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ÖZET

Endüstriyel denetim sistemlerinde genel olarak sistem modeli ve içerebileceği belirsizlikler gözardı edilerek, kapalı çevrim yapısı sadece çıkış hatasına dayalı olan, Orantı tipi (P-tipi), İntegral tipi (I-Tipi), Orantı artı İntegral etkili (PI-Tip), Orantı artı Türev etkili (PD-Tip), ve son olarak Orantı artı İntegral artı Türev etkili (PID-Tip) denetim algoritmaları kullanılır. Kontrol kazançları, sistem performansı tatminkâr bulununcaya kadar ayarlanan bu basit denetim algoritmaları çoğu zaman üretim kayıplarına yol açmakta ve çok değerli olan hammadde sarfiyatını arttırmaktadır. Bir diğer yanılgı ise sistem belirsizlikleri ile başa çıkabilen akıllı denetleyicilerin yüksek işlemci gücüne gerek duyduğu ve bu sebeple yüksek maliyet gerektirdiği kanısıdır. Günümüz mikro-işlemcileri çok karmaşık algoritmaları bile gerçek zamanlı denetim gerektiren sistemlerde başarı ile uygulayabilmektedir. Geriye kalan sorun; gelişkin kontrol algoritmalarının hangisinin denetimini yapmak istediğimiz, çoğunlukla da doğrusal olmayan parametreler içeren sistemler için daha uygun olduğunu belirlemek, ki bu genellikle zaman ve ekonomi açısından önemli bir bilgidir, ve kullanılacak algoritmadan ne tür sonuç beklenmesi gerektiğinin bilinmesidir. Bu bilginin değerlendirilmesinde, algoritmanın sistemimizin kararlılığını sağlayıp sağlamayacağının bilinmesi öncelik taşımaktadır. Bu çalışmamızda, sistem denklemi bilinmesine karşın parametrik belirsizlikler de içerebilen genel bir denetim sistemi için tasarlanmış akıllı denetim algoritmalarının derlemesi olacak bir kılavuz sunulmuştur. Çalışmamızda sistem kararlılık analizleri Lyapunov tarzı yaklaşımlar ışığında ele alınmış, hangi kontrol yönteminin hangi problemde daha uygun olabileceğini içeren bir tartışma da sonuç bölümünde sunulmuştur
Anahtar Kelimeler: Sistem belirsizlikleri, doğrusal olmayan denetleyiciler, Lyapunov tarzı yaklaşımlar, uyarlamalı, gürbüz (dayanıklı), yumuşak gürbüz denetleme teknikleri.

DEALING WITH UNCERTAINTY IN DYNAMICAL SYSTEMS:

