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ABSTRACT

In this paper, two modeling method are employed. First, a method based on the Marquardt’s 
algorithm is presented to invert the gravity anomaly due to a finite vertical cylinder source. The 
inversion outputs are the depth to top and bottom, and radius parameters. Second, Forced Neural 
Networks (FNN) for interpreting the gravity field as try to fit the computed gravity in accordance 
with the estimated subsurface density distribution to the observed gravity. To evaluate the ability of 
the methods, those are employed for analyzing the gravity anomalies from assumed models with 
different initial parameters as the satisfactory results were achieved. We have also applied these 
approaches for inverse modeling the gravity anomaly due to a Chromite deposit mass, situated east 
of Sabzevar, Iran. The interpretation of the real gravity data using both methods yielded almost the 
same results.
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1. Introduction

Non-uniqueness is a common problem in the 
inverse modeling of the residual gravity anomaly. 
IT can assign a set of the measured gravity field data 
on the ground to the geometrical distributions of the 
subsurface mass with various shapes or physical 
parameters such as density and depth. One way to 
eliminate this ambiguity is to put a suitable geometry 
to the anomalous body with a known density followed 
by inversion of gravity anomalies (Chakravarthi 
and Sundararajan, 2004). Although simple models 
may not be geologically realistic, they are usually 
are sufficient to analyze sources of many isolated 
anomalies (Abdelrahman and El-Araby, 1993a.b). 
The interpretation of such an anomaly aims essentially 

to estimate the parameters such as shape, depth, and 
radius of the gravity anomaly causative body such 
as geological structures, mineral mass and artificial 
subsurface structures. 

Several graphical and numerical methods have 
been developed for analyzing residual gravity 
anomalies caused by simple bodies, such as Saxov and 
Nygaard (1953) and Bowin et al. (1986). The methods 
include, for example, Fourier transform (Odegard 
and Berg, 1965; Sharma and Geldart,1968); Mellin 
transform (Mohan et al., 1986); Walsh transforms 
techniques (Shaw and Agarwal, 1990); ratio techniques 
(Hammer, 1974; Abdelrahman et al., 1989); least-
squares minimization approaches (Gupta, 1983; Lines 
and Treitel, 1984; Abdelrahman, 1990; Abdelrahman 
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et al., 1991) and different neural networks (Eslam et 
al., 2001; Osman et al., 2006, 2007; Al-Garni, 2013; 
Eshaghzadeh and Kalantari, 2015; Eshaghzadeh and 
Hajian, 2018); effective quantitative interpretations 
using the least-squares method (Gupta, 1983) based 
on the analytical expression of simple moving average 
residual gravity anomalies are yet to be developed. 
The moving average method has mostly used for 
interpreting the potential fields (Abdelrahman et al., 
2003; Abdelrahman et al., 2015; Abdelrahman and 
Essa, 2015). Abdelrahman and El-Araby (1993a, b) 
introduced an interpretive technique based on fitting 
simple models convolved with the same moving 
average filter as applied to the measured gravity. A 
simple method proposed by Essa (2007) is used to 
determine the depth and shape factor of simple shapes 
from residual gravity anomalies along the profile. 
Another automatic method, the least-squares method, 
was proposed by Asfahani and Tlas (2008), by which 
the depth and amplitude coefficient can be determined.

Nowadays Artificial Neural Networks (ANNs) 
are of main research concern, so that involving 
researchers of various disciplines and sciences. 
Topics contributing to this investigation contain 
biology, computing, electronics, mathematics, 
medicine, geophysics and etc (Bichsel, 2005). The 
new method, the artificial neural network, has been 
employed in recent years for different branch of 
geophysics especially potential fields. For example, 
the situation of buried steel drums as magnetic dipole 
source is evaluated using supervised artificial neural 
network (Salem et al., 2001). Eslam et al., (2001) 
specified depth and radius of subsurface cavities from 
microgravity data using back propagation neural 
networks. Hajian (2004) estimated depth and shape 
factor of the gravity anomaly source by applying 
Feed-Forward Back-Propagation Neural Networks. 
Chua and Yang (1998) defined a new approach in 
neural networks titled Cellular Neural Network 
(CNN), which is focused on 2D image processing. 
CNN was applied for separation of regional/residual 
potential sources in geophysics (Albora et al., 2001a, 
b). Forced Neural Networks for gravity anomaly 
analysis was proposed by Osman et al. (2006; 2007). 
Abedi et al. (2009) calculated the depth and radius 
of the simple geometry by the neural network from 
the gravity anomalies. Kaftan et al. (2011) applied 
Artificial Neural Network for evaluating Seferihisar 

