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Abstract
Let R be a commutative ring and Mn(R) be the set of all n × n matrices over R where
n ≥ 2. The trace graph of the matrix ring Mn(R) with respect to an ideal I of R, denoted
by ΓIt(Mn(R)), is the simple undirected graph with vertex set Mn(R) \ Mn(I) and two
distinct vertices A and B are adjacent if and only if Tr(AB) ∈ I. Here Tr(A) represents
the trace of the matrix A. In this paper, we exhibit some properties and structure of
ΓIt(Mn(R)).
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1. Introduction
The concept of associating graphs to commutative rings was first introduced by Beck [3].

He introduced the concept of zero-divisor graph of a commutative ring R as an undirected
graph whose vertices are the elements of R with two distinct vertices x and y joined by an
edge if and only if xy = 0. Later on, Anderson and Livingston [2] modified the definition
with vertex set, the set of all nonzero zero divisors of R and introduced the zero-divisor
graph Γ(R) corresponding to a commutative ring R. In [9], Redmond introduced the notion
of the zero-divisor graph with respect to an ideal I of a commutative ring R, denoted by
ΓI(R), as the graph with vertex set {x ∈ R \ I : xy ∈ I for some y ∈ R \ I}, and two
distinct vertices x and y are adjacent if and only if xy ∈ I. The concept of trace graph
of a matrix ring over a commutative ring was introduced by Almahdi, Louartiti, and
Tamekkante [1]. Several authors have extensively studied about zero-divisor graph with
respectxzs to an ideal. For example one may refer [8]. Let R be a commutative ring and
n be a positive integer. Let Mn(R) denote the set of all n × n matrices over R, Mn(R)∗

denotes the set of all n × n non-zero matrices over R and let Tr(A) be the trace of the
matrix A ∈ Mn(R). The trace graph of the matrix ring Mn(R), denoted by Γt(Mn(R)),
is the simple undirected graph with vertex set {A ∈ Mn(R)∗ : there exists B ∈ Mn(R)∗

such that Tr(AB) = 0} and two distinct vertices A and B are adjacent if and only if
Tr(AB) = 0. Further study on the trace graph of matrices was done by authors [10].

In this paper, as a parallel approach of generalization of Γ(R) to ΓI(R), we generalize
the notion of the trace graph Γt(Mn(R)) of a matrix ring Mn(R) to the trace graph
ΓIt(Mn(R)) with respect to an ideal I of R. Actually ΓIt(Mn(R)) is the simple undirected
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graph with vertex set Mn(R) \ Mn(I) and two distinct vertices A and B are adjacent if
and only if Tr(AB) ∈ I. Note that if A ∈ Mn(I), then Tr(AB) ∈ I for every B ∈ Mn(R).
Due to this, matrices in Mn(I) are not considered for the vertex set of ΓIt(Mn(R)). As
usual, Eij denotes the matrix whose ijth entry is 1 and 0 elsewhere. For a set X, |X|
denotes the cardinality of X, X \ Y denotes the set of elements that belong to X and not
to set Y . For basic definitions on rings, one may refer [6] and for noncommutative rings
see [5, 7].

Let G be a graph. For distinct vertices x and y of G, let d(x, y) be the length of the
shortest path between x and y (d(x, y) = ∞ if there is no such path). The diameter of G
is diam(G) = sup{d(x, y) : x and y are distinct vertices of G}. The girth of G, denoted
by gr(G), is defined as the length of the shortest cycle in G (gr(G) = ∞ if G contains no
cycles). For a graph G and a vertex v ∈ V (G), the eccentricity e(v) of v is the maximum
distance to any vertex in the graph, i.e., e(v) = max

u∈V (G)
{d(v, u)}. The radius rad(G) of a G

is the minimum eccentricity among all vertices in G and a vertex of G is a central vertex
if e(v) = rad(G). G is self-centered if every vertex is in the center i.e., e(v) = rad(G) for
every vertex v ∈ V (G). A subset Ω of V (G) is called a clique if the induced subgraph of
Ω is complete. The order of the largest clique in G is its clique number, which is denoted
by ω(G). The chromatic number of a graph G, denoted by χ(G), is the smallest number
of colors needed to color the vertices of G so that no two adjacent vertices share the same
color. An independent set or stable set is a set of vertices in a graph G such that no two of
them are adjacent. A maximum independent set is an independent set of largest possible
size for the given graph G. This size is called the independence number of G and denoted
by α(G).

If the edges of G are partitioned into subgraphs H1, . . . , Hk, . . . Hn, then we write G ∼=
H1 ⊕· · ·⊕Hn, and if Hi

∼= Hj for all 1 ≤ i, j ≤ k, then we write G ∼= kH ⊕Hk+1 ⊕· · ·⊕Hn,
where H ∼= Hi, (1 ≤ i ≤ k). For general reference of graph theoretical terms and results,
we refer [11].

