
158

Electrica 2019; 19(2): 158-165

RESEARCH ARTICLE

Design and Simulation of 64 Bit FPGA Based Arithmetic
Logic Unit
Nuray Sağlam Bedir , Fırat Kaçar
Department of Electrical and Electronics Engineering, İstanbul University-Cerrahpaşa School of Medicine, İstanbul, Turkey

Corresponding Author:
Fırat Kaçar

E-mail:
fkacar@istanbul.edu.tr

Received: 25.12.2018

Accepted: 07.03.2019

DOI: 10.26650/electrica.2019.18052

Cite this article as: Sağlam Bedir N, Kaçar F. Design and Simulation of 64 Bit FPGA Based Arithmetic Logic Unit. Electrica, 2019; 19(2): 158-165.

ABSTRACT

Arithmetic Logic Unit (ALU) is the essential part of the Central Processing Unit (CPU) core which performs arithmetical operations such as addition,
subtraction, division, multiplication etc., logical operations such as and, or, xor etc. and shift-rotate operations. The CPU performance is directly related
to the performance of ALU. In this study, the 64-bit ALU has been designed by using the Very High Speed Integrated Circuits Hardware Description
Language (VHDL) and Altera Field Programmable Gate Array (FPGA) families, synthesized and simulated with the help of Altera Quartus II (Intel, Santa
Clara, CA, USA) v13.0sp1 and Modelsim-Altera v10.1d (Intel, Santa Clara, CA, USA) software. Many different studies are given about ALU Design and
Implementation with the use of FPGA architecture and VHDL language. The difference of this study from recent studies is that the proposed design
allows the processing of the signed numbers. Also, Conditional Sum Adder (COSA) is used in addition operation instead of Carry Ripple Adder (CRA) or
Carry Look-ahead Adder (CLA) because of its benefit in fast addition and less propagation delay of Carry Chain.
Keywords: FPGA, VHDL, arithmetic logic unit design

Introduction

In a computer system, Arithmetic Logic Unit (ALU) is the vital structure of the Central Process-
ing Unit (CPU). Modern CPUs contain very powerful and complex ALUs. In addition to ALUs,
today’s CPUs have a control unit (CU) which operates the ALU through the control signals.
These signals tell to ALU which operations will be performed and the ALU stores results of
these operations in output registers. Also, the CU moves the data between these registers, the
ALU, and memory through the control signals.

Very High Speed Integrated Circuits Hardware Description Language (VHDL) is one of the
most popular languages of an industry for the modeling, description, and synthesis of digital
circuits and systems. It is a high-level language that is difficult to learn, and suitable for the de-
sign of complex systems. Also, this language allows users to create complex data types. Design
units, also called library units, are the main components of the VHDL language. It consists of 4
different notifications which are package, entity, architecture and configuration-component.
Also, new library creation and library management which are two of the most valuable fea-
tures is allowed in VHDL language [1, 2].

The main reason of using VHDL in this study is that the language allows us to manage the
library and create a special structure such as package, block, function, procedure, and com-
ponent etc. This feature made the design simpler and easy to manage. Also, using these struc-
tures provide portable and reusable designs.

A basic field programmable gate array (FPGA) is an integrated circuit with logic blocks which
are arranged in a matrix. In addition to logic blocks, modern FPGAs have multiplier blocks and
memory blocks inside them. In an FPGA structure, logic blocks and interconnections between
them, input/output elements (IOE) etc. are configurable. When an FPGA is configured, the in-
ternal circuitry is connected in a way that creates a hardware implementation of our design. If

Content of this journal is licensed
under a Creative Commons
Attribution-NonCommercial 4.0
International License.

https://orcid.org/0000-0002-7759-130X
https://orcid.org/0000-0002-0967-914X

159

Electrica 2019; 19(2): 158-165
Sağlam Bedir and Kaçar. Design of FPGA Based 64 Bit ALU

the FPGA needs to be reprogrammed, the configuration data in
it can be deleted and programmed again and again, and this is
the most important reason why FPGA is so valuable in the mar-
ket. Unlike CPUs, FPGAs do not have a fixed hardware design.
In contrast, they can be programmed from scratch according to
user applications. The functions that logical cells perform and
the connections between these functions are determined by
the user. Some of other important features of an FPGA have
made its use popular include parallel processing capability, de-
sign testing and validation, and the ability to embed a proces-
sor in an FPGA as discussed by [3, 4].