LYAPUNOV-BASED APPROACHES
ABSTRACT

In an industrial application, it is typical to neglect the plant dynamics and use PD, PI, or PID type controllers that only depend on the output error terms of a plant or a process. While implementing the controller, the closed loop gains of these simple controllers are increased until a satisfactory result on the error term is obtained. However these approaches have tendencies to use unnecessary controller power while causing production losses. Another common but false assumption among the industrial community is that the use of advanced model based controls are possible only via the use of powerful and expensive microprocessors. Today’s of-the-shelf microprocessors are capable of executing complex algorithms in real-time. Therefore the unsolved problem left is, how and where to use advanced model based controller design techniques and make sure that the plant under consideration is still stable. This study presents a collection of intelligent model based controllers that are capable of dealing with the uncertainties in the dynamic model of the system while producing satisfactory tracking results. Our study is based on Lyapunov-Based analysis to illustrate the stability of the proposed controller methods. A discussion on which type of controller is best for a specific application is also presented in the concluding remarks section of the work.
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1. GİRİŞ
Gerçek hayatta karşımıza çıkan pek çok dinamik sistem, (mekanik, elektrik-elektronik, ısıl, akışkan, ekonomik, vb.) sistem model denklemi olarak adlandırılan diferansiyel denklemler yoluyla karakterize edilirler. Bir dinamik sistemin bir giriş fonksiyonuna karşı göstereceği tepki bu diferansiyel denklemin çözümünden elde edilir. Ancak sistem model denklemlerinin çözümüne ulaşmak her zaman mümkün olmaz. Çözümün olduğu şartlarda dahi gerek modellemede yapılabilecek hatalar, gerekse model denkleminde bulunan belirsizlikler ve bu belirsizliklerle baş etme yöntemlerinin yeterince bilinmemesi, sistemin istediğimiz tepkiyi vermesi için tasarlanan denetim yapılarının arzu edilir performanstan uzak kalmasına yol açabilmektedir. Denetim sisteminde olması gereken kararlılık özellikleri, güvenlik ve başarım anlamında önemli noktalardır. Özellikle uygulamaya yönelik çalışmalarda hassas izleme, çevresel bozucu etkenlere duyarsızlık ve yapısal belirsizlikler ile baş edilebilmesini gerektirdiği için yapılacak tasarım bütün bu etmenleri dikkate almalıdır. Oysa geleneksel tasarım yöntemlerinin bu etkenlerin modellenmesi için önerdiği aşamalar hem matematiksel olarak karmaşık işlemlerin yapılmasını hem de fiziksel gerçekleme aşamasında yüksek maliyetli komponentlerin kullanımını zorunlu kılabilmektedir. Dolayısıyla alternatif tasarım yöntemlerinin kullanımının zorunluluğa dönüştüğü durumlarda, kullanılacak bu işlemsel akıl içeren algoritmaların denetim sisteminin genel kararlılık özelliklerinin bilinmesi istenir. Bu bilgi ışığında denetim problemlerinin çözümündeki önemli güçlükler aşılabilecektir.
Çeşitli sistemlere ait matematiksel modellerin kararlılıkları üzerine yapılan çalışmalar yıllar öncesine dayanmaktadır. Bu çalışmaların başlangıcı diferansiyel denklemler üzerine yapılan çalışmaların başarısıyla birlikte bunların denetim sistemlerine bir model oluşturması ile eşzamanlıdır. Bir denetim sistemine ilişkin ilk kuramsal çözümlerden biri Watt regülatörünün diferansiyel denklem modelini 1868 yılında geliştirerek gerçekleyen J. C. Maxwell tarafından sunulmuştur [1]. Bu çalışmayı sistem karakteristik denklemlerini durum diferansiyel denklemlerinin lineerleştirilmesi metoduyla yapan Maxwell, sistem parametrelerinin kararlılıktaki etkilerini ve sistem karakteristik denklemlerinin köklerinin negatif düzlemde yer alıp almadığını gösterdi. Söz konusu çalışma kontrol teorisindeki en önemli çalışmalardan biri olarak kabul gördü ve denetim kuramının gelişmesinde diğer bilim adamlarının çalışmalarına temel oluşturdu. Routh, karakteristik denklemin köklerinin kararlılığın tespitini sağladığına dair varsayımını, sayısal teknikler kullanarak yaptığı çalışmalarında 1877 yılında kanıtladı [2]. Rus bilim adamı II. Vishnegradsky 1877’de; Maxwell’in çalışmalarından haberdar olmadan bağımsız olarak diferansiyel denklemleri kullanarak regülasyon kararlılığını analiz etti [3]. A.B. Stodala ise 1893’te; II. Vishnegradsky’nin bulmuş olduğu yöntemleri kullanarak bir su türbininin regülasyon kararlılığı analizini yaptı. Bu çalışmada sistemin eyleyici mekanizmalarını, röleleri içeren eyleyici dinamiklerini modelledi ve ilk defa sistem zaman sabitinden bahsetti [4]. Hurtwitz 1895 yılında karakteristik denklemin sistem kararlılığının belirlenmesi problemini çözdü [5]. O yıllarda kontrol teorisinde çalışmalar yapan Lyapunov bu sahada ufuklar açan çalışmalarını, 1892’de potansiyel enerji fonksiyonlarını kullanarak diferansiyel denklemlerin kararlılık analizlerini yaptı [6]. Ancak onun bu çalışmaları 1900’lü yılların ortalarına kadar batıda fark edilmedi. Daha sonraki yıllarda kararlılık analizi çalışmalarında 1964 yılında I.W. Sandberg [7], 1966’da G. Zames [8], C.A. Desoer [9] ve Popov [10]; Lyapunov`un doğrusal olmayan sistemlerin kararlılık analizi çalışmalarını sürdürmüşlerdir.
Bu çalışmamızda, denetim sistemleri kontrol sinyalinin tasarlanması sırasında, sistem model denkleminin çözümünü gerektirmeyen, buna karşın çevresel bozucu etken ve yapısal belirsizliklerle kararlı bir şekilde başa çıkabilen kontrollerin tasarım yöntemlerini inceleyeceğiz. Çalışmamızda ilk olarak belirsizlikler içeren genel bir sistem modeli için kullanacağımız diferansiyel denklem tanıtılmakta ve bu belirsizlik modeli tam olarak bilindiğinde uygulanabilecek kontrol sinyal tasarımı sunulmakta, daha sonra sırası ile genel adaptif denetleyici tasarımı, tekrarlanan işlevler için kullanılan öğrenme bazlı (learning) denetleyici tasarımı, yapay sinir ağlarının öğrenebilme yeteneklerini kullanılarak tasarlanan denetleyici tasarımı, son olarak da standart ve PI denetleyiciler şeklinde tasarlanabilen gürbüz (robust) denetleyiciler incelenmektedir. Sonuç bölümünde ise incelenen denetleyicilerin güçlü ve zayıf yanları dile getirilip denetleyici seçiminde mühendis ve bilim adamlarına yardımcı olabilmesi amacı ile hangi tip denetleyicilerin hangi sistemlerde kullanılabileceği konusunda bir tartışma sunulmuştur. İncelenen bütün denetleyicilerin Lyapunov tarzı analizler ışığında kararlılık durumları da detaylı olarak verilmektedir.
Sunum içinde kullanılan analizlerde yer alan 
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olarak tanımlanmış olup bu ifadelerde M reel sayılar kümesine ait pozitif, büyük bir sayı olarak tanmlanmştır. Bunlara ek olarak bu çalışmada kullanılan bir diğer tanım ise
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biçiminde tanımlanan Frobenius Normu’dur. Yukarıdaki denklemde verilen 
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 fonksiyonu, matrisin izi olarak adlandırılıp, kare matrisin esas köşegenindeki elemanların toplamıdır.
2. GENEL MODEL VE TAM BİLİNEN MODEL BAZLI DENETİM
Gerek endüstriyel ortamlarda gerekse doğal çevremizde en yoğun karşılaştığımız sistemler ikinci dereceden dinamik sistemlerdir. Sunumumuzda da bu tip sistemlere genel bir yaklaşım sunabilmek amacı ile
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(1)
biçiminde verilen skaler
 ikinci mertebeden bir dinamik model denklemini seçtik. Denklem (1)’de verilen 
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 ifadeleri sırası ile, sistemin pozisyon, hız ve ivme değişkenleri olarak tanımlanmış olup, 
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 sistemin karakteristiklerini içeren, çoğunlukla nonlineer, belirsizlikler içeren bir fonksiyon olmakta, denetim amaçlı kontrol giriş sinyali de u(t) olarak tanımlanmaktadır. Tanımından da anlaşılacağı üzere 
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, fonksiyonunu hem sistem parametre​lerini hem de sistem durumları ile türevlerini içermektedir. Tasarım aşamalarımıza başlamadan önce, sisteme uygulayacağımız denetimin performansının değerlendirilmesi amacıyla, pozisyon hata değerini
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biçiminde tanımlıyoruz. Pozisyon hata değeri (2)’de gözlemlenen 
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 hedeflenen değeri (diğer tanımı ile referans sinyali) olup en az ikinci mertebeden türevlenebilir ve türevleri ile birlikte sınırlı bir fonksiyon olarak tanımlanmıştır 
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. Denetim sistemimizin çıkışı için istenen referans sinyali sabit bir değer seçildiğinde (set-point problem) dahi yukarıda kullandığımız tanım geçerliliğini korumaktadır; ancak genel bir yaklaşım sağlayabilmek amacımızı pekiştirmek için bu çalışmamızda izleyici denetim sistemimizde çıkışın zamanla değişen bir girişi en az hata ile önceden tanımlanan bir yörüngeyi izlemesi esas alınmıştır. (2)’de tanımlanan hatayı (1) ‘de verilen ikinci mertebe sistemlere taşımak amacı ile "filtrelenmiş" hata sinyalini
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(3)

şeklinde tanımlıyoruz. Burada kullanılan skaler
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 katsayısı denetim sistemimizde yer alan pozitif bir kazanç katsayısıdır.