Remark 1.1. Let R be a commutative ring and n be a positive integer.
1. The graph ΓIt(M1(R)) coincides with ΓI(R) (ideal based zero-divisor graph of the

ring R).
2. If I = (0), then ΓIt(Mn(R)) = Γt(Mn(R)) for all n ≥ 1.
3. If I = R, then ΓIt(Mn(R)) is the null graph.

Throughout this paper, unless otherwise specified, R is a commutative ring with identity,
n ≥ 2 is an integer, and I is a non-trivial ideal of R. If A = [aij ] ∈ Mn(R) \ Mn(I) the
corresponding matrix in Mn(R/I) is [aij +I]. If A = [aij ] ∈ Mn(I), then the corresponding
matrix in Mn(R/I) is the zero matrix in Mn(R/I). For convenience, we denote the matrix
[aij + I] ∈ Mn(R/I) as A corresponding to the matrix A = (aij). In Section 2, we prove
that for n ≥ 2, ΓIt(Mn(R)) is a connected graph of diameter 2 and of girth 3. In Section 3,
we study the structure of ΓIt(Mn(R)) through the relationship between ΓIt(Mn(R)) and
Γt(Mn(R/I)). In Section 4, we discuss the clique, chromatic, and independence numbers
of ΓIt(Mn(R)).

2. Girth and diameter
In this section, we list some properties of the trace graph of matrix ring with re-

spect to an ideal I of R that can be proved by similar arguments as in the case of the
trace graph of matrix rings over commutative rings. For A = [aij ] ∈ Mn(R), we set
JI(A) =

∑
1≤i,j≤n

(R/I)(aij + I) ∈ (R/I); the sum of the ideals of R/I generated by all

entries of A = [aij + I] over R/I. Note that JI(A) is an ideal of R/I.
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Proposition 2.1. For a non-zero ideal I of R and an integer n ≥ 2, ΓIt(Mn(R))) contains
no isolated vertex.

Proof. Let A = [aij ] ∈ Mn(R) \ Mn(I).

Case 1. If A ̸= In and Tr(A) ∈ I, then A is adjacent to the identity matrix In.

Case 2. Assume that Tr(A) /∈ I.

Case 2.1. Suppose A has exactly one entry akℓ such that akℓ /∈ I. Choose B = [bij ]
such that bℓk ∈ I and bij /∈ I otherwise. Then B ∈ Mn(R) \ Mn(I) and Tr(AB) =
a11b11 + · · · + a1nbn1 + a21b12 + · · · + a2nbn2 + · · · + an1b1n + · · · + annbnn. Note that in
each term of Tr(AB) either aij ∈ I or bij ∈ I. Since I is an ideal of R, aijbij ∈ I for every
1 ≤ i, j ≤ n and hence their sum belongs to I. Thus Tr(AB) ∈ I.

Case 2.2. Suppose that A has at least two entries akℓ, ak1ℓ1 which are not elements
of I. Then choose B = [bij ] such that bℓk = −ak1ℓ1 , bℓ1k1 = akℓ, bij ∈ I elsewhere. Thus
B ∈ Mn(R)\Mn(I) and Tr(AB) = akℓbℓk +ak1ℓ1bℓ1k1 + elements of I. Hence Tr(AB) ∈ I.

Thus in all the cases for every A ∈ Mn(R) \ Mn(I), there exists B ∈ Mn(R) \ Mn(I) such
that Tr(AB) ∈ I. Hence, ΓIt(Mn(R))) contains no isolated vertex. �

In the following, we prove that no vertex in ΓIt(Mn(R))) is adjacent to all other vertices.

Proposition 2.2. For a non-zero ideal I of R and an integer n ≥ 2, no vertex of
ΓIt(Mn(R)) is adjacent to every other vertex of ΓIt(Mn(R)).

Proof. Given a matrix A = [aij ] ∈ Mn(R) \ Mn(I). There exists at least one entry akℓ

such that akℓ /∈ I. Choose B = [bij ] such that bℓk = 1 and bij = 0 elsewhere. Thus
B ∈ V (ΓIt(Mn(R))) and Tr(AB) = akℓ /∈ I. If A = B, then Tr(AIn) /∈ I. �

Now we obtain, the degree of vertices in ΓIt(Mn(R)).

Proposition 2.3. Let R be a finite commutative ring and n ≥ 2 be an integer.
1. For any vertex A of ΓIt(Mn(R)), we have:

a. deg(A) = |R|n2

|JI(A)| − 1 if Tr(A2) /∈ I, and

b. deg(A) = |R|n2

|JI(A)| − 2 if Tr(A2) ∈ I.

2. δ(Γt(Mn(R))) = |R|n2−1|I| − 2.

