2 ∈ 〈〈ai,j〉〉, then x1 ◦ x2 ∈ 〈ai,j〉 holds because 〈〈ai,j〉〉 is a
group. If we have

x1 ∈ 〈〈ai1,j1〉〉 and x2 ∈ 〈〈ai2,j2〉〉

and {i1, j1} 6= {i2, j2}, then there are integer m > 2 and n > 2 such that

x1 ◦ x2 = ami1,j1 ◦ a
n
i2,j2 = am−1

i1,j1
◦ (ai1,j1 ◦ ai2,j2) ◦ an−1

i2,j2
.

If |{i1, j1} ∩ {i2, j2}| = 0, then ai1,j1 ◦ ai2,j2 = ∅ holds and, moreover, if we have
|{i1, j1} ∩ {i2, j2}| = 1, then, as in (4.12), (4.14), we obtain

ai1,j1 ◦ ai2,j2 ∈ SP⊗P .

Since SP⊗P is an ideal of SP⊗PS , it follows that x1 ◦ x2 ∈ SP⊗P . Note now that
equality 〈〈ai,j〉〉 = {ai,j , a2

i,j} implies

〈〈ai1,j1〉〉 ∩ 〈〈ai2,j2〉〉 = ∅

if {i1, j1} 6= {i2, j2}. Thus SP⊗PS is a band of groups 〈〈ai,j〉〉 with core SP⊗P and
condition (ii2) holds.

(ii3). In what follows we denote by E = E(SP⊗PS ) the set of all idempotent
elements of SP⊗PS . It suffices to show that

e1 ◦ e2 = e2 ◦ e1 and e1 ◦ e2 ∈ E (4.15)

hold for all e1, e2 ∈ E. First of all we note that (4.15) is trivially valid if e1 = ∅ or
e2 = ∅ or if e1 and e2 are idempotent in SP⊗P .

Let
∅ 6= e1 ∈ SP⊗P ∩ E and e2 ∈ (SP⊗PS \ SP⊗P ) ∩ E.

Then there are j1, j2, j3 ∈ J such that j2 6= j3, and

e1 = X2
j1 , and e2 = X2

j2 ∪X
2
j3 . (4.16)
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Direct calculations show that

e1 ◦ e2 = e2 ◦ e1 =

e1, if j1 ∈ {j2, j3}

∅, if j1 /∈ {j2, j3},
(4.17)

that implies (4.15). If we have

∅ 6= e2 ∈ SP⊗P ∩ E and e1 ∈ (SP⊗PS \ SP⊗P ) ∩ E,

then (4.15) is proved in a similar way.
Now let

e1, e2 ∈ (SP⊗PS \ SP⊗P ) ∩ E.

Then there are i1, j1, i2, j2 ∈ J such that i1 6= j1 and i2 6= j2 and

e1 = X2
i1 ∪X

2
j1 and e2 = X2

i2 ∪X
2
j2 .

Using these equalities we obtain

e1 ◦ e2 = e2 ◦ e1 =


e1, if {i1, j1} = {i2, j2}

∅, if {i1, j1} ∩ {i2, j2} = ∅

X2
j , if j is a unique element of {i1, j1} ∩ {i2, j2}.

The last equality also implies (4.15). Condition (ii3) follows.
(ii4). Let e1 and e2 be two distinct nontrivial idempotent elements of SP⊗P .

Then there are j1, j2 ∈ J such that

e1 = X2
j1 and e2 = X2

j2 . (4.18)

Using (4.17) we can show that

e = X2
j1 ∪X

2
j2 (4.19)

is a unique idempotent element of SP⊗PS \ SP⊗P for which (4.6) holds.
Conversely, if e ∈ E ∩ (SP⊗PS \ SP⊗P ), then there are distinct j1, j2 ∈ J

such that (4.19) holds. For every nontrivial idempotent e3 ∈ SP⊗P , the equalities
e3 ◦ e = e3 and (4.19) imply e3 = X2

j1
or e3 = X2

j2
, as required.

(ii5). We want to prove that

(x ◦ y = ∅)⇔ (x ◦ y ∈ E) (4.20)

and
(y ◦ x = ∅)⇔ (y ◦ x ∈ E) (4.21)

are valid for all x ∈ E ∩ C and y ∈ SP⊗PS \ E.
Let us prove (4.20). The implication (x ◦ y = ∅) ⇒ (x ◦ y ∈ E) is trivial.

In particular, this implication is valid if x = ∅. If x ∈ E ∩ C, and x 6= ∅, and
y ∈ SP⊗PS \ E, then there are j1, j2, j3 ∈ J such that j2 6= j3, and

x = X2
j1 , and y = (Xj2 ×Xj3) ∪ (Xj3 ×Xj2).
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These equalities imply

x ◦ y =


∅, if j1 6= {j2, j3}

Xj2 ×Xj3 , if j1 = j2

Xj3 ×Xj2 , if j1 = j3.