Açıklama 1: Filtrelendirilmiş hata değerini tanımladığımız (3) ten yararlanarak hata ile filtrelenmiş hata değeri arasındaki ilişkiyi sunan transfer fonksiyonu
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biçiminde elde edilir. Denklem (3)’ten de anlaşılabileceği üzere filtrelenmiş hata sinyali 
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’yi sıfıra yakın değerlere sürebilirsek asıl performans ölçümünde kullandığımız 
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‘yi de istediğimiz değere yönlendirmiş oluruz  [12].

Analizimize denklem (3)’te elde ettiğimiz filtrelenmiş hata sinyalinin zaman içinde değişimini, (1)’de verilen sistem model denklemi ışığında inceleyerek başlayalım. Bunun için, (3) ‘ün zamana göre türevini alıp (2)’deki hata değerini bu denklemde yerine koyarak
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ifadesine ulaşırız. (5) denklemindeki sistem durumunun ikinci türevi ifadesini (1) ‘de verilen sistem denklemi ile ifade ederek oluşan denklemi düzenleyerek
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(6)
elde edilir. Bu aşamada, ileriki bölümlerde tasarlanacak değişik kontrol algoritmalarına taban oluşturabilmek amacı ile denetim giriş sinyalimizi
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(7)
biçiminde, ileri besleme bölümü 
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 ve geri besleme bölümü 
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 olarak iki parçaya ayırarak yazacağız. (7)’de belirtilen ileri besleme ifadesi
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(8)
biçiminde tanımlanmış olup denetim sinyali içerisinde sisteme dolaysız olarak uygulanacak, bilinen kısımları içermektedir. Sonraki bölümlerde sunulacak diğer tasarımlara taban oluşturabilmek için önce sistem belirsizliklerini içeren 
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 fonksiyonunun tamamen bilindiğini ve bu durumda denetim sinyalimizin geri besleme kısmını içeren 
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‘ı sunulacak kararlılık analizi ışığında
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(9)
şeklinde düşünelim. Bu ifadede yer alan 
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 pozitif bir kontrol kazanç katsayısı (geri besleme kazancı) olarak tanımlanmıştır. Denklem (8) ve (9) ifadelerinden yararlanarak denetim sinyali genel olarak
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(10)
biçiminde bulunur. Bu aşamada aşağıda belirtilen Teoremi sunmaya hazırız.

Teorem-1:

Sistem denklemi (1) biçiminde ifade edilebilen sistemler için; (10) ile tasarladığımız kontrol denetim sinyali, (3)’te belirtilen pozisyon hatasının üstel olarak sönümlenmesi için yeterli koşulları sağlar [14]. Yani her 
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 değeri için pozisyon hata sinyali 
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eşitsizliğini sağlayarak, üstel olarak azalan bir zarf içinde sıfıra yakınsar.
İspat:

Teorem-1’de verilen yargıyı ispatlamak için daha basit yaklaşımlar kullanılabilse de, ileriki bölümler için de temel oluşturabilmek gayesiyle burada farklı bir yaklaşım kullanacağız. Bu amaçla pozitif tanımlı, skaler 
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 fonksiyonunu
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biçimde tanımlayalım. (11)’den de görüldüğü üzere 
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, sadece 
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 değerinde sıfıra eşit olur ve 
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‘nin diğer bütün değerlerinde pozitif değerlere sahiptir (pozitif değerli bir fonksiyondur). (11) ile tanımladığımız fonksiyonun zaman profilinde sistem değerlerine göre değişimi
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şeklinde elde edilir. 
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 denkleminde (6) ile elde ettiğimiz 
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 değerini yerleştirip bulunan yeni denklemde, (10)’da tasarladığımız denetim sinyalini yerine yazarsak, 
[image: image39.wmf]V

 ile tanımladığımız pozitif değerli fonksiyonun türevini
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olarak buluruz. 
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‘nin (11) ile verilen tanımından elde edilen 
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‘nin karşılığını (13)’e yerleştirirsek 
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 fonksiyonunun türevini
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biçiminde bulmuş oluruz. (14) ile bulduğumuz bu diferansiyel denklemin çözümü
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şeklindedir. (15)’den direkt olarak görülebildiği gibi
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 fonksiyonu, 
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 için 
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 değerinden başlayarak üstel bir şekilde azalmaktadır ve 
[image: image49.wmf]0

()(0)

t

VtV

=

=

 değeri de sınırlanabilir bir değer olduğu için, 
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 ifadesi doğrudur. Dolayısıyla (11)’de pozitif olarak tanımlanan 
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 fonksiyonu içinde tanımlanan filtrelenmiş hata 
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 sinyali de üstel olarak azalmak zorundadır ve aynı zamanda 
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 olmaktadır. Ayrıca (3) ve (4) ile verilen tanımlardan yola çıkarak 
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 olduğunu ve her iki sinyalin de üstel olarak azalmak zorunda olduğunu söyleyebiliriz
. 
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 ile 
[image: image56.wmf]d

x

 ifadelerinin sınırlanabilir olmalarından dolayı, denklem (2)’den de yararlanarak
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 olduğunu söyleyebiliriz. 
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 sinyalinin, 
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 ve 
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 sinyalleri sınırlı iken sınırlandırılabilir olması varsayımından dolayı (10) ile tasarladığımız denetim sinyalimiz de sınırlıdır; yani 
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 olmaktadır. Kısacası, (1)’de belirtilen sistemler (10) ile tasarlanan denetim sinyali ile kumanda edildiğinde oluşan kapalı döngü sisteminde bulunan bütün sinyaller sınırlı kalırlar; aynı zamanda (2) ile tanımladığımız pozisyon hata sinyali de Teorem-1’de iddia edildiği gibi üstel olarak azalan bir zarf içinde sıfıra yakınsamış olur. Şu halde kapalı döngü sistemi kararlıdır ve denetim hedefine de ulaşılmıştır.
3. BELİRSİZLİKLE BAŞETME YÖNTEMLERİ
Bir önceki bölümde sistem belirsizliklerinin tamamen bilindiğini veya ölçümle elde edilebileceğini varsayarak denetim kontrol sinyalimizi tasarlamıştık. Bu bölümde ise belirsizlikler tam olarak veya neredeyse hiç bilinmediği zaman kullanabileceğimiz denetim sinyalleri üzerinde yoğunlaşacağız.