Proof. 1. Let A ∈ Mn(R). Consider fA : Mn(R) → R defined by fA(B) =Tr(AB) and
natural homomorphism φ : R → R/I by φ(x) = x + I. Clearly φ ◦ fA : Mn(R) → R/I
is a surjective homomorphism with (φ ◦ fA)(B) =Tr(AB) + I, Im(φ ◦ fA) = JI(A) and
ker(φ ◦ fA) = {B ∈ Mn(R)| Tr(AB) ∈ I}.

By the isomorphism theorem, Mn(R)
ker(φ◦fA)

∼= JI(A) and so |ker(φ◦fA)| = |Mn(R)|
|JI(A)| = |R|n2

|JI(A)| .

When Tr(A2) /∈ I, ker(φ ◦ fA) contains exactly the vertices adjacent to A and the zero
matrix. When Tr(A2) ∈ I, ker(φ ◦ fA) contains additionally A. Hence (a) and (b) hold.

2. Consider the matrix A = [aij ] ∈ Mn(R)\Mn(I) with aii ∈ I for every 1 ≤ i ≤ n, aij /∈ I
implies aji ∈ I for every i ̸= j and aij is a unit for some i and j. Clearly JI(A) = R/I and
Tr(A2) ∈ I. Thus by 1(b), we have deg(A) = |R|n2−1|I| − 2 and so δ ≤ |R|n2−1|I| − 2.

Since |JI(A)| ≤ |R/I| for every ideal JI(A) of R/I, |R|n2

|JI(A)| ≥ |R|n2−1|I|. From this

|R|n2−1|I| − 2 ≤ |R|n2

|JI(A)| − 2 ≤ deg(A) for every A ∈ Mn(R). Thus, δ = |R|n2−1|I| − 2. �
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From Proposition 2.3, for a finite commutative ring R, ΓIt(Mn(R)) can never be an
Eulerian graph. For, consider the matrices E11 and E1n where n ̸= 1. Tr(E2

11) = 1 /∈ I
and Tr(E2

1n) = 0 ∈ I. Hence, by the Proposition 2.3, either of E11 and E1n must have odd
degree.

Proposition 2.4. Let R be a commutative ring, n ≥ 2 be an integer and I be a non trivial
ideal of R. Then ΓIt(Mn(R)) is connected with diam(ΓIt(Mn(R))) = 2 and gr(ΓIt(Mn(R)))
= 3.

Proof. Let A = [aij ] and B = [bij ] be two distinct elements of Mn(R)\Mn(I). If Tr(AB) ∈
I, then d(A, B) = 1. Assume that Tr(AB) /∈ I. By Proposition 2.2, diam(ΓIt(Mn(R))) > 1.
Now let us consider two cases:

Case 1. Suppose aijbkℓ − akℓbij ∈ I for each (i, j), (k, l) ∈ {1, . . . , n}2.
Let (i0, j0) and (i1, j1) be two distinct elements of {1, . . . , n}2 such that ai0j0 /∈ I. Consider
the matrix C = [cij ] with cj0i0 = −ai1j1 , cj1i1 = ai0j0 , and ckℓ ∈ I elsewhere. Then
C ∈ Mn(R) \ Mn(I) and

Tr(AC) = ai0j0cj0i0 + ai1j1cj1i1 + elements of I

= −ai0j0ai1j1 + ai1j1ai0j0 + elements of I ∈ I

and
Tr(BC) = bi0j0cj0i0 + bi1j1cj1i1 + elements of I

= −bi0j0ai1j1 + bi1j1ai0j0 + elements of I ∈ I.

Case 2. Suppose there exist (i0, j0), (i1, j1) ∈ {1, . . . , n}2 such that ai0j0bi1j1 − ai1j1bi0j0 /∈
I.
Let (i2, j2) ∈ {1, . . . , n}2 \ {(i0, j0), (i1, j1)} and consider the matrix C = [cij ] where

cj0i0 = ai1j1bi2j2 − ai2j2bi1j1 ,

cj1i1 = ai2j2bi0j0 − ai0j0bi2j2 ,

cj2i2 = ai0j0bi1j1 − ai1j1bi0j0 and
ckℓ ∈ I elsewhere.

Then C ∈ Mn(R) \ Mn(I) and
Tr(AC) = ai0j0cj0i0 + ai1j1cj1i1 + ai2j2cj2i2

= ai0j0ai1j1bi2j2 − ai0j0ai2j2bi1j1 + ai1j1ai2j2bi0j0

− ai1j1ai0j0bi2j2 + ai2j2ai0j0bi1j1 − ai2j2ai1j1bi0j0 + elements of I ∈ I,

and Tr(BC) = bi0j0cj0i0 + bi1j1cj1i1 + bi2j2cj2i2

= bi0j0ai1j1bi2j2 − bi0j0ai2j2bi1j1 + bi1j1ai2j2bi0j0

− bi1j1ai0j0bi2j2 + bi2j2ai0j0bi1j1 − bi2j2ai1j1bi0j0 + elements of I ∈ I.

