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Abstract
Solutions to the focusing nonlinear Schrödinger equation (NLS) of order N depending on 2N−2 real parameters
in terms of wronskians and Fredholm determinants are given. These solutions give families of quasi-rational
solutions to the NLS equation denoted by vN and have been explicitly constructed until order N = 13. These
solutions appear as deformations of the Peregrine breather PN as they can be obtained when all parameters are
equal to 0. These quasi rational solutions can be expressed as a quotient of two polynomials of degree N(N +1)
in the variables x and t and the maximum of the modulus of the Peregrine breather of order N is equal to 2N +1.
Here we give some relations between solutions to this equation. In particular, we present a connection between
the modulus of these solutions and the denominator part of their rational expressions. Some relations between
numerator and denominator of the Peregrine breather are presented.
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1. Introduction
We consider the one dimensional focusing nonlinear Schrödinger equation (NLS) which can be written in the form

ivt + vxx +2|v|2v = 0, (1.1)

The first results concerning the NLS equation date from the works of Zakharov and Shabat in 1972 who solved it using the
inverse scattering method [1, 2]. Its and Kotlyarov first constructed periodic and almost periodic algebro-geometric solutions to
the focusing NLS equation in 1976 [3, 4]. Ma found in 1979 the first breather type solution of the NLS equation [5]. In 1983,
the first quasi rational solutions of NLS equation were constructed by Peregrine [6]. In 1986, Eleonski, Akhmediev and Kulagin
obtained the two-phase almost periodic solution to the NLS equation and got the first higher order analogue of the Peregrine
breather[7, 8, 9]. Other analogues of the Peregrine breathers of order 3 and 4 were constructed using Darboux transformations,
in a series of articles by Akhmediev et al. [10, 11, 12, 13].
Recently, many works about NLS equation have been published using different methods. We can quote the works of Matveev
et al. [14, 15] in 2010 for the representation of the solutions in terms of wronskians; those of Gaillard [16, 17, 18] for the
solutions given in terms of wronskians and Fredholm determinants, and their quasi-rational solutions limit of order N depending
on 2N−2 parameters. Akhmediev gave quasi rational solutions using Darboux transformation in several papers [19, 20, 21].
Guo, Ling and Liu in 2012 gave an other representation of the solutions as a ratio of two determinants [22] using generalized
Darboux transformation. A new approach has been done by Ohta and Yang in [23] using Hirota bilinear method. Smirnov [24]
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gave solutions with an algebro-geometric approach. Other types of solutions were given by Zhao et al. in [25].

We give some relations between the modulus of these solutions and the denominator part of their rational expression. Some
relations between numerator and denominator of the rational solutions are given.

2. Different representations of solutions to the NLS equation

2.1 Solutions of the NLS equation in terms of of Fredholm determinant
We have to define the following notations.
The terms κν ,δν ,γν and xr,ν are functions of the parameters λν , 1≤ ν ≤ 2N; they are defined by the formulas :

κν = 2
√

1−λ 2
ν , δν = κν λν , γν =

√
1−λν

1+λν

,;

xr,ν = (r−1) ln
γν − i
γν + i

, r = 1,3.
(2.1)

The parameters −1 < λν < 1, ν = 1, . . . ,2N, are real numbers such that

−1 < λN+1 < λN+2 < .. . < λ2N < 0 < λN < λN−1 < .. . < λ1 < 1
λN+ j =−λ j, j = 1, . . . ,N.

(2.2)

The condition (2.2) implies that

κ j+N = κ j, δ j+N =−δ j+N , γ j+N = γ
−1
j , xr, j+N = xr, j, j = 1, . . . ,N.

Complex numbers eν 1≤ ν ≤ 2N are defined in the following way :

e j = i∑
N−1
l=1 al( jε)2l+1−∑

N−1
l=1 bl( jε)2l+1,

e j+N = i∑
N−1
l=1 al( jε)2l+1 +∑

N−1
l=1 bl( jε)2l+1,

1≤ j ≤ N−1.

(2.3)

ε , aν , bν , ν = 1 . . .2N are arbitrary real numbers.
Let I be the unit matrix, and

ε j = j 1≤ j ≤ N, ε j = N + j, N +1≤ j ≤ 2N.