(4.22)

Since every idempotent element of C is either trivial or has a form e = X2
j for some

j ∈ J , we see that (4.22) implies the converse implication

(x ◦ y ∈ E)⇒ (x ◦ y = ∅).

Equivalence (4.20) is valid. The similar proof shows that (4.21) is also valid.
(ii)⇒ (i) Suppose (H, ∗) is a band of semigroups Hα with core C,

H ≈ {Hα : α ∈ Ω} t {C},

such that C ∈ H1 and conditions (ii2) − (ii5) hold. By Theorem 3.2, there are
a nonempty set X and a partition P = {Xj : j ∈ J} of X such that (C, ∗) is
isomorphic to (SP⊗P , ◦).

Let Φ: C → SP⊗P be an isomorphism. We want to show that there is a con-
tinuation of Φ to an isomorphism ΦS : H → SP⊗PS and that |P | > 2 holds. The
construction of ΦS will be carried out in two stages.

At the first stage, we will extend Φ to a monomorphism (injective homomor-
phism) Φ1 : C ∪ E → SP⊗PS . It should be noted here that C ∪ E is also a band of
semigroups with core C because we have

H ≈ {Hα : α ∈ Ω} t {C},

and every group Hα contains a unique idempotent element, and, for every e ∈ H\C,
there is a unique α ∈ Ω such that {e} is a subgroup of (Hα, ∗).

In the second stage we will prove that the monomorphism Φ1 can be extended
to an isomorphism ΦS : H → SP⊗PS .

Inequality |P | > 2. The core C has at least two nontrivial idempotent elements.
Indeed, {Hα : α ∈ Ω} is a partition of H \ C. Consequently, H \ C and Ω are
nonempty sets (see Remark 2.3). By condition (ii2), every Hα is a group. The
identity element of Hα is an idempotent element of H belonging to H \ C. Using
condition (ii4), we see that C contains at least two nontrivial idempotent elements
as stated above. Since C and SP⊗P are isomorphic and all idempotent elements of
SP⊗P are trivial if |P | = 1, we have |P | > 2.

Monomorphism Φ1 : C ∪ E → SP⊗PS . By condition (ii4), for every x ∈ E \ C,
there are exactly two distinct nontrivial idempotent elements x1, x2 ∈ C such that

x1 = x1 ∗ x and x2 = x2 ∗ x. (4.23)



176 O. DOVGOSHEY

Let us define a mapping Φ1 : C ∪ E → SP⊗PS as follows

Φ1(x) =

Φ(x), if x ∈ C

Φ(x1) ∪ Φ(x2), if x ∈ E \ C,
(4.24)

where x1 and x2 are idempotent elements from (4.23). Note that if z is a nontrivial
idempotent element in C, then there is a unique j ∈ J such that Φ(z) = X2

j .
Consequently, in (4.24) we have

Φ1(x) = Φ(x1) ∪ Φ(x2) = X2
j1 ∪X

2
j2 , (4.25)

where X2
j1

= Φ(x1) and X2
j2

= Φ(x2). Since

Φ(C) = SP⊗P ⊆ SP⊗PS

and, for every x ∈ E \ C, we have

Φ1(x) ∈ SP⊗PS \ SP⊗P ,

Φ1 really is a mapping from C ∪ E to SP⊗PS .
The mapping Φ1 is injective because Φ is injective and because condition (ii4)

and equalities (4.24)–(4.25) imply

Φ1(x) 6= Φ1(y)

for all different x, y ∈ E \ C.
Note that

Φ1(C ∪ E) = SP⊗P ∪ {X2
j ∪X2

i : i, j ∈ J and i 6= j}. (4.26)

Indeed, we evidently have Φ1(C) = Φ(C) = SP⊗P and

Φ1(E \ C) ⊆ {X2
j ∪X2

i : i, j ∈ J and i 6= j}. (4.27)

Using condition (ii4), for any two distinct x1, x2 ∈ C∩E, we can find x ∈ E \C such
that (4.23) holds. Since Φ: C → SP⊗P is an isomorphism, we have the equality

Φ(E ∩ C) = {X2
j : j ∈ J}. (4.28)

Consequently, if i, j ∈ J and i 6= j, then there is x ∈ E \ C such that

Φ1(x) = Φ(x1) ∪ Φ(x2) = X2
j ∪X2

i .