In both cases, A ̸= C and B ̸= C (otherwise Tr(AB) ∈ I) and hence d(A, B) = 2.
Consequently, ΓIt(Mn(R)) is connected and diam(ΓIt(Mn(R))) = 2.
Consider nonzero distinct matrices A = [aij ] with a11 = 1 and aij ∈ I elsewhere, B = [bij ]
with bnn = 1 and bij ∈ I elsewhere and C = [cij ] with c1n = 1 and cij ∈ I elsewhere. By
the choice of A, B, C, we have Tr(AB), Tr(BC), Tr(AC) ∈ I. Thus A − B − C − A is a
cycle, and so gr(ΓIt(Mn(R))) = 3. �
Remark 2.5. (i). By Propositions 2.2 and 2.4, the eccentricity of every vertex in

ΓIt(Mn(R)) is 2 and hence the radius of ΓIt(Mn(R)) is 2. i.e., the graph ΓIt(Mn(R))
is self-centered.

(ii). By Proposition 2.4 ΓIt(Mn(R)) contains an odd cycle, and so ΓIt(Mn(R)) can
never be a bipartite graph.
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3. Relationship between ΓIt(Mn(R)) and Γt(Mn(R/I))
In this section, we study the graph ΓIt(Mn(R)) through Γt(Mn(R/I)). The following

theorem is useful in the further discussion of this paper.

Theorem 3.1. Let R be a ring and I be an ideal of R. Then Mn(R)/Mn(I) ∼= Mn (R/I) .

Proof. The map φ : Mn(R)/Mn(I) → Mn (R/I) by [aij ] + Mn(I) = [aij + I] defines an
isomorphism between Mn(R)/Mn(I) and Mn (R/I) . �
Note 3.2. From the isomorphism defined in Theorem 3.1, given an ideal I of R and a
matrix A ∈ Mn(R), we can view the trace of the coset A + Mn(I) in Mn(R)/Mn(I) as
the trace of A in Mn(R/I). Thus, the trace graph of Mn(R)/Mn(I) is the trace graph of
Mn(R/I).

Theorem 3.3. Let I be an ideal of a commutative ring R, n ≥ 2 be a positive integer and
A = [aij ], B = [bij ] ∈ Mn(R) \ Mn(I) Then the following are true:

1. If A is adjacent to B in Γt(Mn(R/I)), then A and B are adjacent in ΓIt(Mn(R)).
2. If A is adjacent to B in ΓIt(Mn(R)) and A ̸= B, then A is adjacent to B in

Γt(Mn(R/I)).
3. If A is adjacent to B in ΓIt(Mn(R)) and A = B, then Tr(A2), Tr(B2) ∈ I.
4. If Tr(A2) ∈ I and A = B, then A is adjacent to B in ΓIt(Mn(R)) and Tr(B2) ∈ I.
5. If A and B are (distinct) adjacent vertices in ΓIt(Mn(R)), then all (distinct) el-

ements of A are adjacent to all elements of B in ΓIt(Mn(R)). In particular, if
Tr(A2) ∈ I, then all the distinct elements of A are adjacent in ΓIt(Mn(R)).

Proof. 1. In view of the fact mentioned in Note 3.2, it is enough to prove that A+Mn(I)
is adjacent to B + Mn(I) in Γt (Mn(R)/Mn(I)) implies A is adjacent to B in ΓIt(Mn(R)).
When A + Mn(I) is adjacent to B + Mn(I) in Γt (Mn(R)/Mn(I)) , we have Tr(AB +
Mn(I)) = Mn(I) and so Tr(AB) ∈ I. Thus A is adjacent to B in ΓIt(Mn(R)).
2. If A is adjacent to B in ΓIt(Mn(R)), then Tr(AB) ∈ I. This gives that Tr(AB) + I = I
and hence Tr(AB + Mn(I)) = Mn(I). Thus, Tr((A + Mn(I))(B + Mn(I))) = Mn(I), and
so A + Mn(I) is adjacent to B + Mn(I) in Γt (Mn(R)/Mn(I)) .

3. If A is adjacent to B in ΓIt(Mn(R)), by (2) above Tr((A + Mn(I))(B + Mn(I))) =
Mn(I). Since A + Mn(I) = B + Mn(I), Tr((A + Mn(I))(A + Mn(I))) = Mn(I). i.e.,
Tr(A2+Mn(I)) = Mn(I) giving Tr(A2)+I = I. Thus Tr(A2) ∈ I and similarly Tr(B2) ∈ I.
4. If Tr(A2) ∈ I, then Tr(A2) + I = I and so Tr(A2 + Mn(I)) = Mn(I). Thus Tr((A +
Mn(I))(B+Mn(I))) = Mn(I) giving Tr(AB)+I = I. Thus Tr(AB) ∈ I. i.e., A is adjacent
to B in ΓIt(Mn(R)). By (3), Tr(B2) ∈ I.