Many different studies are given about ALU Design and Imple-
mentation with the use of FPGA architecture and VHDL lan-
guage. In these studies carry ripple adder (CRA) or carry look-
ahead adder (CLA) is used in addition operation and unsigned
numbers are processed in ALU. Also, Xilinx’s software and hard-
ware are used as a development environment as discussed
elsewhere [5-10].

Adder cell is the primary unit of an ALU. Power, speed and area
requirements need to be satisfied by the adder cell. The delay
in the adder circuit originates from the carry bit calculation.
Previous studies used CRA structure in their adder unit [7-10].

Carry ripple adder is the simplest but the slowest adder struc-
ture and constructed by cascading full adders (FA) blocks in se-
ries. In the CRA technique, a sequential addition is performed
from the less significant bit (LSB) to the most significant bit
(MSB) using the FA structures. In this addition, the initial carry
bit input is taken as zero during the sum of the LSB bit. While
performing the sum of the next two bits, the new carry bit
which is calculated from the sum of the previous two bits is
used here as a carry bit input. This process runs until the sum of
the MSB bits is reached, and the carry bit inputs are calculated
from the sum of the two previous bits each time. Thus, in order
to generate the carry bit input to be used in the sum of the
MSB bits, all carry bits, from the LSB bit, have to be calculated.
In this carry bit calculation process, a delay occurs and as the
size of the processed data grows, this delay also increases in
parallel. The worst-case delay of the CRA is approximated by
equation 1.

t = (n – 1) tc + ts Eq (1)

tc stands for the delay through the carry stage of a FA, ts stands
for the delay to compute the sum of the last stage and n stands
for the number of bits. The delay of CRA is linearly proportional
to the number of bits; therefore the performance of the CRA is
limited when the number of bits increases [11].

Other conventional types of adders are carry-look-ahead ad-
der, carry-skip adder, carry select adder, conditional sum adder
(COSA), and Manchester Carry Chain adder. In these conven-
tional types of adders including CRA, COSA is the extension of
Carry Select Adder and has less delay in its operation because
of the carry bit computation method.

The basic idea in the COSA is to calculate two different outputs
for a given group of input bits, for instance, n bits. In each calcu-
lation, n bits addition result and a carry bit out are obtained. In
one of the addition operations, the carry input is taken as zero
and the other is taken as one. By using a multiplexer structure,
the correct carry input is selected and the correct addition re-
sult is obtained through this carry bit selection. Thus, the result
is calculated without waiting for the calculation of the carry bit.
The addition is much faster as higher bit addition operations
[12]. Block diagram of 4 Bit COSA is given in Figure 1 [13].

Figure 1. 4 Bit Conditional Sum Adder (COSA)

Material and Method

In the study, the main ALU structure is divided into three sub-
units as an arithmetic unit, a logic unit, and a shift-rotate unit.
Each subunit is introduced as a component to the system. Each
component consists of different components.

One of the Altera’s FPGA families, Cyclone II EP2C70F896C6
(Intel, Santa Clara, CA, USA) device is targeted in the design
platform namely Quartus II (Intel, Santa Clara, CA, USA) and
Modelsim-Altera (Intel, Santa Clara, CA, USA) is used as a simu-
lation tool. In EP2C70F896C6 device, 2C means that this device
belongs to Cyclone II family, 70F means that this device has ap-
proximately 70 thousand logic elements (LEs), 896C refers to
the total number of pins both dedicated pins and user pins and
last number in the device code refers to the speed grade of this
device. In addition to these features, EP2C70F896C6 device in-
cludes 250 M4K random access memory (RAM) blocks, approx-
imately 1.1Mbit RAM bits, 150 18x18 embedded multiplier and
4 phase lock loop (PLL) structures [14].

Altera Quartus II software which is developed by ALTERA is the
most comprehensive environment available for a programma-
ble chip design. It allows users to design both at gate level and
register transfer level (RTL), also allows you to use mega func-
tion and intellectual property (IP) and synthesis their HDL files
and also you can use this software to implement timing anal-
ysis of your design. After the synthesis and analysis of the de-
sign with the Quartus II software, the functional and temporal
simulation is realized with the use of Modelsim-Altera software.

160

Electrica 2019; 19(2): 158-165
Sağlam Bedir and Kaçar. Design of FPGA Based 64 Bit ALU

Simulations can be performed manually and directly via Mod-
elsim-Altera or indirectly by using the testbench file written in
Quartus II [15].