Hence, the inclusion

Φ1(E \ C) ⊇ {X2
j ∪X2

i : i, j ∈ J and i 6= j} (4.29)

holds. The last inclusion, (4.27) and (4.28) imply (4.26).
The mapping Φ1 is a monomorphism if and only if

Φ1(x ∗ y) = Φ1(x) ◦ Φ1(y) (4.30)
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holds for all x, y ∈ C ∪ E. Since Φ1 is an extension of the isomorphism Φ, equal-
ity (4.30) is trivial for x, y ∈ C. In addition, we have

Φ1(x ∗ x) = Φ1(x) ◦ Φ1(x)

for every x ∈ E ∪ C because, for x ∈ E \ C, from (4.25) it follows that Φ1(x) is an
idempotent element of SP⊗PS . Consequently, it suffices to prove equality (4.30) in
the following cases:

x ∈ E \ C and y ∈ E ∩ C, (4.31)

x ∈ E ∩ C and y ∈ E \ C, (4.32)

x ∈ E \ C and y ∈ C \ E, (4.33)

x ∈ C \ E and y ∈ E \ C, (4.34)

x, y ∈ E \ C and x 6= y. (4.35)

Before proceeding to the proof of equality (4.30) for cases (4.31)–(4.35), we also
note that this equality holds if

x = θ or y = θ, (4.36)

when θ is the zero of C. To see it, we suppose that (4.36) holds. By Lemma 4.1, θ
also is the zero of (H, ∗). Thus, we have x ∗ y = θ that implies

Φ1(x ∗ y) = Φ1(θ) = Φ(θ) = ∅. (4.37)

Since Φ: C → SP⊗P is an isomorphism and Φ1 is an extension of Φ, from (4.36)
and |P | > 2 it follows that

Φ1(x) = ∅ or Φ1(y) = ∅.

Consequently,

Φ1(x) ◦ Φ1(y) = ∅ (4.38)

holds. Thus, (4.36) implies equality (4.30).
Further, in proving equality (4.30), we will always assume

y 6= θ (4.39)

and, for x ∈ E \ C, we will set Φ1(x) = X2
j1
∪ X2

j2
, where j1 and j2 are distinct

elements of J such that

x1 := Φ−1(X2
j1), x2 := Φ−1(X2

j2), x1 = x1 ∗ x, x2 = x2 ∗ x (4.40)

(see (4.23)–(4.25)).
Case (4.31). Taking condition (4.39) into account, we can find j3 ∈ J for which

Φ1(y) = Φ(y) = X2
j3 .
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Hence, the equality

Φ1(x) ◦ Φ1(y) =

∅, if j3 /∈ {j1, j2}

X2
j3
, if j3 ∈ {j1, j2}.

(4.41)

holds. If y = x1 or y = x2, then from (4.40) it follows that

y = x1 = x1 ∗ x = y ∗ x

or, respectively,

y = x2 = x2 ∗ x = y ∗ x.

Thus

Φ(y ∗ x) = Φ1(y) = Φ(Φ−1(X2
j3)) = X2

j3

holds which implies (4.30).
Suppose now x1 6= y 6= x2. Since (H, ∗) is a band of semigroups with core C

and y ∈ C, we have x ∗ y ∈ C. Moreover, by condition (ii3), we have x ∗ y ∈ E.
Consequently, x ∗ y ∈ E ∩ C holds. If x ∗ y 6= y, then, using condition (ii2) of
Theorem 3.2, we obtain

x ∗ y = x ∗ y2 = (x ∗ y) ∗ y = θ. (4.42)

Consequently, we have

Φ1(x ∗ y) = Φ(x ∗ y) = Φ(θ) = ∅. (4.43)

Using (4.41) and (4.43) we obtain (4.30).
Case (4.32). This case is completely similar to the previous one.
Case (4.33). From y ∈ C\E and (4.39) it follows that there is a pair 〈j3, j4〉 ∈ J2

such that

Φ1(y) = Xj3 ×Xj4 and j3 6= j4. (4.44)

Now we obtain

Φ1(x) ◦ Φ1(y) = (X2
j1 ∪X

2
j2) ◦ (Xj3 ×Xj4)

=

∅, if j3 /∈ {j1, j2}

Xj3 ×Xj4 , if j3 ∈ {j1, j2}

=

∅, if j3 /∈ {j1, j2}

Φ1(y), if j3 ∈ {j1, j2}.

(4.45)

From condition (ii4) of Theorem 3.2, it follows that j3 ∈ {j1, j2} holds if and only
if

x1 ∗ y = y or x2 ∗ y = y.
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Suppose we have x1 ∗ y = y. From x1 = x1 ∗ x and (ii3) it follows that x ∗ x1 = x1.
Consequently,

x ∗ y = x ∗ (x1 ∗ y) = (x ∗ x1) ∗ y = x1 ∗ y = y.