5. It is enough to prove that if A and B are (distinct) adjacent vertices in ΓIt(Mn(R)),
then all (distinct) elements of A + Mn(I) are adjacent to all elements of B + Mn(I) in
ΓIt(Mn(R)). In particular, if Tr(A2) ∈ I, then all the distinct elements of A + Mn(I) are
adjacent in ΓIt(Mn(R)).

By (1) and (2), if A and B are adjacent vertices in ΓIt(Mn(R)), then all (distinct)
elements of A + Mn(I) and B + Mn(I) are adjacent in ΓIt(Mn(R)). As a particular case,
taking B = A, we get if Tr(A2) ∈ I, then all the distinct elements of A + Mn(I) are
adjacent in ΓIt(Mn(R)). �
Corollary 3.4. Let I be an ideal of a commutative ring R and n ≥ 2 be a positive integer.
Then ΓIt(Mn(R)) contains |Mn(I)| disjoint subgraphs each isomorphic to Γt (Mn(R/I)) .

Proof. Let {Ai}i∈Λ be distinct coset representatives of elements in the quotient ring
Mn(R)/Mn(I). Then the vertex set of Γt(Mn(R)/Mn(I)) is partitioned into {Ai+Mn(I)}i∈Λ.
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Note that Ai +Mn(I) ̸= Aj +Mn(I) for i ̸= j. Fix X ∈ Mn(I). Consider the subgraph HX

with vertex set {Ai + X : i ∈ Λ} ⊆ V (ΓIt(Mn(R))) and two vertices Ai + X and Aj + X
are adjacent in HX if Ai + Mn(I) and Aj + Mn(I) are adjacent in Γt (Mn(R)/Mn(I)) .
Clearly, HX is isomorphic to Γt (Mn(R)/Mn(I)) .

Assume that Ai + X and Aj + X are adjacent in HX . By the definition of HX , Ai +
Mn(I) is adjacent to Aj + Mn(I) in Γt (Mn(R)/Mn(I)) . By Theorem 3.3(1), Ai and Aj

are adjacent in ΓIt(Mn(R)). By Theorem 3.3(4), Ai + X and Aj + X are adjacent in
ΓIt(Mn(R)). Hence HX is a subgraph of ΓIt(Mn(R)).

Also, for any Y (̸= X) ∈ Mn(I), V (HX) ∩ V (HY ) = ϕ. Thus, ΓIt(Mn(R)) contains
|Mn(I)| disjoint subgraphs each isomorphic to Γt (Mn(R)/Mn(I)) and so contains |Mn(I)|
disjoint subgraphs isomorphic to Γt (Mn(R/I)) . �
Remark 3.5. The following are true:

1. Γt (Mn(R)/Mn(I)) is a graph with |Mn(R/I)| − 1 vertices.
2. ΓIt(Mn(R)) is a graph with |Mn(R)| − |Mn(I)| vertices.
3. Let R be a finite commutative ring. Note that Corollary 3.4 exhibits a partition

of ΓIt(Mn(R)) into vertex disjoint subgraphs. Thus
|Mn(I)| |V (Γt (Mn(R/I)))| = |V (ΓIt(Mn(R)))| .

The following theorem puts forth a partition of ΓIt(Mn(R)) into edge disjoint subgraphs.
In view of Proposition 3.3(4), if Tr(A2) ∈ I and A = B, then A is adjacent to B in
ΓIt(Mn(R)) and Tr(B2) ∈ I. This means that if Tr(A2) ∈ I for a matrix A, then the same
is true for all matrices in the coset of A.

Theorem 3.6. Let R be a commutative ring with identity, I be a non trivial ideal of R,
n ≥ 2 be an integer and

λ = |{A ∈ V (Γt(Mn(R/I))) : Tr(A2) ∈ I and A is a coset representative of A}|.
Then ΓIt(Mn(R)) ∼= |Mn(I)|2Γt(Mn(R/I)) ⊕ λK|Mn(I)|.

Proof. Consider the partition of edges of Γt(Mn(R/I)) given below:
E1 = {e = (A, B) : Tr(A2),Tr(B2) /∈ I}
E2 = {e = (A, B) : Tr(A2),Tr(B2) ∈ I}
E3 = {e = (A, B) : either Tr(A2) or Tr(B2) ∈ I}.

Let e = (A, B) ∈ E(Γt(Mn(R/I))). By Theorem 3.3(1) and (4), the subgraph induced by
the set Ve = {A + N1, B + N2 : N1, N2 ∈ Mn(I)} in ΓIt(Mn(R)) is

⟨Ve⟩ =


K|Mn(I)|,|Mn(I)| if Tr(A2),Tr(B2) /∈ I;
K|Mn(I)|,|Mn(I)| ⊕ 2K|Mn(I)| if Tr(A2),Tr(B2) ∈ I;
K|Mn(I)|,|Mn(I)| ⊕ K|Mn(I)| if either Tr(A2) or Tr(B2) ∈ I.