geothermal area by the gravity data. Al-Garni (2013) 
used MNN inversion for estimating the depth of the 
gravity anomaly source related to simple geometry 
such as sphere, infinite horizontal cylinder and semi-
infinite vertical cylinder. Eshaghzadeh and Kalantari 
(2015) have been proposed a new method based on 
feed-forward neural network for gravity field inverse 
modeling due to anticlinal structures. Eshaghzadeh 
and Hajian (2018) have introduced a new concept 
of the modularity for analysis the gravity field by 
modular neural network. 

In this paper, a simultaneous non-linear inversion 
based on Marquardt optimization is developed to 
estimate the radius and depth to top and bottom 
parameters of a structure similar to the finite vertical 
cylinder. The Marquardt  inversion method has been 
used for modeling the geological structures such as 
faulted beds (Chakravarthi and Sundararajan, 2005), 
anticlinal and synclinal structures (Chakravarthi 
and Sundararajan, 2007; 2008), multiple prismatic 
structures (Chakravarthi and Sundararajan, 2006). 
We also employ Forced Neural Networks (FNN) 
introduced by Osman et al. (2006; 2007) as a 
comparative method. The validity of the methods 
are tested on synthetic gravity data with and without 
random noise and also on a real gravity data set from 
Iran. Furthermore, the Euler deconvolution method is 
utilized to verify the estimated depths to top by the 
presented methods.  

2. Forward Gravity Modeling

The gravity effects of a finite vertical cylinder is 
defined by Hammer (1974)

g(x) = KF(x) (equation 1)

Where k is amplitude coefficient as

 (equation 2)

where x is the horizontal location coordinate of 
measurement points, z and h represent the depths to 
the top and base planes of causative structure from 
ground surface respectively, G is the gravitational 
constant, R is the radius of the horizontal cross section 
of a vertical cylinder, and ρ is the density contrast 
(Figure 1).
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3. Marquardt Method

The inversion of gravity anomalies is implicitly 
a mathematical process, trying to fit the computed 
gravity anomalies to the observed ones in the least-
squares approach and then estimating the three 
parameters of the finite vertical cylinder model namely 
depth to top (z), depth to bottom (h) and radius (R). 
The process of the inversion begins with computing 
the theoretical gravity anomaly of the simple geometry 
using equation (1). 

The difference between the observed gravity 
gobs (xi), and calculated gravity anomaly of an initial 
assumed model gcal (xi), can be estimated by a misfit 
function, J (Chakravarthi and Sundararajan, 2007), as

 (equation 3)

N is the number of observed gravity data. We have 
employed the Marquardt’s algorithm (Marquardt, 
1963) given by Chakravarthi and Sundararajan (2006) 
for minimizing the misfit function until the normal 
equations can be solved for over all modifications of 
the three unknowns structural parameters, i.e. depth to 
top (z), depth to bottom (h) and radius (R), as

  (equation 4)

where dak, k=1, 2 and 3 are the amendments to the 
three model parameters of the simple geometry 
structure, i.e. radius, depth to top and bottom. Also,

and λ is the damping factor. The advancements, dak, 
k=1, 2 and 3 evaluated from equation (4) are then 
added to or subtracted from the available parameters 
estimated from last iteration and the process repeats 
until the misfit, J, in equation (3)  descends below a 
predetermined allowable error or the damping factor 
obtains a large value which is greater than predefined 
amount or the repetition continues until the end of the 
considered number for iterations (Chakravarthi and 
Sundararajan, 2008). 