Let’s consider the matrix Dr = (d(r)
jk )1≤ j,k≤2N defined by :

d(r)
νµ = (−1)εν ∏

η 6=µ

∣∣∣∣ γη + γν

γη − γµ

∣∣∣∣exp(iκν x−2δν t + xr,ν + eν). (2.4)

With these notations, the solution to the NLS equation takes the form [16, 17, 18] :

Theorem 2.1. The function v defined by

v(x, t) =
det(I +D3(x, t))
det(I +D1(x, t))

e2it−iϕ .

is a solution to the focusing NLS equation depending on 2N− 1 real parameters a j, b j, ε , 1 ≤ j ≤ N− 1 with the matrix
Dr = (d(r)

jk )1≤ j,k≤2N defined by

d(r)
νµ = (−1)εν ∏

η 6=µ

∣∣∣∣ γη + γν

γη − γµ

∣∣∣∣exp(iκν x−2δν t + xr,ν + eν).

where κν , δν , xr,ν , γν , eν being defined in(2.1), (2.2) and (2.3).
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2.2 Wronskian representation
For this, we need to define the following notations :

φr,ν = sinΘr,ν , 1≤ ν ≤ N, φr,ν = cosΘr,ν , N +1≤ ν ≤ 2N, r = 1,3,

with the arguments

Θr,ν = κν x/2+ iδν t− ixr,ν/2+ γν y− ieν/2, 1≤ ν ≤ 2N.

The functions φr,ν are defined by

φr,ν = sinΘr,ν , 1≤ ν ≤ N, φr,ν = cosΘr,ν , N +1≤ ν ≤ 2N, r = 1,3, (2.5)

We denote Wr(y) the wronskian of the functions φr,1, . . . ,φr,2N defined by

Wr(y) = det[(∂ µ−1
y φr,ν)ν ,µ∈[1,...,2N]].

We consider the matrix Dr = (dνµ)ν ,µ∈[1,...,2N] defined in (2.4). Then we have the following statement [17] :

Theorem 2.2.

det(I +Dr) = kr(0)×Wr(φr,1, . . . ,φr,2N)(0),

where

kr(y) =
22N exp(i∑

2N
ν=1 Θr,ν)

∏
2N
ν=2 ∏

ν−1
µ=1(γν − γµ)

.

With these notations, we have the following result [17] :

Theorem 2.3. The function v defined by

v(x, t) =
W3(φ3,1, . . . ,φ3,2N)(0)
W1(φ1,1, . . . ,φ1,2N)(0)

e2it−iϕ .

is a solution to the focusing NLS equation depending on 2N−1 real parameters a j, b j, ε , 1≤ j ≤ N−1 with φ r
ν defined in

(2.5)

φr,ν = sin(κν x/2+ iδν t− ixr,ν/2+ γν y− ieν/2), 1≤ ν ≤ N,
φr,ν = cos(κν x/2+ iδν t− ixr,ν/2+ γν y− ieν/2), N +1≤ ν ≤ 2N, r = 1,3,

κν , δν , xr,ν , γν , eν being defined in(2.1), (2.2) and (2.3).

We can give another representation of the solutions to the NLS equation depending only on terms γν , 1≤ ν ≤ 2N. From
the relations (2.1), we can express the terms κν , δν and xr,ν in function of γν , for 1≤ ν ≤ 2N and we obtain :

κ j =
4γ j

(1+ γ2
j )
, δ j =

4γ j(1− γ2
j )

(1+ γ2
j )

2 , xr, j = (r−1) ln
γ j− i
γ j + i

, 1≤ j ≤ N,

κ j =
4γ j

(1+ γ2
j )
, δ j =−

4γ j(1− γ2
j )

(1+ γ2
j )

2 , xr, j = (r−1) ln
γ j + i
γ j− i

, N +1≤ j ≤ 2N.

We have the following new representation [17, 26] :

Theorem 2.4. The function v defined by

v(x, t) =
det[(∂ µ−1

y φ̃3,ν(0))ν ,µ∈[1,...,2N]]

det[(∂ µ−1
y φ̃1,ν(0))ν ,µ∈[1,...,2N]]

e2it−iϕ (2.6)
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is a solution to the NLS equation (1.1) depending on 2N−1 real parameters a j, b j, ε , 1≤ j ≤ N−1. The functions φ̃r,ν are
defined by

φ̃r, j(y) = sin

(
2γ j

(1+ γ2
j )

x+ i
4γ j(1− γ2

j )

(1+ γ2
j )

2 t− i
(r−1)

2
ln

γ j− i
γ j + i

+ γ jy− ie j

)
,

φ̃r,N+ j(y) = cos

(
2γ j

(1+ γ2
j )

x− i
4γ j(1− γ2

j )

(1+ γ2
j )

2 t + i
(r−1)

2
ln

γ j− i
γ j + i

+
1
γ j

y− ieN+ j

)
,

where γ j =

√
1−λ j

1+λ j
, 1≤ j ≤ N.