By [4, p.192], we have K|Mn(I)|,|Mn(I)| ∼= M
(e)
1 ⊕ · · · ⊕ M

(e)
|Mn(I)|, where each of M

(e)
i is a

perfect matching of K|Mn(I)|,|Mn(I)|. Thus,

⟨Ve⟩ =


M

(e)
1 ⊕ · · · ⊕ M

(e)
|Mn(I)| if Tr(A2),Tr(B2) /∈ I;

M
(e)
1 ⊕ · · · ⊕ M

(e)
|Mn(I)| ⊕ 2K|Mn(I)| if Tr(A2),Tr(B2) ∈ I;

M
(e)
1 ⊕ · · · ⊕ M

(e)
|Mn(I)| ⊕ K|Mn(I)| if either Tr(A2) or Tr(B2) ∈ I.

Note that Hi =
⊕

e∈E(ΓtMn(R/I))
M

(e)
i is a subgraph of ΓIt(Mn(R)) and Hi can be di-

vided into |Mn(I)| edge disjoint subgraphs each isomorphic to Γt(Mn(R/I)), i.e., Hi
∼=

|Mn(I)|Γt(Mn(R/I)).
Clearly H = H1 ⊕ · · · ⊕ H|Mn(I)| is a subgraph with vertex set Mn(R) \ Mn(I) and
H ∼= |Mn(I)|2Γt(Mn(R/I)). Thus ΓIt(Mn(R)) ∼= |Mn(I)|2Γt(Mn(R/I)) ⊕ λK|Mn(I)| where

λ = |{A ∈ V (Γt(Mn(R/I)) : Tr(A2) ∈ I and A is a coset representative of A}|. �
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4. Chromatic, clique and independence numbers of ΓIt(Mn(R))
In this section, we obtain bounds for the clique, chromatic and independence numbers

of ΓIt(Mn(R)) and obtain a condition for the chromatic and clique numbers of ΓIt(Mn(R))
to be equal.

Theorem 4.1. Let n ≥ 2 be an integer, R be a commutative ring and I be a non trivial
ideal of R. Then the following hold:

1. ω(Γt(Mn(R/I))) ≤ ω(ΓIt(Mn(R))) ≤ |Mn(I)|ω(Γt(Mn(R/I))). Moreover, the
equality ω(ΓIt(Mn(R))) = |Mn(I)|ω(Γt(Mn(R/I))) holds if there exists a clique of
maximum order in Γt(Mn(R/I)) such that Tr(A2) ∈ I for every vertex A in the
clique.

2. χ(Γt(Mn(R/I))) ≤ χ(ΓIt(Mn(R))) ≤ |Mn(I)|χ(Γt(Mn(R/I))).

Proof. 1. The first inequality follows from the fact that Γt(Mn(R/I)) is a subgraph
of ΓIt(Mn(R)). Let ω(Γt(Mn(R/I))) = k. To conclude the proof, it is enough to prove
that ω(ΓIt(Mn(R))) ≤ k|Mn(I)|. Since Γt(Mn(R/I)) ∼= Γt(Mn(R)/Mn(I)), we have
ω(Γt(Mn(R)/Mn(I))) = k.

Suppose there exists a clique of order k|Mn(I)| + 1 in ΓIt(Mn(R)). Let {B1, . . . ,
Bk|Mn(I)|+1} be a clique in ΓIt(Mn(R)). Consider the set

X = {B1 + Mn(I), . . . , Bk|Mn(I)|+1 + Mn(I)} ⊆ V (Γt(Mn(R)/Mn(I))).
Since Bi is adjacent to Bj in ΓIt(Mn(R)), for i ̸= j, either Bi + Mn(I) = Bj + Mn(I) or
Bi +Mn(I) is adjacent to Bj +Mn(I) in Γt(Mn(R)/Mn(I)). Since |Bi +Mn(I)| = |Mn(I)|
we have at least k + 1 distinct elements in X such that the k + 1 elements are adjacent to
each other in Γt(Mn(R)/Mn(I)). Thus ω(Γt(Mn(R)/Mn(I))) ≥ k + 1, which is a contra-
diction. Hence ω(ΓIt(Mn(R))) ≤ k|Mn(I)|. The moreover case is clear from the preceding
arguments and Theorem 3.3(1) and (5).

2. The first inequality is clear since Γt(Mn(R/I)) is a subgraph of ΓIt(Mn(R)). Let
χ(Γt(Mn(R/I))) = k and C1, . . . , Ck be the color classes of Γt(Mn(R/I)). Consider A ∈
Γt(Mn(R/I)) belongs to the color class C1 and the set XA = {[aij ] ∈ ΓIt(Mn(R)) : [aij +
I] = A}. Note that |XA| = |Mn(I)|. Assign |Mn(I)| distinct colors C11, . . . , C1|Mn(I)| to the
vertices of XA. Assign the same colors C11, . . . , C1|Mn(I)| for the vertices arising out of other
vertices B ∈ Γt(Mn(R/I)) belonging to the color class C1. Since A is not adjacent to B no
vertex of XA is adjacent to XB. Similarly for 2 ≤ i ≤ k assigning colors, Ci1, . . . , Ci|Mn(I)|
to the vertices of ΓIt(Mn(R)) arising out of the vertices of the color class Ci we have
k|Mn(I)| colors and the coloring is proper. Thus χ(ΓIt(Mn(R))) ≤ k|Mn(I)|. �

The following theorem is a generalization of the moreover case of Theorem 4.1(1).