In this study we used RTL design which is done with use of
VHDL language and wrote a testbench VHDL file for simulation
process of the proposed design via Modelsim-Altera.

Design diagram of proposed ALU is given in Figure 2.

Figure 2. Arithmetic Logic Unit Design Diagram

The source code of design is written with VHDL hardware de-
scription language and behavioural and structural modelling is
adopted as a modelling method. The design flow is selected as
bottom to top.

Arithmetic Unit of proposed design contains signed addition,
signed subtraction, signed multiplication, signed division and
signed mod operations.

Logical Unit of proposed design contains and, or, xor, not, nand,
nor and xnor operations.

Shift/Rotate Unit of proposed design contains arithmetic left
and right shifting, logical left and right shifting and right and
left rotation operations.

Operations and select lines of proposed ALU is given in Table
1. These 19 operations in the Table were defined as a compo-
nent in the specific unit where the operation belongs. But each
operation could be defined as a procedure, block or function.
Each of this structure has different syntax and usage.

After the target device was selected as Cyclone II EP-
2C70F896C6, as a first part, arithmetic unit is designed. The
arithmetic unit has 4 inputs, namely inpu1, input 2, clk (clock)
and ALU control (select input from the control unit of CPU)
and 3 outputs namely arithmetic unit out, error (for division
errors such as “0/0” and “data/0”, overflow errors and size
out errors of the multiplication operation) and flag register
out (parity, overflow, sign and zero flags). Data inputs and
arithmetic unit out are 64 bits long, clock input (in simulation
50MHz clock frequency is used), arithmetic unit control(se-

lection lines) is 3 bits long (first 3 bits of ALU control input)
and error output are 1 bit long and flag register output is 4
bits long.

Conditional sum adder which is used in addition operation is
the most important part of the arithmetic unit. After the com-
parison of CRA and COSA structures, COSA is selected as main
structure of the addition operation. CRA and COSA simulation
result is given in Figure 3 respectively, and delay and LE usage
comparison of these two adders is given in Figure 4.

Figure 4. Delay and LE Usage Comparison of CRA and COSA

Figure 3. 64 Bit Carry Ripple Adder (CRA) and Conditional Sum
Adder (COSA) Simulation Results Respectively

N bits COSA type addition device is composed of a two-bit
COSA consisting of essentially three full adders and a multi-
plexer structure. One of the full adders collects the first bits
of the input data with the “0” carry in. Other two full adders
collect the last bits of the input data. One of them with “0”
carry in and the other one uses “1” carry in. The selection of
the carry-bit which is going to be used in the sum of the last
bits is selected by looking at the carry bit result from the sum
of the first bits with the usage of multiplexer structure. 64-bit
COSA is designed as an extension of two-bit COSA structure.
RTL schema of 64 Bit COSA with Overflow Detection compo-
nent is given in Figure 5.

161

Electrica 2019; 19(2): 158-165
Sağlam Bedir and Kaçar. Design of FPGA Based 64 Bit ALU

Figure 5. RTL Schema of 64 Bit COSA with Overflow Detection

Subtraction component is designed with the usage of COSA.

Another important operation is multiplication operation. The
Booth’s Algorithm which provides great convenience in two
signed number multiplication is used for multiplier compo-
nent.

In the Table 1, data A and B are both 64 bits long data. In the multi-
plication operation, first 32 bits of data A and B are used. The multi-
plication operation in proposed design allows multiplying two 32
bits long data. Also, several functions has been used for checking
the data if it is greater than the number which is the biggest num-
ber in 32 bit long data or not. These function checks the second 32
bits of 64 bit data. When the data is negative and if there are ‘0’ bits
in the second 32 bits of data, these functions tell us that we can’t
multiply this data due to the size out in the multiplication result,
and this process works in positive numbers differently.

A Similar algorithm to the multiplication algorithm is used in
division component design.

The last component of the arithmetic unit is a modular compo-
nent and it is designed with the usage of the division compo-
nent. The only difference is that the remainder of the division
operation is taken as an output of the component.

After components of all operations are defined, these compo-
nents are called under the arithmetic unit. The output of the
arithmetic unit is taken as the output of the multiplexer struc-
ture according to the value of the selection input which is relat-
ed to the ALU control input port. After the source code of the
arithmetic unit was written, the design is analysed and synthe-
sized with the help of the Altera Quartus II v13.0sp1 software.
RTL schema of 64 Bit Arithmetic Unit is given in Figure 6.

