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Abstract 

The main purpose of this paper is to determine some lower bounds for real parts of the quotient of normalized error 

function and its partial sum. In addition, the some upper bounds for absolute values of normalized error function and its 

derivative are also given. 
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Abstract 

Bu makalenin temel amacı normalize edilmiş hata fonksiyonunun kısmi toplamlarına oranının reel kısımları için bazı 

alt sınırlar belirlemektir. Ek olarak, normalize edilmiş hata fonksiyonu ve türevinin mutlak değerleri için bazı üst 

sınırlar da verilmiştir. 

 

Anahtar kelimeler: Analitik Fonksiyon, Hata Fonksiyonu, Kısmi Toplamlar 
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1. Introduction 

 

The error function is defined by (Abromowitz and 

Stegun, 1965) 

 

erf(z) =
2

√𝜋
∫ 𝑒−𝑡2𝑧

0
𝑑𝑡 =

2

√𝜋
∑

(−1)𝑛𝑧2𝑛+1

(2𝑛+1)𝑛!
.∞

𝑛=0           (1) 

 

This function appears widely in mathematics and 

related disciplines. Especially, it has various 

applications in statistics, probability theory, 

partial differential equations, special functions and 

physics. It is important to mention here that the 

error function is also known as probability 

integral in the literature. Because of its 

remarkable properties, some interesting studies 

has been done on the error function. For some 

interesting properties including completely 

monotonicity, functional inequalities and 

differential inequalities of the error function one 

can refer to the papers (Alzer, 2003, 2009, 2010) 

and references therein. On the other hand, 

Kreyszig and Todd (1959a, 1959b) studied on the 

univalence of the error function and a related 

function while, Ramachandran et al. (2018, p.365-

367) gave certain results for 𝑞 −starlike and 

𝑞 −convex error functions. In additon, Silverman 

(1997) and Silvia (1985) gave some results on the 

partial sums of starlike and convex functions. 

Also, Çağlar and Deniz (2015), Aktaş (2019) and, 

Aktaş and Orhan (2016, 2018) obtained some 

lower bounds for the quotient of some special 

functions and their partial sums. Moreover, Çağlar 

and Orhan (2017) studied on neighborhood and 

partial sum problem for generalized Sakaguchi 

type functions. However, other geometric 

properties (like starlikeness, convexity, close-to 

convexity, uniform convexity and so forth) of the 

error function has not been studied yet. The 

importance of this study is that: determining other 

geometric properties of the error function can be 

useful for other disciplines such as mathematical 

physics, engineering, probabilty and statistics. 

Because some functions with the positive real part 

are frequently used in geometric function theory 

and related areas. Motivated by the earlier works 

on analytic univalent functions, our main aim is to 

present some lower bounds for real parts of the 

quotient of normalized error function and its 

partial sum. In addition, we give upper bounds for 

absolute values of normalized error function and 

its derivative. 

 

 

Now, we would like to recall some basic notions 

concerning geometric function theory. Let 𝒜 

denote the class of function of the form: 

𝑓(𝑧) = 𝑧 + ∑ 𝑎𝑛
∞
𝑛=2 𝑧𝑛,                                     (2) 

 

which are analytic in the open unit disk 

 

𝒰 = {𝑧: 𝑧 ∈ ℂ, |𝑧| < 1}.  
 

We denote by 𝒮 the class of all functions in 𝒜, 

which are univalent in 𝒰. It is clear that the 

function erf 𝑧 does not belong to the class 𝒜. For 

this reason, we consider the following normalized 

form: 

 

𝐸𝑟𝑓(𝑧) =
√𝜋𝑧

2
erf(√𝑧)  

= 𝑧 + ∑
(−1)𝑛−1

(𝑛−1)!(2𝑛−1)
𝑧𝑛∞

𝑛=2 .                               (3) 

 

As a result, the function 𝑧 ↦ 𝐸𝑟𝑓(𝑧) is in the 

class 𝒜. We would like to mention here that the 

following well-known series sums which will be 

used in the sequel hold true: 

 

∑
1

𝑛2𝑛
∞
𝑛=1 = ln 2                                                  (4) 

 

and 

 

∑
1

𝑛!
∞
𝑛=1 = 𝑒 − 1.                                                 (5) 

 

Also, the well-known triangle inequality 

 

|𝑧1 + 𝑧2| ≤ |𝑧1| + |𝑧2|             (𝑧1, 𝑧2 ∈ ℂ)        (6) 

 

and the following known inequalities 

 

2𝑛−1 ≤ 𝑛!               (𝑛 ≥ 1)                                (7) 

and 

2𝑛 < 2𝑛 + 1           (𝑛 ≥ 1)                                (8) 

 

will be used in order to derive our main results. 