Theorem 4.2. Let n ≥ 2 be an integer, R be a commutative ring and I be a non triv-
ial ideal in R. Let S be a clique of maximum order in Γt(Mn(R/I)) and S have the
largest number of elements A with Tr(A2) ∈ I. Let X = {A ∈ S : Tr(A2) /∈ I}. Then
ω(ΓIt(Mn(R))) = |X| + |Mn(I)|(ω(Γt(Mn(R/I))) − |X|).

Proof. Let |X| = |{A ∈ S : Tr(A2) /∈ I}| = k1, |{A ∈ S : Tr(A2) ∈ I}| = k2 and
ω(Γt(Mn(R/I))) = |S| = k. Then k1 + k2 = k. In view of Note 3.2, Γt(Mn(R/I)) ∼=
Γt(Mn(R)/Mn(I)) and so ω(Γt(Mn(R)/Mn(I))) = k.

Further by our assumption on S, any maximal clique of Γt(Mn(R/I)) and hence of
Γt(Mn(R)/Mn(I)) can have at most k2 number of vertices A with Tr(A2) ∈ I.

Hence one can take the clique corresponding to S of Γt(Mn(R/I)) as a clique < {A1 +
Mn(I), . . . , Ak + Mn(I)} > of Γt(Mn(R)/Mn(I)) with Tr(A2

i ) ∈ I for 1 ≤ i ≤ k2 and
Tr(A2

i ) /∈ I for k2 + 1 ≤ i ≤ k. Clearly the set {Aij : Aij ∈ Ai + Mn(I), 1 ≤ i ≤



Ideal based trace graph of matrices 615

k2 and 1 ≤ j ≤ |Mn(I)|} ∪ {Ai2 = Ai : k2 + 1 ≤ i ≤ k} is a clique of size |Mn(I)|k2 + k1
in ω(ΓIt(Mn(R))).

Hence ω(ΓIt(Mn(R))) ≥ k1 + |Mn(I)|k2.

To prove our result, it is enough to prove that ω(ΓIt(Mn(R))) ≤ k1 + |Mn(I)|k2. Suppose
ΓIt(Mn(R)) has a clique S′ of order k1 + |Mn(I)|k2 + 1. Without loss of generality, we
may assume that S′ is a maximal clique of order ≥ k1 + |Mn(I)|k2 + 1 in ΓIt(Mn(R)). Let
A ∈ S′ with Tr(A2) /∈ I.

By Theorem 3.3 (3), no vertex in the set {A + B : B ∈ Mn(I)∗} is adjacent to A. Hence
{A + B : B ∈ Mn(I)∗} has no intersection with S′. Also note that due to the maximality
of the clique S′, if A ∈ S′ with Tr(A2) ∈ I then by Theorem 3.3 (2) and (4), the set
{A + B : B ∈ Mn(I)} ⊂ S′.

If S′ contains at least k2|Mn(I)| + 1 vertices with Tr(A2) ∈ I, then by Theorem 3.3 (2),
the clique S′

I of Γt(Mn(R)/Mn(I)) with respect to S′ contains at least k2 + 1 vertices
with Tr(A2) ∈ I which is a contradiction to our assumption that among the cliques of
Γt(Mn(R/I)), S has the largest number of elements A with Tr(A2) ∈ I.

Hence the number of vertices in S′ with Tr(A2) ∈ I is less than or equal to k2|Mn(I)|. i.e.,
S′ contains at least k1+1 vertices with Tr(A2) /∈ I. Now, the clique S′

I of Γt(Mn(R)/Mn(I))
corresponding to S′ contains at least k2 + k1 + 1 vertices which is a contradiction to
ω(Γt(Mn(R/I))) = k. Thus ω(ΓIt(Mn(R))) ≤ k1 + |Mn(I)|k2 and hence ω(ΓIt(Mn(R))) =
k1 + |Mn(I)|k2. �
Theorem 4.3. Let n ≥ 2 be an integer, R be a commutative ring and I be a non trivial
ideal of R. Let Γt(Mn(R/I)) contain a clique of maximum order such that Tr(A2) ∈ I
for every A in the clique. If χ(Γt(Mn(R/I))) = ω(Γt(Mn(R/I))), then χ(ΓIt(Mn(R))) =
ω(ΓIt(Mn(R))).