3.1. Uyarlamalı Denetim

Uyarlamalı denetim, sistem belirsizlikleri içeren 
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 fonksiyonunun doğrusal biçimde parametrelerine ayrılabildiği durumlarda sıklıkla kullanılır. Özellikle nonlineer 
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 fonksiyonunun p adet bilinmeyen parametre içerdiğini, aynı zamanda bilinen veya ölçülebilen parametrelerin oluşturduğu 
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 matrisi ile bilinmeyen parametrelerin oluşturduğu bir vektörün çarpımı şeklinde
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ile ifade edilebilir olduğunu varsayalım. Bu durumda
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 fonksiyonu tam olarak bilinmediği için kontrol formülasyonumuzda direkt olarak kullanılamaz, bu sebepten dolayı 
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 fonksiyonunun tahmini değeri olarak 
[image: image69.wmf](

)

ˆ

ˆ

,,

fxx

q

&

 fonksiyonunun tanımlanmasına ihtiyaç duyarız. Tahmin fonksiyonumuzun 
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 fonksiyonuna yaklaşabilme performansını ise gerçek değeri ile tahmini değeri arasındaki fark olarak
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şeklinde tanımlayalım. (17)’de verilen 
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fxx

q

%

%

&

 ifadesini (16) referans alınarak
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şeklinde yeniden tanımlayabiliriz. Bir önceki bölümde verilen analizimiz ile elde edilen denetim sinyal denklemi (10)’da 
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 tahmini değer ifadesi yazılırsa geri besleme ifademiz
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biçiminde elde edilir. (19)’da sunulan 
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 değerini kararlılık analizimiz yardımı ile tasarlayacağız. Denklem (6)’da ifade edilen filtrelendirilmiş hata türevi ifadesindeki kontrol girişi 
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‘nin yerine (19) ile elde ettiğimiz dengini yazıp (17), (7) ve (8) de kullanılarak yeniden düzenlenirse, adaptif kontroller için kullanacağımız filtrelendirilmiş hata ifadesinin zaman içindeki değişimini
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biçiminde elde ederiz. Elde ettiğimiz bilgiler ışığında aşağıda verilen ikinci teoremimizi sunalım.

Teorem-2:

Sistem denklemi (1)’de belirtilen sistem için 
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 fonksiyonu, (18)’de belirtildiği üzere lineer biçimde ayrılabiliyor ise geri besleme ifademiz; 
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 sonsuza ıraksadığında sıfıra yakınsar [14]; yani, pozisyon hata sinyali için
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İspat :

Teorem-2’nin ispatı için pozitif tanımlı skaler, 
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a

Vt

Î

¡

 fonksiyonunu şu biçimde tanımlayalım:
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Tanımlanan bu fonksiyon içerisinde yer alan 
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 pozitif tanımlı simetrik, diagonal adaptasyon katsayıları içeren kazanç matrisidir. (21) ile tanımlanan 
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ifadesi elde edilir. Bu ifadede 
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 (filtrelendirilmiş hatanın türevi) terimi yerine (20)’deki eşiti yazılıp yeniden düzenlendiğinde
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elde edilir. Bu ifadede fonksiyonun tahmin hatası olan 
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[image: image95.wmf]a

V

&

 fonksiyonunun türevi için

[image: image96.wmf]2

a

Vkr

=-

&


(24)

elde edilmiş olur. (21) ve (24) ifadelerinden 
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 teriminin sınırlandırılabilir bir fonksiyon olduğu görülebilir:
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 muntazam olarak sürekli bir fonksiyondur). Filtrelendirilmiş hata fonksiyonunun sınırlı olmasından dolayı, pozisyon hatası 
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 ifadeleri de sınırlıdırlar. Ayrıca (24) ifadesinden 
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 olduğu görülebilir. Standart sinyal izleme metodolojisi takip edilerek kapalı döngü sistemimizde bulunan bütün sinyaller sınırlandırılabilir (
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 olduğu ispatlanır). Böylece Barbalat Lemma [13]’nın direkt uygulamasından filtrelendirilmiş hata değerinin sıfıra gideceği ispatlanmış olur: 
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 (3) ve (4) ifadelerinden de pozisyon hatası 
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 sonsuza ıraksadıkça sıfıra yakınsayacakları ispatlanmış olur.
3.2. Öğrenme Bazlı Denetim

Yukarıda da formülasyonunu sunduğumuz adaptif denetleyici sistem belirsizlikleri ile baş etme yetilerini, (1) sistemi bilinmeyenlerini içeren 
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 fonksiyonu, doğrusal olarak paramet​relerine ayrılamadığı durumlarda, verimli olarak gösteremez. Bu durumda sistemlerde 
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 fonksiyonunu bölümlere ayırmak yerine, bir bütün olarak "öğrenmeye" çalışmak daha iyi sonuçlar verebilir. Öğrenme tabanlı denetleyiciler bu tarz bir yaklaşım baz alınarak ortaya atılmışlardır [15]. Ancak bu tip denetleyiciler sadece periyodik olarak aynı işi tekrar etmesi gereken sistemler için kullanılabilir.
Öğrenme bazlı kontrolör tasarımımıza, (6) ile ifade edilen filtrelendirilmiş hatanın türevi 
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yeni 
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 ifadesi ile başlayalım. Bilinmeyen sistem bileşenlerini içeren 
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 fonksiyonunun kapalı döngü sistemi üzerindeki etkisini azaltabilmek amacı ile 
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şeklinde tasarlayalım. Bu çalışmada üzerinde durulan öğrenme bazlı kontrolörler için 
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 periyoduna sahip periyodik fonksiyonlar olduklar varsayılmaktadır. İkinci varsayımımız ise 
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. Bilinmeyen 
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ile tanımlansın. Bu tanımdan yararlanarak (25) denklemi yeniden düzenlenirse
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ifadesi elde edilir. (28) ifadesinde belirtilen performans kriteri, genel birçok sistem için filtrelendirilmiş hata parametreli bir fonksiyon olarak
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şeklinde üstten sınırlanabilir. (29) eşitsizliğinde tanımlanan 
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 fonksiyonu bilinen sınırlayıcı bir fonksiyon olarak tanımlanmış olup (29) ile verilen eşitsizlik birçok mekanik, elektrik-elektronik sistemler için geçerlidir [16]. (28) ile (29) ifadeleri ve kararlılık analizinden yararlanarak, öğrenme tabanlı geri besleme denetim ifadesini
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şeklinde tasarlayabiliriz. Yukarıdaki ifade de 
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; kararlılık analizi sırasında ortaya çıkabilecek istenmeyen sinyallerin bastırılmasında kullanılacak yardımcı kontrol sinyalidir, 
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[image: image137.wmf]ˆˆ