Figure 6. RTL Schema of 64 Bit Arithmetic Unit

64 Bit Arithmetic unit’s simulation is implemented with the
help of Modelsim- Altera v10.1d software. The simulation re-
sults of this unit are shown Figure 7 and Figure 8.

Figure 7. Positive Simulation Results of the 64 Bit Arithmetic Unit

Table 1. Operations and Select Lines

Function Operation Select Lines

Signed ADD (±A)+(±B) 0 0 0 0 0

Signed SUB (±A)-(±B) 0 0 0 0 1

Signed MULT (±A)*(±B) 0 0 0 1 0

Signed DIV (±A)/(±B) 0 0 0 1 1

Signed MOD (±A)mod(±B) 0 0 1 0 0

AND A and B 0 1 0 0 0

OR A or B 0 1 0 0 1

XOR A xor B 0 1 0 1 0

NOT A not A 0 1 0 1 1

NOT B not B 0 1 1 0 0

NAND A nand B 0 1 1 0 1

NOR A nor B 0 1 1 1 0

XNOR A xnor B 0 1 1 1 1

Logic left shift ±A sll ±B 1 0 0 0 0

Logic right shift ±A srl ±B 1 0 0 0 1

Arith. left shift ±A sla ±B 1 0 0 1 0

Arith right shift ±A sra ±B 1 0 0 1 1

Left Rotate ±A rotl ±B 1 0 1 0 0

Right Rotate ±A rotr ±B 1 0 1 0 1

A, B: data inputs; ADD: addition; SUB: subtraction; MULT: multiplication; DIV:
division; MOD: modular, sll: shift left logical; srl: shift right logical; sla: shift left
arithmetical; sra: shift right arithmetical; rotl: rotation to left; rotr: rotation to right

162

Electrica 2019; 19(2): 158-165
Sağlam Bedir and Kaçar. Design of FPGA Based 64 Bit ALU

Figure 8. Negative Simulation Results of the 64 Bit Arithmetic Unit

Logic Unit and Rotate/Shift Unit which are second and third
parts of ALU are designed respectively. RTL schema of Logic Unit
is given in Figure 9. After the source code of the logic unit was
written, the design is analysed and synthesized. The simulation
result of Logic Unit is shown in Figure 10. 64 Bit Rotate/Shift Unit’s
RTL scheme is shown in Figure 11. After the source code of the
Rotate/Shift unit was written, the design is analysed and synthe-
sized. The simulation result of this unit is shown in Figure 12.

Figure 9. RTL Schema of 64 Bit Logic Unit

Figure 11. RTL Schema of 64 Bit Rotate/Shift Unit

Figure 10. Simulation Result of the 64 Bit Logic Unit

Figure 12. Simulation Results of 64 Bit Rotate/Shift Unit

These three subunits are defined as a component and called
under the Arithmetic Logic Unit. The outputs of these subunits
supply a multiplexer structure defined in the top-level design.
Last 2 bits of ALU control input port is used as a select line and
this select line supply the multiplexer selection inputs. These
two bits should be “00” when we want to activate Arithmetic
Unit, “01” when we want to activate Logic Unit and “10” when
we want to activate Shift/rotate unit.

Arithmetic Logic Unit Output is taken from the output of the
multiplexer structure according to the value of the selection
input of the top-level multiplexer structure which is related to
the last two bits of ALU control input port. Flag register output
from MSB bit to LSB bit defines respectively parity flag, an over-
flow flag, sign flag, and Zero flag.

 In the last case, the Arithmetic Logic Unit is defined as a single
component in the most-level design and can be called and ex-
ecuted as a component in any design. Top-level design of 64
Bit Arithmetic Logic Unit’s RTL scheme is shown in Figure 13.

Figure 13. RTL Schema of 64 Bit Arithmetic Logic Unit

The top-level, Arithmetic Logic Unit, module is analysed and
synthesized and then simulated with the help of Modelsim-Al-
tera software. 64 Bit Arithmetic Logic Unit’s compilation report
is given in Figure 14.

Figure 14. Compilation Report of 64 Bit ALU

Results

The 64-bit arithmetic logic unit for signed numbers processing
is designed using VHDL language and synthesized using Al-
tera Quartus II v13.0sp1 platform. The ALU is implemented us-

163

Electrica 2019; 19(2): 158-165
Sağlam Bedir and Kaçar. Design of FPGA Based 64 Bit ALU

ing parallel implementation of three different subunits which
perform various functions such as arithmetic, logical, shift and
rotate operations. At first step components of subunits are
designed to handle unsigned numbers. Then with the use of
process structures these components are arranged to handle
signed numbers. After this arrangement, the overflow control
circuit is designed.