Partial derivatives required in the normal system 
of equation (4) are calculated numerically by the 
relations derived from equation (1) considering to 
each parameter to be solved. The Partial derivatives of 
the finite vertical cylinder source than the three shape 
parameters, namely radius, depth to top and depth to 
bottom can be computed, respectively, as

 
(equation 5)

                                                                   

 (equation 6)

                                                                   

  
(equation 7)

3.1. Theoretical Model Evaluation by Marquardt 
Method

Figure 2a shows the observed and calculated 
gravity field variations with 1 m interval along a 
100 m profile due to an initial finite vertical cylinder 
model with the parameters z=30 m, h=60 m and R=10 
m and an assumed finite vertical cylinder model with 
parameters z=27 m, h=64 m and R=8 m (Figure 
2b) where the maximum gravity is the center of the 
profile. The density contrast is given as Δρ=1000 kg/
m3. Hence, the assumed parameters and observed 
gravity field related to the initial model are the inputs 
to the inversion algorithm which coded in Matlab. 
During inversion, Δρ is constant and the model 

Figure 1- Geometries of the finite vertical cylinder.
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parameters, z, h and R are improved iteratively. The 
predefined values for error or misfit (J), iteration and 
damping factor (λ) are 0.00000001 mGal, 20 and 15, 
respectively. The initial damping factor is 0.5. 

The misfit, J, reduces intensely from its initial 
value of 0.0021 mGal at the first iteration to 0.000042 
mGal at the end of the 3rd iteration and then gradually 
reaches zero after the 16th iteration which is smaller 
than the allowable error value (Figure 3d). The 

Figure 2- a) Observed and calculated gravity due to b) initial and assumed finite vertical cylinder 
models.

Figure 3- Improvements of the structures parameters and misfit function versus iteration number for the assumed finite vertical 
cylinder model in figure 2.
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iteration terminated at 16th echo and therefore the 
estimated parameters at 16th iteration are the final 
results of the inversion. 

Figures 3a, 3b and 3d illustrate the variations of 
the model parameters R, z and h during inversion 
with increasing the iteration number. The conclusive 
obtained parameters values are z=30 m, h=60 m 

and R=10 m. Figure 4a shows the computed gravity 
anomaly from the inferred structure which is shown in 
figure 4b as is completely similar initial model. 

The efficacy of error has been evaluated by adding 
10% random noise to the gravity response of the initial 
finite vertical cylinder model (Figure 5a) using the 
following expression:

Figure 4- a) Observed and calculated gravity due to b) initial and estimated finite vertical cylinder 
model.

Figure 5- a) 10% noise corrupted observed gravity and calculated gravity due to b) initial and 
assumed finite vertical cylinder models.
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gnois(xi)=gobs(xi)[1+(RAN(i)-0.5)x0.1] (equation 8)

where gnois(xi) is the noise corrupted synthetic data 
at xi, and RND (i) is a pseudorandom number whose 
range is between 0 to 1. 

The initial values for the parameters of the 
assumed finite vertical cylinder model are given 
as  z=33 m, h=56 m and R=12 m (Figure 5b). The 
predefined values for error or misfit (J), iteration and 
damping factor (λ) are 0.00001 mGal, 100 and 15, 
respectively. The initial damping factor is 0.2. The 
misfit, J, reduces quickly from its initial value of 
0.00051 mGal at the first iteration to 0.000049 mGal 
at the end of the 3th iteration and then incrementally 
attains 0.000042 mGal after the 32th iteration and this 
value remain constant to latest iteration (Figure 6d). 
The final evaluated values for the depth to top (z), 
depth to bottom (h) and radius (R) are 30.26 m, 60.04 
and 10.06 m, respectively (Figure 6b, 6c and 6d). The 
percentage of error in the estimation of the model 
parameters, that is, z, h and R are about 0.87, 0.07 and  
0.6 m, respectively.

Figure 7a shows the generated gravity anomaly of 
the final structure that is derived from the estimated 
parameters as shown in Figure 7b. The numerical 
results obtained from the interpretation of the 
synthetic gravity data, with and without random noise, 
are tabulated in table 1.   

For evaluating the convergence of the Marquardt 
inversion, two different initial horizontal cylinder 
models were assumed to consider the gravity 
anomalies related to them with and without a random 
noise (Table 2). The estimated structural parameters 
approximately mimic the supposed ones.

Table 1- Numerical results evaluated from the initial and assumed 
structural parameters for the finite vertical cylinder model, 
with and without added noise.