(())

L

fsatftTKr

=-+


(31)

biçiminde tasarlanmış olup 
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 öğrenme kazanç katsayısı olarak tanımlanabilir.
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Açıklama 2: Denklem (31)’de kullanmış olduğumuz 
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 fonksiyonu (Şekil 1) sınırlayıcı bir fonksiyon olarak tanımlanmış olup, 
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 öğrenme fonksiyonun alacağı değerleri sınırlı kılmak amacı ile kullanılmaktadır.
(25) denklemi ile verilen sistemimiz, filtrelendirilmiş hata ifadesi (27) ve (30) ile tasarlanan geri besleme ifadesi kullanılarak yeniden düzenlenince, kapalı çevrim formülasyonumuz
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(32)
şeklinde elde edilir.
(32) ila tanımlanan 
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 terimini ileriki bölümlerde sunacağımız terimini ileriki bölümlerde sunacağımız kararlılık analizine yardımcı olmak amacı ile öğrenme tabanlı kontrolör için yaptığımız varsayımları da kullanarak inceleyelim: Bunun için ilk olarak (31) tanımını
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 teriminde yerine koyarak
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ifadesini elde ederek başlıyoruz. (33) ifadesinde hem 
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 periyotlu periyodik fonksiyon olduğu hem de 
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 değerinin sınırlı olarak tanımlanmış olan 
[image: image149.wmf]d

f

 fonksiyonunun alabileceği en yüksek değerden daha büyük bir sabit olduğu varsayımlarını da kullanarak
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eşitliği elde edilebilir. Bu aşamada öğrenme bazlı kontrolörümüzün kararlılık analizi için aşağıda verilen Teoremi sunabiliriz.

Teorem-3:

Sistem modeli (1) ile belirlenebilen sistem için (30) ile belirtilen geri besleme ifademizi, 
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 ifadesini de (31) denklemlerinde belirtildiği biçimde tasarlayıp, (30) ifadesinde yer alan 
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 pozitif bir bastırıcı kazanç katsayısıdır, şeklinde tasarladığımızda; (3)’te tanımlanan sistem hata sinyali zaman parametresi 
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 sonsuza ıraksadığında sıfıra yakınsar. Yani sistem hatası
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ifadesini sağlar.

İspat:

Teorem-3’ü ispatlayabilmek için pozitif tanımlı skaler 
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(36)
şeklinde tanımlayalım. Bu fonksiyonunun türevi alınıp, (32)’de verilen filtrelenmiş hata ifadesi ve Teorem 3’te tanımlanan 
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(37)
ifadesi elde edilir. (37) ifadesi son satırında yer alan bölüm için (34) ifadesini kullanarak kare alma işlemini yapıp ortaya çıkan denklemi sadeleştirerek

[image: image161.wmf](

)

(

)

(

)

2222

1

2

2

1

2

2

1

2

()

ˆ

(())(())

ˆ

L

L

lLn

d

K

d

K

VkrKrrftKrr

satftsatft

ftft

r

=--+-

éù

+-

ëû

éù

--

ëû

&
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ifadesi elde edilebilir. Yukarıdaki eşitlikte 
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ifadesi yerine (29)’da verilen üst sınırını yerleştirip denklemde yer alan diğer elemanlarla karelerini tamamlayacak şekilde birleştirerek ve aynı zamanda (38) ifadesinin ikinci satırının her zaman negatif olmasından da [17] yararlanarak 
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(39)
ile verilen üstel sınırı elde edebiliriz. Denklem (39) ile verilen eşitsizlikte bastırıcı kontrol kazancı olarak seçilen 
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 değişkeni yeterince büyük seçildiğinde, 
[image: image166.wmf]l

V

 ifadesinin türevi için elde ettiğimiz üstel sınırı
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şeklinde daha da perçinleyebiliriz. Burada 
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 sıfırdan büyük gerçel bir katsayıdır. (36) ve (40) ifadelerinden 
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’nin karesinin integralinin de sınırlandırılabilir bir fonksiyon olduğu gözlenebilir (
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 fonksiyo​nunun sınırlı olmasından dolayı belirsizliklerin tahminini içeren 
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 ifadeleri de sınırlandırılabilen birer fonksiyondurlar. Geri dönülüp (30)’a bakıldığında kontrol denetim sinyalinin de sınırlı kaldığı gözlenebilir. Son olarak (28), (29) ve (30) ifadelerinden, 
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’nin türev ifadesi 
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’nin de sınırlı olduğu, dolayısı ile 
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’nin sürekli bir fonksiyon olması gerektiği görülebilir. Bu bilgiler ışığında Barbalat Lemma [13]’nın direkt uygulamasından, filtrelendirilmiş hata değerinin, dolayısı ile 
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, pozisyon hata sinyali ve türevi ifadelerinin sıfıra yakınsayacağı ispatlanmış olur. Analizde dikkat çekici bir diğer nokta ise yine (36) ifadesinin sınırlı olmasından dolayı içerdiği integralin sonucunun zaman sonsuza ıraksarken sıfıra yakınsamak zorunluluğunun oluşudur. Bu, tahmin fonksiyonumuz 
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, zaman içinde, bilinmeyen parametrelerden oluşan 
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 fonksiyonuna yakınsıyor demektir. Kısacası, öğrenme bazlı kontrolörün, hem hata sinyalinin kapalı döngü sisteminde bulunan bütün sinyaller sınırlılıklarını korurken sıfıra yakınsaması hem de tahmin sinyalimizin sistem bilinmeyenlerini öğrenmesini sağladığı sonucuna ulaşılmış olur.
3.3. Yapay Sinir Ağlar ile Denetim