λ j is an arbitrary real parameter such that 0 < λ j < 1, λN+ j =−λ j, 1≤ j ≤ N.
The terms eν are defined by (2.3),
where a j and b j are arbitrary real numbers, 1≤ j ≤ N−1.

(2.7)

Remark 2.1. In the formula (2.6), the determinants det[(∂ µ−1
y fν(0))ν ,µ∈[1,...,2N]] are the wronskians of the functions f1, . . . , f2N

evaluated in y = 0. In particular ∂ 0
y fν means fν .

2.3 Families of quasi-rational solutions of NLS equation in terms of a quotient of two determinants
The following notations are used :

Xν = κν x/2+ iδν t− ix3,ν/2− ieν/2,

Yν = κν x/2+ iδν t− ix1,ν/2− ieν/2,

for 1≤ ν ≤ 2N, with κν , δν , xr,ν defined in (2.1).
Parameters eν are defined by (2.3).
Below the following functions are used :

ϕ4 j+1,k = γ
4 j−1
k sinXk, ϕ4 j+2,k = γ

4 j
k cosXk,

ϕ4 j+3,k =−γ
4 j+1
k sinXk, ϕ4 j+4,k =−γ

4 j+2
k cosXk,

(2.8)

for 1≤ k ≤ N, and

ϕ4 j+1,N+k = γ
2N−4 j−2
k cosXN+k, ϕ4 j+2,N+k =−γ

2N−4 j−3
k sinXN+k,

ϕ4 j+3,N+k =−γ
2N−4 j−4
k cosXN+k, ϕ4 j+4,N+k = γ

2N−4 j−5
k sinXN+k,

(2.9)

for 1≤ k ≤ N.
We define the functions ψ j,k for 1≤ j ≤ 2N, 1≤ k ≤ 2N in the same way, the term Xk is only replaced by Yk.

ψ4 j+1,k = γ
4 j−1
k sinYk, ψ4 j+2,k = γ

4 j
k cosYk,

ψ4 j+3,k =−γ
4 j+1
k sinYk, ψ4 j+4,k =−γ

4 j+2
k cosYk,

(2.10)

for 1≤ k ≤ N, and

ψ4 j+1,N+k = γ
2N−4 j−2
k cosYN+k, ψ4 j+2,N+k =−γ

2N−4 j−3
k sinYN+k,

ψ4 j+3,N+k =−γ
2N−4 j−4
k cosYN+k, ψ4 j+4,N+k = γ

2N−4 j−5
k sinYN+k,

(2.11)

for 1≤ k ≤ N.
Then we get the following result [26] :

Theorem 2.5. The function v defined by

v(x, t) =
det((n jk) j,k∈[1,2N]

)

det((d jk) j,k∈[1,2N]
)

e2it−iϕ
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is a quasi-rational solution of the NLS equation (1.1) depending on 2N−2 real parameters a j, b j, 1≤ j ≤ N−1, where

n j1 = ϕ j,1(x, t,0), 1≤ j ≤ 2N n jk =
∂ 2k−2ϕ j,1

∂ε2k−2 (x, t,0),

n jN+1 = ϕ j,N+1(x, t,0), 1≤ j ≤ 2N n jN+k =
∂ 2k−2ϕ j,N+1

∂ε2k−2 (x, t,0),

d j1 = ψ j,1(x, t,0), 1≤ j ≤ 2N d jk =
∂ 2k−2ψ j,1

∂ε2k−2 (x, t,0),

d jN+1 = ψ j,N+1(x, t,0), 1≤ j ≤ 2N d jN+k =
∂ 2k−2ψ j,N+1

∂ε2k−2 (x, t,0),

2≤ k ≤ N, 1≤ j ≤ 2N

The functions ϕ and ψ are defined in (2.8),(2.9), (2.10), (2.11).