Case Without noise With noise
Parameter z (m) h (m) R (m) z (m) h (m) R (m)
Initial 30 60 10 30 60 10
Assumed 27 64 8 33 56 12
Estimated 30 60 10 30,26 60,04 10,06
Error % 0 0 0 0,87 0,07 0,6

Figure 6- Improvements of the structures parameters and misfit function versus iteration number for the assumed 
finite vertical cylinder model in figure 5.
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weights are multiplied by effective values of inputs and 
outputs (Osman et al. 2007). The primary objective of 
neural networks is to find out such weights that present 
the best output. Back propagation is one of the most 
well-known learning algorithms for neural networks.

     In this approach, we need to compute the gravity 
anomaly due to a prismatic structure. There are some 
techniques for calculating the gravitational attraction 
of two-dimensional prism shaped masses, such as 
Talwani and Ewing (1960), Bhattacharyya (1964), 
Talwani (1965), Nagy (1966),  Plouff (1976), Last and 
Kubik (1983) and Gerkens (1989). We apply the 2D 
prism equation developed by Last and Kubik (1983) to 

4. Forced Neural Network

In this study, we employ the Forced Neural 
Network (FNN) introduced by Osman et al. (2006, 
2007) to determine the shape and density contrast of 
the target using the gravity anomaly as is assumed 
which the underground mass has been composed from 
the juxtaposed prisms.

FNN architecture is manufactured of several simple 
processing elements commonly known as neurons, 
which are connected together and performance in 
parallel (Figure 8). To estimate the efficient values 
of inputs and outputs, the various weights during the 
learning are attributed to these connections as these 

Figure 7- a) 10% noise corrupted observed gravity and calculated gravity due to, b) initial and 
estimated finite vertical cylinder models.

Table 2-  Numerical results evaluated from the gravity responses of the two different finite vertical cylinder models. To model 1 and model 2 
have been added 10% and 15% random noise, respectively.

Model 1 Model 2
Parameter z (m) h (m) R (m) z (m) h (m) R (m)
Initial 12 70 15 40 85 20
Assumed 16 65 11 34 78 16,5

Estimated

Without noise 12,02 70 14,99 40 85,02 20,01
Error% 0,17 0 0,067 0 0,023 0,05
With noise 11,94 70,8 15,11 39,1 86,5 18,9
Error% 0,5 1,14 0,73 2,25 1,76 5,5
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estimate the gravity anomaly at point p because of any 
block located at (i,j) coordinates, which is given as 

(equation 9)

where 

and

Here G is the gravitational constant, Δρ is density 
contrast, d and h are the width and height of the each 
block, xi and zj indicate the coordinate of the each 
block. The equation (9) can be rewritten as

 (equation 10)

Thus, there are i rows and j columns. By noting 
to the equation 10 can find that Δρhk are the weights 
of the neuron, i.e. each pixel and during the back 

propagation, the weights are updated and the output 
of the neuron exhibits the gravity anomaly (Figure 8). 
Hence, the density contrast are obtained. It is worth 
noting that in this method, from the linear activation 
function is used. 

Because non-uniqueness in the responses, the 
results obtained from the FNN do not demonstrate 
the exact distribution of the structure. To model 
the causative mass correctly, a filter must serve 
until the value of the Δρ which is very close to the 
zero, corresponding to the density contrast which is 
obtained from geological features of the region under 
investigation, assign as zero, otherwise the value of Δρ 
is set to the density contrast of the geological region 
after back propagation (Osman et al., 2007). For 
obtaining more details, see Osman et al. (2006; 2007).

4.1 Theoretical Model Evaluation by FNN

Figure 9a displays the observed gravity related to 
a synthetic model assuming the density contrast 500 
kg/m3 in which the depth to top of the model is 2 m, 
depth to bottom  is 10 m, the width of the upper part 
and lower part is 3 m, while the middle part is 9 m, as 
shown in figure 9b. 

The gravity anomalies of this model are considered 
as input data to the FNN, then, shape, location, and 
density contrast parameters of the buried structure 
are estimated using trained FNN, as after adequate 
iteration is applied, constant values are assigned 
to the output of the neuron according to the density 
difference Δρ, and this process is continued until the 
mean square error of the output, gp which is shown in 
figure 8, becomes sufficiently little.

Figure 8- Sketch of the Forced Neural Network (FNN) architecture for gravity anomaly.
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Figure 9c shows the evaluated structure by FNN 
which from the density contrast, shape and position 
points of view is similar the assumed one. The inverted 
gravity from FNN is illustrated in figure 9a.