Yapay Sinir Ağları (YSA) ile gerçekleştirilen uygulamalar, daha çok belirsizlik içermelerine karşın, bu belirsizlikleri `yeterince’ öğrenmesine olanak sağlanıncaya kadar denetim altında tutulabilen sistemlerde kullanılmaktadır. Sunumumuzun bu bölümünde, Lyapunov türü yaklaşımlar açısından kavranması daha kolay olan, basit bir YSA uygulaması seçilmiştir [11]. Genel sistem denklemi (1) biçiminde verilen sistem için Şekil 2’de genel hatları özetlenen, giriş, gizli ve çıkış katmanları olmak üç katmanlı yapay bir sinir ağı kullanılmasının öngörüldüğünü varsayalım.
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Bu tip ağlarda giriş değerlerimiz 
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şeklinde verilir. Burada, 
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 ile aktivasyon fonksiyonu, 
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 ile 
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 ifadeleriyle sırası ile giriş-gizli katmaları ile gizli-çıkış katmaları arasındaki ağırlıklar elemanları, 
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 terimleri ise besleme sinyallerini temsil edilmektedir. Bunlar, doğal sinir ağlarında yer alan sinaps bağlantıları vasıtasıyla gelen giriş sinyallerinden farklı olarak hücreyi besleyen harici sinyallerin karşılığı olarak tanımlanmıştır. Ağ giriş değerlerimiz 
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 değeri besleme sinyalinin, giriş değeri +1 sabit değerinde olan, yeni bir sinaps olarak da yorumlanabilir) katmanlar arasındaki ağırlık matrisleri de 
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 şeklinde formüle edilebilir. Bu vektörel formülasyon ışığında oluşturduğumuz yapay sinir ağının çıkış ifadesini
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şeklinde düzenleyebiliriz. Burada aktivasyon fonksiyonu 
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biçiminde düşünülmüştür. Benzer olarak, anlatım bütünlüğü sağlayabilmemize yardımcı olmak için, (42) ile belirlenen ağırlık matrislerini birleştirerek 
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 şeklinde bir genişletilmiş matris ifade edilebilir. (1) ile verilen ve sistem bilinmeyenlerini belirli bir zaman boyunca eğitilmiş olan YSA’mız çıkış sinyali vasıtası ile modellemek için (42)’ü kullanırsak
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şeklinde tanımlayabiliriz. (43)’te yer alan 
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 fonksiyonu YSA’nın güncellemeleri sonucu oluşan hatalar içeren hata fonksiyonu olarak tanımlanmıştır. 
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 fonksiyonunun değeri YSA’daki ağırlıkların ideal olması durumunda sıfır olacaktır. Bu durumda 
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 fonksiyonunu YSA’nın yaklaşım fonksiyonu olarak adlandırabiliriz. YSA’na giriş değeri 
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 parametrelerine sınırlı olarak seçilmişlerdir. Bu bölümdeki amacımız geri yayılım algoritmaları kullanılarak katmanlar arasındaki ağırlıklar matrisinin değişkenlerini ayarlayarak sistemimizin YSA denetimi altında kararlılığını sağlamaktır. YSA kararlılık analizinde daha önceki alt bölümlerde verildiği gibi takip edilmesi istenen sinyal ile ilk iki türevinin 
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 eğeri ile sınırlandırılmış olduğunu varsayıyoruz. Bu varsayıma ek olarak bütün zaman aralığında YSA’ya giriş sinyali olarak verilen 
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[image: image209.wmf]r

Î

¡

 denklem (3)’te tanımlanmıştı. YSA’nın eğitim aşamasında oluşan ağırlıklar matrisini Uyarlamalı Denetim bölümünde verildiği gibi
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şeklinde tanımlayalım. (<44) tanımında yer alan ağılık matrislerinin tahmin değerleri kullanılarak, ideal ağ bağlantı ağırlıklarına ait yaklaşım hataları, 
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 biçiminde oluşturulabilir. YSA modelimiz gizli katman çıkış yaklaşım hatasını da giriş değeri 
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tanımlayabiliriz. Aktivasyon fonksiyonu 
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 değişkenine göre Taylor serisi açılımı
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biçiminde yazılabilir. (46)’da yer alan 
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 terimi yüksek katsayılı türevleri içermektedir. Bu ifadede 
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biçiminde yeniden düzenleyelim. (47)’de yer alan 
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şeklinde yazılabilir [11]. Bu bölümde ifade etmemiz gereken bir diğer nokta da, YSA’larda kullanılan aktivasyon fonksiyonlarının tanh, sigmoid, radial tabanlı fonksiyon içermekte olup sınırlandırılabil​meleridir. Bu sebeple Taylor serisi açılımı sonucundan ortaya çıkan 
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(49)
şeklinde sınırlandırılabiliriz. (49) ifadede yer alan
[image: image229.wmf]345
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 değerlerini hesaplanabilen pozitif sabit katsayılar olarak tanımlanmışlardır. Bu aşamada, kararlılık analizinden de faydalanarak, YSA bazlı denetim ifademizi
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olarak tasarlayabiliriz. (50) ifadesinde kullanılan 
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 terimi, analizimiz sırasında boy gösterecek istenmeyen terimleri bastırabilmek amacı ile tasarlanmış olup 
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 eşitsizliğini sağlayan bir sınırlandırma sabiti olarak tanımlanmışlardır. (50) ifadeleri kullanılarak filtrelendirilmiş hata kapalı çevrim dinamiği
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biçiminde elde edilir. (51) ifadesinde 
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 yerine (47) ifadesini kullanarak, (52) ifadesini yeniden düzenleyerek
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eşitliğini elde edebiliriz. Bu eşitlikte kullanılan 
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[image: image241.wmf]?2