Data are received from the data input ports and these data fed
to the three different subunits. These subunits calculate their
result in each clock cycle and send them into top-level multi-
plexer structure. This multiplexer structure generates an out-
put according to the value of the signal from the control unit
which is defined as an input port named ALU control. This gen-
erated outputs from the multiplexer fed to the output ports of
ALU. The synthesized most-level module is targeted to Cyclone
II device.

The most level design has 4 input ports as two data input, a
clock input and select input which is assumed to come from
the control unit of CPU and has 3 output ports as ALU opera-
tion output, error output, and flag register output.

50 MHz clock is used as clock input in testbench simulation.
Clock frequency can be increased up to 250 MHz with the PLL
structure usage. Error output port shows errors which occurs
in signed addition and subtraction when overflow occurs and
incorrect result calculated, in multiplication of two numbers
which are exceeding the maximum value expressed in 32 bits
and in division operation when data inputs are selected as
both zero or second input is selected as zero (these selections
causes “0/0” uncertainty and “number/0” undefined state). Flag
register output is 4 bits long and shows from MSB bit to LSB
bit respectively parity flag status, overflow flag status, sign flag
status, and zero flag status.

After testbench simulation, the first result of The ALU is taken
after 280 ns. This operation is signed addition operation. Some
of the simulation results of the 64 Bit Arithmetic Logic Unit are
shown in Figure 15. After the simulation was completed, the
results obtained from the Altera Quartus II Design Suit were
confirmed by the theoretical results for all the operations with
signed numbers and we found that they matched the theoret-
ical values.

Figure 15. Simulation Results of 64 Bit ALU

Conclusion

In the addition operation, instead of CRA or CLA type of adder,
the usage of COSA structure reduced the delay which consists
of carry bit calculation. As a result, the output of the addition
operation was obtained in a shorter time (adder with COSA
is approximately 6 times faster than adder with CRA). In spite
of this positive development - the increase of the multiplexer
structures used in the addition circuit caused the number of
logic elements used in the FPGA increase.

The 64-bit arithmetic logic unit which is designed for the pro-
cessing of signed numbers has been successful in all opera-
tions regardless of whether the number is positive or negative.
In case of overflow in the addition and subtraction operations,
indefinite and undefined situations occurring in the division
process and the result of multiplication operation exceeding
64 bits, errors are shown successfully with the error output as a
result of the simulation.

The design is shaped around the “component” structure in the
VHDL language. The usage of this structure has enabled us
to manage our design easily and make the design simpler. In
addition, all “components” can be easily used in other designs
because of the special benefit of the component structure in
the VHDL language. The most important disadvantage of the
usage of these structures is the calculation of all operation
results regardless of the process priority and this causes ex-
tended simulation time. The design can be implemented using
“procedure” structures with a different approach. But with the
usage of this structure, the size of the source code will increase

Table 2. Comparison between previous studies and proposed design

Design Operation (number) FPGA Family Data Type Clock Rate (Hz) Adder Type
Delay on
Adder (ns)

Previous studies Max. 16 Xilinx FPGAs Unsigned
Max.
10 MHz CRA or CLA Min. 5900

Proposed Design 19 Altera Cyclone II Signed 50 MHz COSA 280

FPGA: Field Programmable Gate Arrays; Hz: hertz; MHz: megahertz; ns: nanosecond; CRA: Carry Ripple Adder; CLA: Carry Look-ahead Adder; COSA: Conditional

Sum Adder

164

Electrica 2019; 19(2): 158-165
Sağlam Bedir and Kaçar. Design of FPGA Based 64 Bit ALU

and the readability will decrease and the design will be com-
plicated.

Therefore, the structure to be used should be chosen according
to the purpose. The main reason for us to use the “component”
structure in our design is to eliminate some of the complexity
resulting from the use of signed numbers which caused the ad-
dition of new structures to the design, the number of operation
and the large size of the processed data. Comparison between
previous studies and proposed design is given in Table 2. If
the clock rate of proposed design is lowered to 10 MHz, delay
on the adder unit will be 1400ns, and this delay is also lower
than delay on the adder with CRA or CLA structure in previous
studies. Also, when we use the PLL structure in the FPGA, clock
frequency can increase up to 250 MHz and delay in the adder
operation can decrease down to 60 ns.