5. Real Gravity Field Analysis

The site under survey is located in the east of Iran, 
around Sabzevar. The outcomes of the stones in the 
this area are mostly the alkali and ultrabasic igneous 
rocks and Ophiolite as the Chromite mineralization 
can be found in these rocks (Figure 10).  In this region, 
the Chromite deposits are massive. Figure 11 shows 
the Bouguer gravity anomalies map of the area under 
consideration. The gravity measurement was done 
along 12 profiles with a station interval of about 10 
m. The gravity data covering a 120×100 m area of the 
exploration region in Sabzevar. 

For reaching to the residual gravity anomalies 
which is our desire, the regional gravity anomalies 
must be removed using a trend (degree two 

polynomial) from the Bouguer anomaly. Figure 12 
displays the map of the computed local gravity field. 
The host rock of the chromite have the  positive density 
contrast than the surrounding formation, therefore on 
the residual gravity anomalies map is appeared as the 
positive anomaly. The average density of the Chromite 
mass is about 4.5 gr/cm3, whereas the density of the 
encompassing formation is between 3 gr/cm3 to 3.5 
gr/cm3. Here, we analyze the residual gravity field 
variations along the profile AA′ which runs across 
the Chromite mineral mass in an approximately W–E 
direction as is shown in figure 12. The length of profile 
is 42 m and the gravity sampling interval is given as 
2 m. 

We applied the Marquardt inversion for the 
real gravity data where the causative mass shape 
was assumed as a finite vertical cylinder. The 
observed gravity field variations along profile AA′ is 
demonstrated in figure 13a. The initial values of the 
depth to top and bottom and radius parameters are 
given as z=8.5 m, h=80 m and R=11 m (Figure 13b). 
The density difference is chosen as 1500 kg/m3. The 

Figure 9- a) Computed and inverted gravity due to b) first assumed model and c) inverted model, 
respectively.
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gravity anomaly produced by the presumed initial 
values is represented in figure 13a. The assigned values 
for misfit (J), iteration and damping factor (λ) are 
0.001 mGal, 50 and 20, respectively. The variability of 
each shape parameter and misfit of the finite vertical 
cylinder geometry model against the iteration number 
during inversion process is shown in figure 14. 

Figure 10- The geological map of the region under investigation.

Figure 12- The residual gravity anomalies map. The profile AA′ is 
specified with a nearly W-E direction.

Figure 11- The Bouguer gravity anomalies map.

Figure 13- a) Observed gravity along profile AA′, calculated and inverted gravity due to b) initial and estimated finite 
vertical cylinder models.
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Figure 14- The variations of  a) Radius b) depth to top c) depth to bottom d) misfit function versus iteration number for the 
real gravity data.

The performed iteration is 27, before it was ceased, 
as in the end of this iteration number, the damping 
factor obtained a value greater than the predefined 
value. The misfit abided constant after the 3th iteration 
while three other parameters have changed with each 
iteration as in the 27th iteration have been obtained the 
amounts 5.4 m, 72 m and 13.5 m for the depth to top, 
depth to bottom and radius, respectively. The inverted 
gravity due to the estimated parameters is brought in 
figure 13a whereas the inferred structure is shown 
in figure 13b. The assumed and inverted structural 
parameters are given in table 3. 

Table 3- Numerical results evaluated from the real gravity data.

Parameter z (m) h (m) R (m) z (m) h (m) R (m)
Assumed 8,5 80 11 4 65 16
Estimated 5,4 72 13,5 5,45 71,8 13,6
Iteration 27 43
Misfit (mGal) 0,265 0,0057

The permanency and isotropy of the interpreted 
parameters from the real gravity data was investigated 
using different assumed values (Table 3). The 
estimated structural parameters illustrate a very slight 
differences that confirm the stability of the method. 

The gravity profile AA′ in residual anomaly map is 
also analyzed for modeling with FNN approach. The 
length and width of each block was considered as 5 
m and 10 m, respectively. To achieve a under surface 
model as a finely detailed map, the evaluated density 
distribution was interpolated, where figure 15 illustrate 
the estimated structure for the Chromite deposit mass 
based on the density contrast distribution. The central 
part of the modeled deposit have a density contrast 
of 1600 kg/m3 and getting away from the center, this 
value slake as expected. By considering the inverted 
structure by FNN, the depth to top and bottom and 
radius parameters of the buried mass can consider as 
about 8 m, 70 m and  9 m, respectively.