Thus,
Φ1(x ∗ y) = Φ1(y) = Φ(y) = Φ1(x) ◦ Φ1(y) (4.46)

holds if x1 ∗ y = y. Analogously, we obtain (4.46) if x2 ∗ y = y.
Suppose now j3 /∈ {j1, j2}. Write

x3 := Φ−1(X2
j3). (4.47)

Then x3 is an idempotent element of C, and θ 6= x3, and

x1 6= x3 6= x2. (4.48)

By condition (ii3), we have x ∗ x3 ∈ E and, in addition, x ∗ x3 ∈ C because C is an
ideal of (H, ∗). Since E is a commutative band, we obtain also

x3 ∗ x ∈ C ∩ E.

It is clear that
(x3 ∗ x) ∗ x = x3 ∗ (x ∗ x) = x3 ∗ x. (4.49)

Condition (ii4) and (4.48)–(4.49) imply that x3 ∗ x is a trivial idempotent element
of C. Since (C, ∗) and (SP⊗P , ◦) are isomorphic and |P | > 2 holds, C contains a
zero θ, and it is the unique trivial idempotent element of (C, ∗). It follows directly
from (4.47) and (4.44) that y = x3 ∗ y. Consequently,

Φ1(x ∗ y) = Φ1(x ∗ x3 ∗ y) = Φ1((x ∗ x3) ∗ y) = Φ1(θ ∗ y) = Φ1(θ) = ∅.

Equality (4.30) follows.
Case (4.34). This case is completely similar to (4.33).
Case (4.35). Using (4.24) and (4.35) we can find two distinct nontrivial y1,

y2 ∈ C ∩ E and, consequently, two distinct j3, j4 ∈ J such that

y1 = y1 ∗ y, y2 = y2 ∗ y, {j1, j2} 6= {j3, j4}, (4.50)

and
Φ1(y) = Φ1(y1) ∪ Φ1(y2), Φ1(y1) = X2

j3 , Φ1(y2) = X2
j4 . (4.51)

It should be noted here that {j1, j2} 6= {j3, j4} holds because Φ1 is injective and,
by (4.35), we have x 6= y. From (4.51) it follows that Φ1(y) = X2

j3
∪X2

j4
. The last

equality and (4.25) imply

Φ1(x) ◦ Φ1(y) = (X2
j1 ∪X

2
j2) ◦ (X2

j3 ∪X
2
j4)

=

∅, if {j1, j2} ∩ {j3, j4} = ∅

X2
j0
, if j0 is a unique point of {j1, j2} ∩ {j3, j4}.

(4.52)
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Let {j1, j2} ∩ {j3, j4} 6= ∅. Without loss of generality, we can set

j0 = j1 = j3,

or, an equivalent form,
x1 = y1 = y0, (4.53)

where y0 = Φ−1(X2
j0

). Equality (4.30) evidently holds if

x ∗ y = y0.

Let us prove the last equality. From (4.40), (4.50), (4.51), and (4.53) it follows that

y0 = y0 ∗ x and y0 = y0 ∗ y.

These equalities and condition (ii3) imply

y0 = y2
0 = (y0 ∗ x) ∗ (y0 ∗ y) = (y0 ∗ y0) ∗ (x ∗ y) = y0 ∗ (x ∗ y).

Hence, y0 = y0 ∗ (x ∗ y) holds. Since (H, ∗) is a band of Hα with core C and E is
a commutative band, x ∗ y is an idempotent element of C. Using condition (ii2) of
Theorem 3.2, we see that y0 = y0 ∗ (x ∗ y) holds if and only if y0 = θ or y0 = x ∗ y.
Since Φ(y0) = X2

0 6= ∅, the equality y0 = x ∗ y holds.
Suppose now that {j1, j2} ∩ {j3, j4} = ∅, i.e.,

{x1, x2} ∩ {y1, y2} = ∅. (4.54)

It suffices to show that x ∗ y = θ. As above, we can prove the membership relation
x ∗ y ∈ E ∩ C. Suppose that x ∗ y 6= θ, i.e., z := x ∗ y is a nontrivial idempotent
element of C. It implies

θ 6= z = z ∗ (x ∗ y) = z2 ∗ (x ∗ y) = (z ∗ x) ∗ (z ∗ y). (4.55)

By condition (ii2) of Theorem 3.2, from (4.55) it follows that

θ 6= z = z ∗ x and θ 6= z = z ∗ y.