3. Structure of the multi-parametric solutions to the NLS equation of order N
depending on 2N−2 parameters

3.1 The quotient of two polynomials of degree (N(N +1) in x and t by an exponential depending on t
Here we present a result which states the structure of the quasi-rational solutions of the NLS equation. It was only conjectured
in preceding works [16, 18]. Moreover we obtain here families of deformations of the Nth Peregrine breather depending on
2N−2 parameters.
In this section we use the notations defined in the previous sections. The functions ϕ and ψ are defined in (2.8), (2.9), (2.10),
(2.11).
The structure of the quasi rational solutions to the NLS equation is given by [27] :

Theorem 3.1. The function v defined by

v(x, t) =
det((n jk) j,k∈[1,2N]

)

det((d jk) j,k∈[1,2N]
)

e2it−iϕ (3.1)

is a quasi-rational solution of the NLS equation (1.1) quotient of two polynomials R(x, t) and S(x, t) depending on 2N−2 real
parameters a j and b j, 1≤ j ≤ N−1.
R(x, t) and S(x, t) are polynomials of degrees N(N +1) in x and t.

Remark 3.1. The polynomials R(x, t) and S(x, t) have the same coefficients of degrees N(N +1) in 2x and 4t equal to 1.
The polynomial B(x, t) does not have any real root.

3.2 The structure of the Peregrine breather of order n
There is any freedom to choose γ j in such a way that the conditions on λ j are checked. We know from previous works [16, 18]
that the (analogue) Peregrine breathers are obtained when all the parameters a j and b j are equal to 0. In order to get the more
simple expressions in the determinants, we choose particular solutions in the previous families.

Here we choose γ j = jε as simple as possible in order to have the conditions on λ j checked, and we have [26, 27] :

Theorem 3.2. The function v0 defined by

vn,0(x, t) =

(
det((n jk) j,k∈[1,2N])

det((d jk) j,k∈[1,2N])
e2it−iϕ

)
(a j=b j=0,1≤ j≤N−1)

(3.2)

is the Peregrine breather of order N solution of the NLS equation (1.1) whose highest amplitude in modulus is equal to 2N +1.

Remark 3.2. The previous result is given in the frame where the limit of the modulus of the solution when x or t tend to infinity
is equal to 1. We know that if v(x, t) is is a solution to the NLS equation then u(x, t) = av(ax,a2t) is also a solution to the NLS
equation, for any arbitrary real a.

Remark 3.3. In (3.2), the matrices (n jk) j,k∈[1,2N] and (d jk) j,k∈[1,2N] are defined in (3.1).
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We have seen in previous section that solutions of NLS equation given by (2.7) can be written in function uniquely

of terms γ . We recall that the terms γ j are given by γ j =

√
1−λ j

1+λ j
, 1 ≤ j ≤ N; λ j is an arbitrary real parameter such that

0 < λ j < 1, λN+ j =−λ j, 1≤ j ≤ N.
We can rewrite the result given in (2.7) in a simplest formulation as follows [26, 27] :

Theorem 3.3. The function v defined by

v(x, t) =
det(( f (3)jk ) j,k∈[1,2N])

det(( f (1)jk ) j,k∈[1,2N])
e2it−iϕ

is a quasi-rational solution of the NLS equation (1.1) depending on 2N−2 real parameters a j, b j, 1≤ j ≤ N−1 where

f (r)jk =
∂ 2(k−1)

∂ε2(k−1)

(
γ4 j−1 sin

[
2γ

1+ γ2 x+4i
γ(1− γ2)

(1+ γ2)2 t− i
r−1

2
ln

γ− i
γ + i

+∑
N−1
l=1 (al + ibl)ε

2l+1 +( j−1)
π

2

])
(ε=0)

,

f (r)jN+k =
∂ 2(k−1)

∂ε2(k−1)

(
γ2N−4 j−1 cos

[
2γ

1+ γ2 x−4i
γ(1− γ2)

(1+ γ2)2 t + i
r−1

2
ln

γ− i
γ + i

+∑
N−1
l=1 (al − ibl)ε

2l+1 +( j−1)
π

2

])
(ε=0)

,

1≤ k ≤ N, 1≤ j ≤ 2N, r ∈ {1;3}, ε ∈]0;1[, γ = ε(1− ε2)1/2.

Remark 3.4. In the previous theorem, the expression
∂ 0

∂ε0 f (x) means f (x).

The solution to the NLS equation can be written in the form

vN(x, t) =
RN(x, t)
SN(x, t)

e2it =

(
1+

AN(x, t)
BN(x, t)

)
e2it (3.3)

and the Peregrine breather in the form

vN,0(x, t) =
TN(x, t)
UN(x, t)

e2it =

(
1+

PN(x, t)
QN(x, t)

)
e2it (3.4)

where the index 0 means that all the parameters are equal to 0.