For comparison, the generated gravity according 
to the interpreted mass using FNN and Marquardt 
inversion and also real gravity have been shown in 
figure 16. We have applied the standard error (SE) as a 
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gravity anomaly map. The Euler solutions located on 
the gravity anomaly present a depth between 5 to 10 m 
for the buried deposit (red points in figure 17). Because 
the estimated depth to top by the all three methods are 
in a same range, thus, it was found that the introduced 
methods operate correctly. The attained results for the 
real gravity anomaly have been summarized in table 4. 

Table 4- Evaluated parameters using the various methods.

Parameters
Methods z (m) h (m) R (m) SE (mGal)
FNN 8 70 9 0,09
Marquardt’s algorithm 5,4 72 13,5 0,126
Euler 5-10 - - -

6. Conclusions

In this paper, we have introduced a optimization 
approach based on the Marquardt’s algorithm and 
have also applied the Forced Neural Networks for 
the inverse modeling of the residual gravity anomaly 
due to the finite vertical cylinder geometric shape. 

criteria in order to compare the observed and evaluated 
gravity values (Asfahani and Tlas, 2008):

 
(equation 11)

where go and gc (i = 1, ..., N) are the observed and 
the evaluated values at the points xi (i = 1, ..., N), 
respectively. The standard error for the FNN and 
Marquardt’s algorithm methods are 0.09 and 0.126 
mGal, respectively. Therefore, according to the 
computed SE, the inverted structure from FNN are 
closer to reality.  

The Euler deconvolution method is a popular and 
well known technique in potential fields study which 
is widely used for estimating the depth of the anomaly 
source. In this study, we have employed the Euler 
method for calculating the depth of the Chromite mass 
by choosing a structure index of 1 and a window size 
of 5×5 points. Figure 17 show the solutions obtained 
from Euler deconvolution as plotted on the residual 

Figure 15- The inverted density distribution from analyzing the real gravity data using 
FNN.

Figure 16- The observed gravity and gravity responses obtained from the FNN and Marquardt inversion (MA).
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To check the constancy and convergency of the 
parameters attained from the Marquardt inversion, the 
noise-free and noise corrupted  theoretical gravity data 
related to the different initial models were used and 
it was eventuated that the inversion yields almost the 
same solutions in all cases. Moreover, the performance 
of the FNN was evaluated by the synthetic gravity 
data set. The stable and accurate solutions verify the 
reliability and applicability of the both Marquardt’s 
algorithm and FNN methods as the powerful and 
useful inverse modeling tools. 

The methods were used for estimating the buried 
structure parameters and determining the condition 
of the underground density distribution using the 
gravity anomaly of a Chromite deposit from Iran. The 
computed values for the depth to top, depth to bottom 
and radius parameters by the Marquardt inversion are 
5.4 m, 72 m and 13.5 m, respectively and by the FNN 
method are about 8 m, 70 m and 9 m, respectively. 
Therefore, the acquired dimensions for the causative 
mass are very close and the inverted gravity from the 
final interpreted structure by these procedures conform 
to the real gravity along profile AA′ cross-section. 

The minimum standard error value was considered as 
a criterion for selecting the best mass shape, as the 
estimated parameters depict a acceptable structure 
naturally. As expected, the standard error amount 
between the inverted gravity from the FNN and real 
gravity is smaller than one  between the inverted 
gravity from the Marquardt’s algorithm and real 
gravity, because in reality a structure with invariable 
density whose feature be closely a geometric shape. 
In other words, the gravity causative mass has not 
a perfect geometry shape and is a heterogeneous 
body. In nonlinear inversion, we consider the gravity 
anomaly source as a regular geometry shape with a 
constant density, therefore we try to interpret the 
anomaly source with the most similar geometry shape 
where the error between the observed and computed 
gravity be least. Hence, existence of a mismatch 
between observed and computed data is unavoidable. 
Therefore, the estimated values for the depth to top 
(z), depth to bottom (h) and radius (R) parameters 
using the FNN are closer to the reality than those 
computed by the Marquardt inversion method. The 
evaluated depths to top have also good conformity 
with the Euler solutions.

Figure 17- The depth solutions estimated by the Euler deconvolution method for the residual 
gravity anomalies.
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