Peer-review: Externally peer-reviewed.

Conflict of Interest: The authors have no conflicts of interest to de-
clare.

Financial Disclosure: The authors declared that the study has received
no financial support.

References

1. B. Mealy, F. Tappero, "Free Range VHDL", 2012. Available from: URL:
http://www.gstitt.ece.ufl.edu/courses/eel4712/labs/free_range_
vhdl.pdf.

2. E. Sarıtaş, S. Karataş, "Her Yönüyle FPGA ve VHDL", Palme Yayıncılık,
Ankara, Türkiye, 2015.

3. R. Sahani, S. Gupta, N. Kishore, "FPGA In Embedded System And Its
Application", IJIRT, vol. 1, no. 12, 2015.

4. Module Design of Embedded Processors. Available from: URL:
https://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharag-
pur/Embedded%20systems/Pdf/Lesson-20.pdf. Dec, 2018.

5. P. Vanjare, P. Pandey, February 2016, "Design and Implementation
of 64-bit ALU using VHDL", International Journal of Engineering
and Management Research, vol. 6, no. 1, pp. 500-502, 2016.

6. R. M. Rewatkar, A. V. Khode, A. S. Kalinkar, P. S. Bangde, S. D. Potey,
" Design and Simulation of High Speed, less area 64-Bit ALU using
Efficient Technique", International Journal on Recent and Innova-
tion Trends in Computing and Communication, vol. 4, no. 4, pp.
326-330, 2016.

7. R. Chetia, K. C. D. Sarma, G. Baruah, "Behavioural Design and Syn-
thesis of 64 BIT ALU using Xilinx ISE", IOSR-JECE, vol. 7, no. 4, pp.
37-41, Sept-Oct, 2013. [CrossRef]

8. P. Bhanusree, G. B. Sai, Y. A. Kumar, K. S. Kumar, "VHDL Implemen-
tation Of 64-bit ALU", IOSR-JECE, vol. 7, no. 4, pp. 14-17, Sept-Oct,
2013. [CrossRef]

9. M. P. Mahajan, P. G. Salunke, Y. M. Gaikwad, V. P. Jagtap, "Design
and Simulation of 64 bit ALU", IJARECE, vol. 4, no. 4, pp. 1049-1051,
Jan, 2015.

10. R. Prabhakar, C. Rekha, "VLSI Design and Implementation of Arith-
metic and Logic Unit Using VHDL", International Journal of Engi-
neering and Science, vol. 3, no. 10, pp. 62-67, Oct, 2013.

11. R. Uma, V. Vijayan, M. Mohanapriya, S. Paul, "Area, Delay and Pow-
er Comparison of Adder Topologies", International Journal of VLSI
design & Communication Systems, vol. 3, no. 1, pp. 153-168, Febr,
2012. [CrossRef]

13. Hardware algorithms for arithmetic modules. Available from: URL:
http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html#f-
sa_csa. Dec, 2018.

14. Altera® Corparation University Program, "DE2-70 Development
and Education Board User Manual". Available from: URL: https://
www.terasic.com.tw/attachment/archive/226/DE2_70_User_
manual_v105.pdf.

15. Altera® Corparation, "Introduction to the Quartus® II Software ver-
sion 10.0", Available from: URL: https://www.intel.com/content/
dam/www/programmable/us/en/pdfs/literature/manual/intro_
to_quartus2.pdf. 2012.

https://doi.org/10.9790/2834-0743741
https://doi.org/10.9790/2834-0741417
https://doi.org/10.5121/vlsic.2012.3113

165

Electrica 2019; 19(2): 158-165
Sağlam Bedir and Kaçar. Design of FPGA Based 64 Bit ALU

Fırat Kaçar received his B.Sc., M.Sc. and Ph.D. degrees from Istanbul University, all in Electrical and Electron-
ics Engineering in 1998, 2001 and 2005 respectively. He is currently an Assistant Professor at the Electrical
and Electronics Engineering Department of Istanbul University. His current research interests include analog
circuits, active filters, synthetic inductors, CMOS based circuits electronic device modeling and hot-carrier
effect on MOS transistor. He is the author or co-author of about 100 papers published in scientific journals or
conference proceedings.

Nuray Sağlam Bedir was born in Tokat, Turkey, in 1990. She is M.Sc. student. She received the B.Sc. degree from
Istanbul University in Electrical and Electronics Engineering in 2014. Her main research interests are FPGA
prototyping, design and implementation of digital circuits and embedded systems.