4. Differential relation for the NLS equation
In previous works [26, 27], we have proven that the solutions vN to the NLS equation can be written in the form

vN(x, t) =
(

1+
AN(x, t)
BN(x, t)

)
e2it .

We have a very simple relation between the square of the modulus of vN and the denominator part BN . This relation appears
in a paper of Ling and Zhao [25] where the solutions to the NLS equation are given in the frame of the generalized Darboux
transfomation. Here this result and its proof are given in a general frame by the following theorem :

Theorem 4.1. The solutions vN(x, t) =
(

1+
AN(x, t)
BN(x, t)

)
e2it to the NLS equation verify the following relation

|vN(x, t)|2 = 1+(lnBN(x, t))xx , (4.1)

where the subscript xx means the double derivation with respect to x.

Proof. For simplicity with omit the references to N and (x, t) to the solution v and the polynomials A and B. If we substitute v

by
(

1+
A
B

e2it
)

in the expression X = ivt + vxx +2|v|2v, we get

2
B3

(
|A+B|2(A+B)+AB2

x−ABxxB
)

+
1

B2

(
i(BAt −ABt)−2B2−2AB−2AxBx +ABxx +BAxx

)
= 0
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This can gives the two following relations

|A+B|2(A+B)+(A+B)B2
x− (A+B)BxxB− (A+B)B2 = 0

and

i(AtB−ABt)+(AxxB−2AxBx +ABxx)+(BxxB−B2
x) = 0

The first relation can be rewritten as

|A+B|2 +B2
x−BxxB−B2 = 0

Then the square of the modulus of vN can be written as

|vN |2 =
|A+B|2

B2 = 1+(lnB)xx ,

which proves relation (4.1).

5. Relations between rational part of the solutions to the NLS equation

With the preceding notations, we get the following statement

Theorem 5.1. The polynomials of the solutions vN to the NLS equation defined by (3.3) vN(x, t) =
RN(x, t)
SN(x, t)

e2it verify the

following relations

(i(RN)t +(RN)xx−2RN)S2
N− ((SN)xx + i(SN)t)RNSN

−2(RN)x(SN)xSN +2((SN)
2
x +RNRN)RN = 0.

Proof. It is sufficient to replace in the equation (1.1) vN(x, t) by
RN(x, t)
SN(x, t)

e2it .

Proposition 5.1. The coordinates of extrema (x0, t0) of solutions vN to the NLS equation defined by (3.3) vN(x, t) =
RN(x, t)
SN(x, t)

e2it

verify the the following relations

(RN)x(x0, t0)RN(x0, t0)SN(x0, t0)+(RN)x(x0, t0)RN(x0, t0)SN(x0, t0)
−2(SN)x(x0, t0)RN(x0, t0)RN(x0, t0) = 0,

(RN)t(x0, t0)RN(x0, t0)SN(x0, t0)+(RN)t(x0, t0)RN(x0, t0)SN(x0, t0)
−2(SN)t(x0, t0)RN(x0, t0)RN(x0, t0) = 0.

(RN)x(x0, t0)SN(x0, t0)− (SN)x(x0, t0)RN(x0, t0) = 0.

(RN)t(x0, t0)SN(x0, t0)− (SN)t(x0, t0)RN(x0, t0)+2iSN(x0, t0)RN(x0, t0) = 0.

where a means the complex conjugate of a.

Proof. It is sufficient to compute the partial derivatives of (1.1) vN(x, t) defined by
RN(x, t)
SN(x, t)

e2it .

Remark 5.1. As a consequence of the result on the highest modulus of the PN breather defined by (3.4) vN,0(x, t) =
TN(x, t)
UN(x, t)

e2it ,

we get

TN(0,0) = (2N +1)UN(0,0).
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6. Conclusion
Different representations of the solutions to the NLS equation have been summarized in this paper, as well as the structure of
the quasi rational solutions. Some differential relations have been given in this text for the NLS equation.
From different studies realized by the author, [26]-[32], it seems that the maximums of the modulus of the solutions to the NLS
equation are in connection with the zeros of the Yablonski-Vorob’ev polynomials [33, 34].
It would be relevant to study this conjecture.
It would be also relevant to search other types of equations verified by the polynomials (PN , QN), (RN , SN), (AN , BN) or
(TN ,UN).
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