Consequently, we have z ∈ {x1, x2} ∩ {y1, y2}, contrary to (4.54).
Thus, Φ1 : C ∪ E → SP⊗PS is a monomorphism.
Isomorphism ΦS : H → SP⊗PS . Let x ∈ H \ (C ∪ E). Then there is a unique

α ∈ Ω such that x ∈ Hα. Write ex = eα for the identity element of Hα. Then
ex ∈ E \ C holds and, by (4.25), we have

Φ1(ex) = X2
i ∪X2

j , (4.56)

where i = i(x) and j = j(x) are some distinct elements of J . Let us define a
mapping ΦS : H → SP⊗PS as

ΦS(x) =

Φ1(x), if x ∈ E ∪ C

(Xi ×Xj) ∪ (Xj ×Xi), if x ∈ H \ (E ∪ C),
(4.57)
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where i = i(x) and j = j(x) are elements of J for which (4.56) holds. The mapping
ΦS is correctly defined because Φ1 is a mapping from E∪C to SP⊗PS , and {Hα : α ∈
Ω} is a partition of H \ C, and every Hα is a group, and every group contains a
unique identity element.

We claim that ΦS is a bijection. Indeed, as in the proof of (4.29), we can show
that for any two distinct i, j ∈ J there is α ∈ Ω such that the equality

Φ1(eα) = X2
i ∪X2

j (4.58)

holds. If x 6= eα and x ∈ Hα hold, then from (4.57) and (4.58) we obtain

ΦS(x) = (Xi ×Xj) ∪ (Xj ×Xi).

Since we have the equality

SP⊗PS = SP⊗P ∪ {(Xi ×Xj) ∪ (Xj ×Xi) : i, j ∈ J, i 6= j}

∪ {X2
i ∪X2

j : i, j ∈ J, i 6= j},

equality (4.26) implies that the mapping ΦS is surjective. Moreover, {Xj : j ∈ J}
is a partition of X,

(X2
i1 ∪X

2
j1 = X2

i2 ∪X
2
j2)⇔ ({i1, j1} = {i2, j2})

⇔ ((Xi1 ×Xj1) ∪ (Xj1 ×Xi1) = (Xi2 ×Xj2) ∪ (Xj2 ×Xi2))

are valid for all two-point subsets {i1, j1} and {i2, j2} of J . Hence, ΦS is injective
and, consequently, bijective as was claimed above.

The bijection ΦS : H → SP⊗PS is an isomorphism if and only if

ΦS(x ∗ y) = ΦS(x) ◦ ΦS(y) (4.59)

holds for all x, y ∈ H.
Let us prove equality (4.59).
First of all we note that (4.59) is equivalent to equality (4.30) if x, y ∈ E ∪ C.

Moreover, if we have (4.36), then (4.59) can be proved similarly to (4.37)–(4.38).
In what follows we assume that (4.39) holds.
Suppose (4.59) holds if

x ∈ C and y ∈ H \ (E ∪ C) (4.60)

or if

x ∈ H \ (E ∪ C) and y ∈ C. (4.61)

Then equality (4.59) holds for all x, y ∈ H if and only if it holds for all x, y ∈ H\C.
Let t1 and t2 be arbitrary points of H \ C. Then there are α1, α2 ∈ Ω such that
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t1 ∈ Hα1
and t2 ∈ Hα2

. Note that, for every α ∈ Ω, the restriction ΦS |Hα : Hα →
ΦS(Hα) is an isomorphism. Consequently, if α1 = α2, then we have the equality

ΦS(t1 ∗ t2) = ΦS(t1) ◦ ΦS(t2).

In particular, we have

ΦS(t ∗ t2) = ΦS(t2 ∗ t) = ΦS(t) ◦ ΦS(t2) = ΦS(t2) ◦ ΦS(t) (4.62)

for every t ∈ Hα and every α ∈ Ω.
Suppose α1 6= α2. Since every Hα is a group of order 2, the equalities

t1 = t31 and t2 = t32

hold. Hence, we have

ΦS(t1 ∗ t2) = ΦS(t31 ∗ t32) = ΦS(t1 ∗ (t21 ∗ t22) ∗ t2). (4.63)

Since C is a core of H, the condition α1 6= α2 implies t31 ∗ t22 ∈ C, and t21 ∗ t32 ∈ C,
and t21 ∗ t22 ∈ C. Consequently, from (4.63) and our supposition it follows that

ΦS(t1 ∗ t2) = ΦS(t1 ∗ (t21 ∗ t22)) ◦ ΦS(t2)

= ΦS(t1) ◦ ΦS(t21 ∗ t22) ◦ ΦS(t2). (4.64)

The elements t21, t22, and t21 ∗ t22 are idempotent and, by definition of ΦS , we have

Φ1|E = ΦS |E .