 

Let 𝑤(𝑧) denote an analytic function in 𝒰. It is 

worth to remember here that the following well-

known result which will be frequently used in the 

sequel plays a vital role to prove our main results: 

 

ℜ {
1+𝑤(𝑧)

1−𝑤(𝑧)
} > 0 iff   |𝑤(𝑧)| < 1, 𝑧 ∈ 𝒰.              (9) 

 

2. Main Results 

 

In this section, we firstly prove the following 

lemma which will be used in order to derive our 

main results. 

 

Lemma. The normalized error function 𝑧 ↦
𝐸𝑟𝑓(𝑧) which is given by (3) satisfies the 

following two inequalities for 𝑧 ∈ 𝒰: 
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𝒊.     |𝐸𝑟𝑓(𝑧)| ≤ 1 + ln 2,                                  (10) 

 

𝒊𝒊.   |(𝐸𝑟𝑓(𝑧))
′
| ≤

1+e+2ln 2

2
.                            (11) 

 

Proof. 𝒊. By using the inequalities which are given 

by (6), (7) and (8), we can write that 

 

|𝐸𝑟𝑓(𝑧)| = |𝑧 + ∑
(−1)𝑛−1

(𝑛−1)!(2𝑛−1)
𝑧𝑛∞

𝑛=2 |  

= |𝑧 + ∑
(−1)𝑛

𝑛!(2𝑛+1)
𝑧𝑛+1∞

𝑛=1 |  

≤ |𝑧| + |∑
(−1)𝑛

𝑛!(2𝑛+1)
𝑧𝑛+1∞

𝑛=1 |  

≤ 1 + ∑
1

𝑛!(2𝑛+1)
∞
𝑛=1    

≤ 1 + ∑
1

𝑛2𝑛
∞
𝑛=1    

 

for 𝑧 ∈ 𝒰. Now consider the series sum which is 

given by (4) in the last inequality, we deduce that 

 

|𝐸𝑟𝑓(𝑧)| ≤ 1 + ln 2, 
 

which is desired. 

 

𝒊𝒊. By considering the inequalities which are given 

by (6), (7) and (8), it can be written that 

 

|(𝐸𝑟𝑓(𝑧))
′
| = |1 + ∑

(𝑛+1)(−1)𝑛

𝑛!(2𝑛+1)
𝑧𝑛∞

𝑛=1 |  

≤ 1 + ∑
(𝑛+1)

𝑛!(2𝑛+1)
∞
𝑛=1   

= 1 + ∑
1

(𝑛−1)!(2𝑛+1)
∞
𝑛=1   

+ ∑
1

𝑛!(2𝑛+1)
∞
𝑛=1   

≤ 1 +
1

2
∑

1

𝑛!
∞
𝑛=1 + ∑

1

𝑛2𝑛
∞
𝑛=1  .  

 

Now using the series sums which are given by (4) 

and (5), we have 

 

|(𝐸𝑟𝑓(𝑧))
′
| ≤

1+e+2ln 2

2
.  

 

So the proof is completed. 

 

Theorem. Let 𝐸𝑟𝑓: 𝒰 → ℂ be defined by  

 

𝐸𝑟𝑓(𝑧) = 𝑧 + ∑ 𝐴𝑛𝑧𝑛+1∞
𝑛=1   

 

and its sequence of partial sum defined by 

 

(𝐸𝑟𝑓)𝑚(𝑧) = 𝑧 + ∑ 𝐴𝑛𝑧𝑛+1𝑚
𝑛=1 ,  

where 𝐴𝑛 =
(−1)𝑛

𝑛!(2𝑛+1)
. Then, the following two 

inequalities are valid for 𝑧 ∈ 𝒰: 
 

𝒊.  𝕽 (
𝐸𝑟𝑓(𝑧)

(𝐸𝑟𝑓)𝑚(𝑧)
) ≥ 1 − ln 2 ≅ 0.307               (12) 

and 

𝒊𝒊.  𝕽 (
(𝐸𝑟𝑓)𝑚(𝑧)

𝐸𝑟𝑓(𝑧)
) ≥

1

1+ln 2
≅ 0.591.                 (13) 

 

Proof. 𝒊. From the inequality (10) in Lemma, it 

can be written that  

 

|𝐸𝑟𝑓(𝑧)| = |𝑧 + ∑ 𝐴𝑛𝑧𝑛+1∞
𝑛=1 |  

 

≤ 1 + ∑ |𝐴𝑛|∞
𝑛=1   

 

≤ 1 + ln 2  
 

which is equivalent to  

 
1

ln 2
∑ |𝐴𝑛|∞

𝑛=1 ≤ 1.                                            (14) 

 

In order to prove the inequality (12), consider the 

function 𝑤(𝑧) defined by 

 
1+𝑤(𝑧)

1−𝑤(𝑧)
=

1

ln 2
{

𝐸𝑟𝑓(𝑧)

(𝐸𝑟𝑓)𝑚(𝑧)
− (1 − 𝑙𝑛 2)}  

 

             =
1

ln 2
{

𝑧+∑ 𝐴𝑛𝑧𝑛+1∞
𝑛=1

𝑧+∑ 𝐴𝑛𝑧𝑛+1𝑚
𝑛=1

− (1 − 𝑙𝑛 2)}   

 

             = {
1+∑ 𝐴𝑛𝑧𝑛𝑚

𝑛=1 +
1

ln 2
∑ 𝐴𝑛𝑧𝑛∞

𝑛=𝑚+1

1+∑ 𝐴𝑛𝑧𝑛𝑚
𝑛=1

}.  