Proof. Firstly, let us assume that χ(Γt(Mn(R/I))) = ω(Γt(Mn(R/I))) = k. From this we
have χ(Γt(Mn(R)/Mn(I))) = ω(Γt(Mn(R)/Mn(I))) = k.

Let {A1 + Mn(I), . . . , Ak + Mn(I)} be a clique of order k in Γt(Mn(R)/Mn(I)) such
that Tr(A2

i ) ∈ I, 1 ≤ i ≤ k. Let {c1, . . . , ck} be a set of minimum colors required for a
proper coloring of the graph Γt(Mn(R)/Mn(I)). Without loss of generality assume that
Ai + Mn(I) is colored by the color ci. Since A2

i ∈ I, the set X = {A ∈ ΓIt(Mn(R)) : A ∈
Ai + Mn(I) for some i ∈ {1, . . . , k}} forms a clique of order |Mn(I)|k in ΓIt(Mn(R)).

By Theorem 4.1(1), this clique is maximum and ω(ΓIt(Mn(R))) = k|Mn(I)|. Assign
k|Mn(I)| distinct colors c′

1, . . . , c′
k|Mn(I)| to the vertices in the set X.

For a vertex B ∈ V (ΓIt(Mn(R))) \ X, there exists M ∈ Mn(I) such that B = Bℓ + M ∈
Bℓ + Mn(I) for some Bℓ + Mn(I) /∈ {A1 + Mn(I), . . . , Ak + Mn(I)}. Let cj be the color of
Bℓ + Mn(I) in Γt(Mn(R)/Mn(I)). Note that Aj + Mn(I) belongs to the color class cj in
Γt(Mn(R)/Mn(I)).

Assign the color of Aj + M in ΓIt(Mn(R)) to B = Bℓ + M in ΓIt(Mn(R)). Let C ∈
V (ΓIt(Mn(R))) \ X be adjacent to B ∈ V (ΓIt(Mn(R))) \ X. Then Bℓ + Mn(I) is adjacent
to C + Mn(I) in Γt(Mn(R)/Mn(I)) and hence they belong to different color classes in
Γt(Mn(R)/Mn(I)) and so B and C belong to different color classes in ΓIt(Mn(R)).

Thus we have given a proper coloring for the graph ΓIt(Mn(R)) with k|Mn(I)| colors
and so χ(ΓIt(Mn(R))) ≤ k|Mn(I)|. Since k|Mn(I)| = ω(ΓIt(Mn(R))) ≤ χ(ΓIt(Mn(R))),
χ(ΓIt(Mn(R))) = k|Mn(I)|. �
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Theorem 4.4. Let n ≥ 2 be an integer, R be a commutative ring and I be a non trivial
ideal of R. Then

1. α(Γt(Mn(R/I))) ≤ α(ΓIt(Mn(R))) ≤ |Mn(I)|α(Γt(Mn(R/I)));
2. In particular, if there exists an independent set of maximum order in Γt(Mn(R/I))

such that Tr(A2) /∈ I for every vertex A in the independent set, then α(ΓIt(Mn(R)))
= |Mn(I)|α(Γt(Mn(R/I))).

Proof. 1. Let α(Γt(Mn(R/I))) = k and X be the corresponding maximum independent
set of Γt(Mn(R/I)). Consider the set X1 = {A : A ∈ X} ⊆ V (ΓIt(Mn(R))). By the
Theorem 3.3(2), we have that X1 is an independent set of order k in ΓIt(Mn(R)). Hence
α(Γt(Mn(R/I))) ≤ α(ΓIt(Mn(R))). By Note 3.2, we have α(Γt(Mn(R)/Mn(I))) = k.

Suppose that there exists an independent set of order k|Mn(I)| + 1 in ΓIt(Mn(R)).
Let {B1, . . . , Bk|Mn(I)|+1} be an independent set in ΓIt(Mn(R)). Consider the set X =
{B1 + Mn(I), . . . , Bk|Mn(I)|+1 + Mn(I)} ⊆ V (Γt(Mn(R)/Mn(I))).

Note that for i ̸= j, Bi + Mn(I) = Bj + Mn(I) or Bi + Mn(I) is not adjacent to
Bj + Mn(I) in Γt(Mn(R)/Mn(I)). Since |Bi + Mn(I)| = |Mn(I)| we have at least k + 1
distinct elements in X such that the k + 1 elements are not adjacent to each other in
Γt(Mn(R)/Mn(I)),i.e., α(Γt(Mn(R)/Mn(I))) ≥ k + 1 which is a contradiction. Hence
α(ΓIt(Mn(R))) ≤ k|Mn(I)|.
2. From Theorem 3.3(2) and (3), we have α(ΓIt(Mn(R))) ≥ |Mn(I)|α(Γt(Mn(R/I))). By
the previous part, we have α(ΓIt(Mn(R))) = |Mn(I)|α(Γt(Mn(R/I))). �
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