Hence, using (4.62), (4.64), and (4.30), we obtain

ΦS(t1 ∗ t2) = (ΦS(t1) ◦ ΦS(t21)) ◦ (ΦS(t22) ◦ ΦS(t2))

= ΦS(t31) ◦ ΦS(t32) = ΦS(t1) ◦ ΦS(t2).

Consequently, it suffices to prove (4.59) if (4.60) or (4.61) holds. Notice now that
instead of condition (4.60), we can use the stronger condition

x ∈ C ∩ E and y ∈ H \ (E ∪ C). (4.65)

Indeed, from (ii4) of Theorem 3.2 it follows that for every x ∈ C there is a nontrivial
idempotent e ∈ C such that

x = x ∗ e. (4.66)

For x ∈ C and y ∈ H \ (E ∪ C), equality (4.66) implies

ΦS(x ∗ y) = ΦS(x ∗ e ∗ y) = ΦS((x ∗ e) ∗ (e ∗ y)). (4.67)

Since x ∗ e and e ∗ y belong to C, we can rewrite (4.67) as

ΦS(x ∗ y) = ΦS(x ∗ e) ◦ ΦS(e ∗ y) = ΦS(x) ◦ ΦS(e) ◦ ΦS(e ∗ y). (4.68)
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It is clear that e ∈ C ∩E. Consequently, if (4.59) holds for all x, y satisfying (4.65),
then (4.68) and (4.66) imply

ΦS(x ∗ y) = ΦS(x) ◦ ΦS(e) ◦ ΦS(e) ◦ ΦS(y)

= ΦS(x ∗ e ∗ e) ◦ ΦS(y) = ΦS(x ∗ e) ◦ ΦS(y) = ΦS(x) ◦ ΦS(y).

Similarly, instead of (4.61) we may use the condition

x ∈ H \ (E ∪ C) and y ∈ C ∩ E. (4.69)

Let (4.65) hold. Then, using (4.57) and (4.39), we can find i, j, k ∈ J such that
i 6= j and

ΦS(x) = X2
k and ΦS(y) = (Xi ×Xj) ∪ (Xj ×Xi). (4.70)

From (4.70) it follows that

ΦS(x) ◦ ΦS(y) =


∅, if k /∈ {i, j}

Xj ×Xi, if k = j

Xi ×Xj , if k = i.

(4.71)

If k /∈ {i, j}, then, using the equality y3 = y and Lemma 4.1 as in (4.42), we obtain

x ∗ y = (x ∗ y2) ∗ y = θ ∗ y = θ,

and, consequently,

ΦS(x ∗ y) = ΦS(θ) = ∅. (4.72)

Now (4.59) follows from (4.71) and (4.72).
Let k = j hold. Write

ej := Φ−1
1 (X2

j ) and ei := Φ−1
1 (X2

i ).

From the definition of Φ1 we obtain the equalities

ej = Φ−1(X2
j ) and ei = Φ−1(X2

i )

and, using condition (ii4) of Theorem 3.2, prove that

z = Φ−1
S (Xj ×Xi) (4.73)

holds if and only if we have z ∈ C \ {θ} and

z = ej ∗ z ∗ ei. (4.74)

Consequently, (4.59) holds if and only if

x ∗ y = ej ∗ (x ∗ y) ∗ ei (4.75)

and x ∗ y ∈ C \ {θ}. Suppose
x ∗ y = θ (4.76)
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holds. From k = j, and (4.57), and (4.52) it follows that x ∗ y2 = x. Now using
(4.76) and Lemma 4.1, we obtain

x = (x ∗ y) ∗ y = θ ∗ y = θ.

Hence, x = θ that contradicts (4.39). Consequently, we have x ∗ y 6= θ. By
condition (ii5), from x ∗ y 6= θ and x ∈ E ∩ C and y ∈ H \ (E ∪ C) it follows
that x ∗ y /∈ E. Moreover, x ∗ y ∈ C holds because x ∈ C and C is a core of H.
Consequently, the membership relation

x ∗ y ∈ C \ E (4.77)

holds. By condition (ii1), C belongs to H1. Now, using conditions (ii2) and (ii4)

of Theorem 3.2, we obtain that there is a unique pair il, ir of distinct nontrivial
idempotent elements of C such that

x ∗ y = il ∗ (x ∗ y) ∗ ir. (4.78)

Since x is also a nontrivial idempotent element of C, condition (ii2) of Theorem 3.2
implies il = x = Φ−1(X2

j ) = ej . Suppose ir 6= ei. Then, using the definitions of ΦS

and Φ1, we obtain y2 ∗ ir = θ. The last equality and (4.78) imply

x ∗ y = il ∗ (x ∗ y) ∗ ir = il ∗ (x ∗ y ∗ y2) ∗ ir = il ∗ (x ∗ y) ∗ θ = θ,

that x ∗ y 6= θ. Consequently, ir = ei holds. Equality (4.75) follows from (4.78).
The case when condition (4.69) holds can be analyzed similarly.
The proof of the theorem is completed. �

∅ xy yx x2 y2 xy + yx x2 + y2

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
xy ∅ ∅ x2 ∅ xy xy xy

yx ∅ y2 ∅ yx ∅ yx yx

x2 ∅ xy ∅ x2 ∅ x2 x2

y2 ∅ ∅ yx ∅ y2 y2 y2

xy + yx ∅ xy yx x2 y2 x2 + y2 xy + yx

x2 + y2 ∅ xy yx x2 y2 xy + yx x2 + y2

Figure 4. The Cayley table of the disjoint union of the semi-
groups C = {∅, xy, yx, x2, y2} and G = {xy + yx, x2 + y2} with
xy = X × Y , yx = Y × X, x2 = X2, y2 = Y 2, xy + yx =

(X × Y ) ∪ (Y ×X), x2 + y2 = X2 ∪ Y 2 and X ∩ Y = ∅. Here C
is isomorphic to SP⊗P with |P | = 2, and G is a group of order 2,
and every element of G is a two-sided identity for elements of C.
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Remark 4.7. Considering the semigroup (H, ∗) from Example 4.4 such that C ∈
H1 and everyHα, α ∈ Ω, is a group of order 2, we see thatH is a band of semigroups
with core C and condition (ii5) of Theorem 4.6 is trivially holds. Moreover, since
E(C) is a commutative band, the definition of (H, ∗) (see (4.3)) implies that E(H)

is also a commutative band. Consequently. even if we have

H ≈ {Hα : α ∈ Ω} t {C}, (4.79)

conditions (ii1), (ii2), (ii3), and (ii5) do not imply condition (ii4). Analogously,
using Example 4.5 we can define (H, ∗) such that (4.79) holds, conditions (ii1)−(ii4)

are satisfied but (ii5) is false (see Figure 4 for the Cayley table of corresponding
(H, ∗)).

Let us denote by HS the class of all semigroups (H, ∗) satisfying condition (ii)

of Theorem 4.6.

Corollary 4.8. Every semigroup (H, ∗) ∈ HS admits a d-transitive monomorphism
H → BX for a suitable set X.

Recall that, for every semigroup (S, ◦), we denote by (S1, ◦) a semigroup obtained
from (S, ◦) by adjunction of an identity element (see (3.23)).

Theorem 4.9. Let (L, ·) be a nonempty semigroup. The following statements are
equivalent.

(i) There are a set X and a partition P of X such that the semigroups
(SP⊗P 1

S
, ◦) and (L, ·) are isomorphic and |P | > 2.

(ii) There is a semigroup (H, ∗) ∈ HS such that (L, ·) and (H1, ∗) are isomor-
phic.

The proof of this theorem is similar to the proof of Theorem 3.15 and we omit
it here.

The following corollary can be proved similarly to Corollary 3.5.

Corollary 4.10. Let (H, ∗) belong to HS. Then (H1, ∗) admits a d-transitive
monomorphism H1 → BX for a suitable set X.

Remark 4.11. A semigroup (H, ∗) ∈ HS has an identity element if and only if
|H| = 7. (The last equality holds if and only if (H, ∗) is isomorphic to (SP⊗PS , ◦)
with |P | = 2.)

Example 4.12. Let P = {X0, X1, X2} be the trichotomy of the set X = [0, 1]

defined in Example 2.8. Then the set

E = {∅} ∪ {RP } ∪ {X2
0 , X

2
1 , X

2
2} ∪ {X2

0 ∪X2
1 , X

2
0 ∪X2

2 , X
2
1 ∪X2

2}
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is the band of all idempotents of (SP⊗P 1
S
, ◦). This band is commutative and it

is a lattice with respect to the partial order 6 defined by (4.2). A colored Hasse
diagram of (E,6) is plotted in Figure 5.

Figure 5. RP is white, X0×X0 is red, X1×X1 is yellow, X2×X2

is blue, X2
0 ∪ X2

1 is orange, X2
0 ∪ X2

2 is green, X2
1 ∪ X2

2 is violet,
and ∅ is black.

Let X be a set, let R be a nonempty binary relation on X. Write X1 and X2

for the domain and, respectively, for the range of the relation R, i.e., a point x
belongs to X1 (X2) if and only if there is x2 ∈ X (x1 ∈ X) such that 〈x, x2〉 ∈ R
(〈x1, x〉 ∈ R).

Lemma 4.13. Let R be a binary relation with a domain X1 and a range X2. The
equality R ◦R = ∅ holds if and only if X1 ∩X2 = ∅.