ˆ

()()

TTTT

txOx

xse

=++

WVWV

%%
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biçiminde tanımlanmıştır. Bu terim
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ifadesiyle sınırlandırılabilir. (56)’da yer alan 
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 olup pozitif hesaplanabilen katsayılardır. Yukarıda verilen bilgiler ışığında artık Teorem-4’ü sunalım:

Teorem-4:

(1) ile belirlenebilen sistem için denetim sinyali 
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, (50) ifadesinde belirtildiği biçiminde tasarlanıp, yapay sinir ağımız katman ağırlıklarının değişimleri (
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[image: image249.wmf]k

 terimi ise 
[image: image250.wmf]0

k

>

 pozitif bir kazanç katsayısı olacak şekilde)
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olarak tasarlandığında, sistemimiz filtrelendirilmiş hata değeri 
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 düzenli olarak boyu önceden belirtilebilen mutlak bir sınıra yakınsar.

İspat:

Teorem-4’ü ispatlayabilmek için pozitif tanımlı skaler 
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biçiminde seçip, zamana karşı değişimini incelemek için (57) türetilip (55) ve (56) ifadelerini yerleştirerek yeniden yazılırsa
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ifadesi elde edilmiş olur. Yukarıdaki ifadeyi 
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 terimi parantezine alarak matrisin izi ifadelerindeki parametreleri daha önceden tanımladığımız 
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 parametresine göre düzenlersek (58) denklemini
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şeklinde sadeleştirerek elde ederiz. Bu ifadede 
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fonksiyonu elde edilmiş olur. (60) de geçen 
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eşitsizliği elde edilecektir. Son olarak 
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 eşitsizliğinden yararlanılarak (61) ifadesi düzenlendiğinde
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ifadesi elde edilecektir. (62)’de bulunan 
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olarak tanımlanmıştır. Böylece 
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 terimi pozitif olduğu müddetçe daima negatif olacaktır. Aynı zamanda 
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 ifadesini sadeleştirebilmek amacı ile 
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 kazanç katsayısı tanımlayıp düzenlersek
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(64)
eşitliği elde edilir. (62)’nin ikinci satırına geçilirken bir üst satırda yer alan 
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 eriminin karesine tamamlanmıştır. (64) ifadesinden de görülebileceği gibi 
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Veya
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gereklidir. Yani (65) veya (66) eşitsizliklerinin herhangi biri sağlandığı müddetçe (57) ile tanımladığımız 
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 fonksiyonu azalacaktır. Bu azalma yukarıda belirtilen eşitsizlikler ihlal edilinceye kadar, yani
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mutlak sınırlarına gelininceye kadar devam edecektir. Bu yüzden de sınırlı bir fonksiyon olup içerdiği 
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 standart sinyal izleme metodolojisi takip edilerek kapalı döngü sistemimizdeki bütün sinyallerin sınırlandırılabilir (
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) olduğu ispatlanır. Ayrıca (52), (55) ve (56) ifadelerinde belirtilen 
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 terimlerinin de sınırlandırılabilir oldukları görülür. Türevleri sınırlandırabildiği için de 
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 terimleri düzenli süreklidir. Böylece yapay sinir ağı katman ağırlıklarını barındıran 
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 sınırlandırma katsayısı ve 
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 denetim kazancı kullanılarak ayarlanabilen mutlak bir sınıra yakınsadığı ispat edilmiş olur
.
3.4. Gürbüz Denetleyici

Önceki bölümlerde sunulan denetleyiciler, sistemde bulunan belirsizliklerle baş etmek için genel olarak bu belirsizliklerin zaman içinde etkilerini yok edecek şekilde ileri besleme terimlerini ayarlama esasına dayanırken, gürbüz (robust) denetleyicilerin belirsizlikle baş etme yöntemleri farklılık gösterir. Gürbüz denetleyicilerde belirsizlikler için kullanılan tahmin değerleri sabit olup, tam olarak bilinemeyen sistem parametreleri için en makul olduğu düşünülen bir değer seçilip denetleyicinin ileri besleme terimi düzenlenir. Daha sonra denetleyicinin geri besleme bölümü, tahmin ile gerçek değer arasında oluşacak farkı, sisteme dışarıdan etki eden gürültüymüşçesine davranıp ve bu bozucu etmene karşı gürbüz olacak şekilde tasarlanır. Bu sebeple sistem belirsizliklerinin sabit tahmin değerleri,
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ifadesindeki eşitsizliği sağlaması gürbüz denetleyicilerin en önemli öngörüsüdür. (67) ifadesinde tanımlanan 
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 fonksiyonu daha önceki tanımlarında olduğu gibi, belirlenebilen bir sınırlama fonksiyonu olarak tanımlanmıştır.
Çalışmamızda öncelikle sıklıkla kullanılan yüksek frekans ve yüksek kazanç teknikli gürbüz denetleyicileri daha sonra ise tanıtımı yeni sayılabilecek [18] yumuşak bir gürbüz denetleyiciyi inceleyeceğiz.
3.4.1. Yüksek frekans

Yüksek frekanslı gürbüz denetleyici için (7)’de tanımlanan denetimin geri besleme bölümünü
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biçiminde tasarlayarak başlayalım. (68) ifadesinde de yer alan
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 sistem parametrelerinin en uygun ancak sabit değerli tahminlerin,
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şeklinde tanımlanmış olup içerdiği 
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 kabul edilebilir kabul edilebilir hata performansı ile sıfır arasında yer alan küçük bir değer olarak kullanılır. (6), (7) ve (8) ifadesinde ile oluşturulan filtrelenmiş hata dinamiğini (68) ve (69)’da tanımlanan gürbüz denetleyiciyi yerleştirerek, filtrelenmiş hata dinamiğini
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biçiminde düzenleyebiliriz. Bu ifadeyi yapacağımız kararlık analizinde temel olarak kullanacağız.