 

As a result of the last equality, we have 

 

𝑤(𝑧) =

1
ln 2

∑ 𝐴𝑛𝑧𝑛∞
𝑛=𝑚+1

2 + 2 ∑ 𝐴𝑛𝑧𝑛𝑚
𝑛=1 +

1
ln 2

∑ 𝐴𝑛𝑧𝑛∞
𝑛=𝑚+1

 

 

and 

 

|𝑤(𝑧)| <

1
ln 2

∑ |𝐴𝑛|∞
𝑛=𝑚+1

2 − 2 ∑ |𝐴𝑛|𝑚
𝑛=1 −

1
ln 2

∑ |𝐴𝑛|∞
𝑛=𝑚+1

. 

 

The inequality 

 

∑ |𝐴𝑛|𝑚
𝑛=1 +

1

ln 2
∑ |𝐴𝑛|∞

𝑛=𝑚+1 ≤ 1                    (15) 

 

implies that |𝑤(𝑧)| ≤ 1. It suffices to show that 

the left hand side of the inequality (15) is bounded 

above by  
1

ln 2
∑ |𝐴𝑛|∞

𝑛=1 ,  

 

which is equivalent to  

 
1−ln 2

ln 2
∑ |𝐴𝑛|𝑚

𝑛=1 ≥ 0.  

 

𝒊𝒊. In order to prove the inequality (13), consider 

the function 𝑝(𝑧) defined by 
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1+𝑝(𝑧)

1−𝑝(𝑧)
= (1 +

1

ln 2
) {

𝑧+∑ 𝐴𝑛𝑧𝑛+1𝑚
𝑛=1

𝑧+∑ 𝐴𝑛𝑧𝑛+1∞
𝑛=1

−
1

1+ln 2
}  

 

            =
1+ln 2

ln 2
{

1+∑ 𝐴𝑛𝑧𝑛𝑚
𝑛=1

1+∑ 𝐴𝑛𝑧𝑛∞
𝑛=1

−
1

1+ln 2
}  

 

            =
1+∑ 𝐴𝑛𝑧𝑛𝑚 

𝑛=1 −
1

ln 2
∑ 𝐴𝑛𝑧𝑛∞

𝑛=𝑚+1

∑ 𝐴𝑛𝑧𝑛∞
𝑛=1

 .  

 

A simple calculation yields that 

 

𝑝(𝑧) =
− (

1 + ln 2
ln 2

) ∑ 𝐴𝑛𝑧𝑛∞
𝑛=𝑚+1

2 + 2 ∑ 𝐴𝑛𝑧𝑛𝑚
𝑛=1 − (

1 − ln 2
ln 2

) ∑ 𝐴𝑛𝑧𝑛∞
𝑛=𝑚+1

 

and 

 

|𝑝(𝑧)| <

1 + ln 2
ln 2

∑ |𝐴𝑛|∞
𝑛=𝑚+1

2 − 2 ∑ |𝐴𝑛|𝑚
𝑛=1 − (

1 − ln 2
ln 2

) ∑ |𝐴𝑛|∞
𝑛=𝑚+1

. 

 

To show that |𝑝(𝑧)| ≤ 1, it is enough to prove 

that 

 
1 + ln 2

ln 2
∑ |𝐴𝑛|∞

𝑛=𝑚+1

2 − 2 ∑ |𝐴𝑛|𝑚
𝑛=1 − (

1 − ln 2
ln 2

) ∑ |𝐴𝑛|∞
𝑛=𝑚+1

≤ 1, 

 

which is equivalent to  

 

∑ |𝐴𝑛|𝑚
𝑛=1 +

1

ln 2
∑ |𝐴𝑛|∞

𝑛=𝑚+1 ≤ 1.  

 

But the last inequality is bounded above by  

 

1

ln 2
∑|𝐴𝑛|

∞

𝑛=1

. 

 

This implies that |𝑝(𝑧)| ≤ 1. The proof is thus 

completed. 

 

3. Conclusion 

 

Geometric properties of special functions and 

their zeros are very important for engineers and 

physicists. It is known that, some criterions which 

depend on positive real part of the functions has 

been developed to determine geometric properties 

of analytic functions. In this investigation, by 

making use of some earlier results for analytic 

function, we obtain some lower bounds for real 

part of the quotient of normalized error function 

and its partial sum. Moreover, with the help of the 

some well-known inequalities and series sums in 

mathematics, we present some upper bounds for 

the absolute values of the normalized error 

function and its derivative. 
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