Proof. It follows directly from the definition of the composition ◦ of binary rela-
tions. �

Proposition 4.14. Let Y be a set with |Y | > 3 and let Q = {∆Y ,∇Y }, where
∆Y is the diagonal of Y and ∇Y = Y 2 \∆Y . Then Q is a partition of Y 2 and the
subsemigroup (SQ, ◦) of BY has no d-transitive representations SQ → BX for any
set X.

Proof. It is clear that Q is a partition of Y 2. Suppose there is a d-transitive
monomorphism Φ: SQ → BX for a suitable set X. Direct calculations show that

SQ = {∆Y ,∇Y , Y 2} and ∇Y ◦ ∇Y = Y 2
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hold, and ∆Y is the identity of SQ, and Y 2 is the zero of SQ. Let A be a set of
generators of SQ for which Φ(A), Φ(A) = {Φ(a) : a ∈ A}, is a partition of X2. Since
Y 2 is a zero of SQ and Φ is d-transitive, the equality Φ(Y 2) = ∅ holds. It implies
Y 2 /∈ A. There are exactly two sets, {∆Y ,∇Y } and {∆Y ,∇Y , Y 2}, of generators
of (SQ, ◦). Consequently, we have A = {∆Y ,∇Y }.

Let X1 and X2 be the domain and, respectively, the range of the relation Φ(∇Y ).
We claim that the equality

Φ(∆Y ) = X2
1 ∪X2

2 (4.80)

holds.
Let us prove the last equality. Lemma 4.13 implies

X1 ∩X2 = ∅ (4.81)

and, moreover, from the definition of X1 and X2 it follows that

Φ(∇Y ) ⊆ X1 ×X2. (4.82)

Since Φ is a monomorphism, we have

Φ(∇Y ) = Φ(∆Y ) ◦ Φ(∇Y ) = Φ(∇Y ) ◦ Φ(∆Y ). (4.83)

Let z be an arbitrary point of X and let x1 be an arbitrary point of X1. Suppose
that z /∈ X1 ∪ X2, then (4.82) implies 〈z, x1〉 ∈ Φ(∆Y ) because {Φ(∆Y ),Φ(∇Y )}
is a partition of X2. Since X2 is the range of Φ(∇Y ), there is x2 ∈ X2 such that
〈x1, x2〉 ∈ Φ(∇Y ). Now, using (4.83), we obtain 〈z, x2〉 ∈ Φ(∇Y ). Consequently,
z ∈ X1, that contradicts z /∈ X1 ∪X2. Thus, the equality X = X1 ∪X2 holds. The
last equality and (4.81) imply the double inclusion

X2 ⊇ Φ(∆Y ) ⊇ X2
1 ∪X2

2 . (4.84)

If the set Φ(∆Y ) \ (X2
1 ∪ X2

2 ) is nonempty, then using (4.84) and the equality
X2 = Φ(∆Y )∪Φ(∇Y ) we can find t1 ∈ X1 and t2 ∈ X2 such that 〈t1, t2〉 ∈ Φ(∆Y )

or 〈t2, t1〉 ∈ Φ(∆Y ). Without loss of generality we may suppose

〈t2, t1〉 ∈ Φ(∆Y ). (4.85)

Since X1 is the domain of Φ(∇Y ), from t2 ∈ X2 it follows that there is x ∈ X1 such
that

〈x, t2〉 ∈ Φ(∇Y ). (4.86)

Now (4.83), (4.85) and (4.86) give us 〈x, t1〉 ∈ Φ(∇Y ). Consequently, t1 ∈ X2 holds,
contrary to t1 ∈ X1. Equality (4.80) follows.

Equality (4.80), X = X1 ∪X2, and inclusion (4.82) imply

X2 \ (Φ(∆Y ) ∪ Φ(∇Y )) ⊇ X2 \ (X2
1 ∪X2

2 ∪ (X1 ×X2)) = X2 ×X1 6= ∅,

i.e., {Φ(∆Y ),Φ(∇Y )} is not a partition of X2.
Thus, contrary to our supposition, Φ is not a d-transitive monomorphism. �
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Remark 4.15. If |Y | = 2 and Q = {∇Y ,∆Y }, then the equalities

∆Y ◦ ∇Y = ∇Y = ∇Y ◦∆Y and ∇Y ◦ ∇Y = ∆Y = ∆Y ◦∆Y

hold. Consequently, (SQ, ◦) is a group of order 2 for which the identity mapping
Id : SQ → BY is a d-transitive monomorphism.

The last remark shows, in particular, that the constant 3 cannot be replaced by
any smaller integer in Proposition 4.14.
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