Teorem-5:
Sistem denklemi (1) ile verilen dentim sistemi için, geri besleme ifademiz (68) ve (69)’da belirtildiği biçimde gürbüz denetleyici olarak tasarlanırsa (3) ile tanımlanan filtrelendirilmiş hata değeri (dolayısı sistem ile takip etme hatası)

[image: image305.wmf][

)

2

()0,

kt

rtABet

-

£+"Î¥


eşitsizliğini sağlayarak, 
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 olacak şekilde üstel bir zarf eşliğinde düzenli olarak boyu ayarlanabilen mutlak bir sınıra yakınsar.
İspat:

Teorem 5’i ispatlamak için pozitif tanımlı skaler bir
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şeklinde tanımlayalım. Bu 
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 zaman içindeki değişimini fonksiyonunun türevini alarak
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(72)
biçiminde elde ederiz. (72) ifadesinde (70) ile verilen filtrelendirilmiş hatanın türev değerini yerine yazar ve (67)’de tanımlanan sınırlayıcı fonksiyonu da kullanarak 
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(73)
şeklinde üstten sınırlayabiliriz. Bu ifadede yer alan son iki terimi yeniden düzenleyerek
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biçimindeki ifadeyi de elde edebiliriz. 
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 teriminin küçük ama pozitif bir değer olduğu göz önüne alınınca (74) ifadesi
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şeklinde yeniden düzenlenebilir. (71) ve (74) ifadelerinden yaralanılarak 
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biçiminde elde edilmiş olur. (76)’da verilen diferansiyel denklemin direkt çözümü
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olarak elde edilir. (71) ifadesinde verilen Lypunov aday fonksiyonumuzdan 
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 yargısı oradan da (77) ifadesi kullanılarak

[image: image321.wmf]{

}

{

}

22

11

()(0)exp1exp

22

rtrtt

e

gg

g

éù

£-+--

ëû
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elde edilebilir. (78) denklemi ile Teorem-5 ifadesinde vermiş olduğumuz 
[image: image322.wmf]2
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 üst sınırın geçerli olduğu, filtrelenmiş hata formülasyonunun herhangi bir başlangıç değeri için üstel (ekponansiyel) bir zarf eşliğinde düzenli olarak boyu 
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 olarak belirlenebilen ve 
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 ve 
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 değerleri kullanılarak ayarlanabilen mutlak bir sınırın içine yakınsayacağı gösterilmiş olur.
3.4.2. Yüksek kazanç

Yüksek kazanç yöntemi kullanan gürbüz denetleyicilerde (68) ile tanımlanan geri besleme değeri kullanılır, ancak (69) ile tanımlanan
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 yüksek kazançlı gürbüz denetleyiciler için
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şeklinde tasarlanır. 
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 terimi bu biçimde tanımlandığında (70)’de elde edilen filtrelendirilmiş hata fonksiyonunun türev ifadesi
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şeklini alır. Bu durumda Teorem-5’ten de yararlanarak karalılık analizimizi aşağıda verildiği biçimde yapabiliriz.
Teorem-6:
Teorem 5’te verilen sonuç, gürbüz denetleyici geri besleme teriminde yer alan 
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 fonksiyonu (79) biçiminde seçildiği zamanda geçerlidir.

İspat:

Teorem-6’nın ispatı için pozitif tanımlı skaler, 
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şeklinde tanımlayıp, türevini (80) ışığında incelediğimizde
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ifadesini elde edebiliriz. Daha önceki analizimize benzer şekilde (82)’i
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(83)

biçiminde sadeleştirmek de mümkündür. Şimdi (83)’te yer alan köşeli parantezin içindeki ifadeler göz önüne alıp bu ifade için geçerli iki ayrı koşulu ayrı ayrı inceleyelim:
Durum-1: 
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halinde yazılabilir. (81) ve (84) ifadelerinde de 
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 teriminin, dolayısı ile filtrelenmiş hata değerinin üstel olarak sıfıra yakınsayacağı görülebilir.
Durum-2: 
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 ifadesinin doğru olması gerektiğini gösterir. Bundan yararlanarak da (83)’ü
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biçiminde sadeleştirebiliriz. (84)’de ulaşılan ifade ile (75) ifadesi birbirlerinin aynı olduğu için Teorem-5’de kullanılan ispat burada da geçerlidir. Yani 
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 üstel olarak boyu ayarlanabilen bir mutlak sınıra düzenli olarak yakınsar. Durum-1 ve Durum-2’nin ortak kümeleri Teorem-5’de verilen ifade ile birebir örtüşmektedir. Böylece Teorem-6’nın ispatı da sağlanmıştır.
3.4.3. Yumuşak gürbüz denetleyici

Yukarıda verilen iki örnekten de (yüksek frekans ve kazançlı gürbüz denetleyiciler) görülebileceği üzere gürbüz denetleyiciler her türlü sistem belirsizlikleri ile baş edebilme yetisine sahiptirler, ancak ulaşılmak istenen performans arttırıldıkça (
[image: image342.wmf]e

 değeri küçültüldükçe) sisteme uygulanan denetim sinyali yüksek salınımlar içermeye başlar. Bu yüksek salınımlar sonucu çatırtı olarak adlandırılan durumla da karşılaşılabilir. Hatta denetim altındaki sistemin hareketlendiricilerine zarar verme ihtimali ile bile karşılaşabiliriz. Bu hususlarla uygulama sırasında başa çıkma yöntemleri literatürde sunulmuş olmakla birlikte birçoğu kararlılık analizi dışına, mühendislik tecrübeleri sonucu elde edilmiştir. Çalışmamızın bu bölümünde diğerlerine göre ‘yumuşak’ sayılabilen gürbüz bir denetleyiciyi inceleyeceğiz. Analizimize (3) ile tanımlanmış olan filtrelenmiş hata performansı sinyalini kullanarak geliştirilmiş olan filtrelenmiş yeni bir hata endeksi olan 
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şeklinde tanımlayarak başlıyoruz. (86) ifadesi, hata ve hatanın türevi ifadeleri kullanılarak aynı zamanda
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biçiminde de düzenlenebilir. Yeni tanıttığımız 
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ifadesi ile elde edilir. (88) denklemine filtrelendirilmiş hata değeri toplanıp çıkartılarak
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ifadesini elde ederiz. (89)’da kullanılan yardımcı 
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(90)

biçiminde tanımlanmış olup, sinyalinde yer alan sistem durumlarının yerlerine istenilen sistem durumları yerleştirilerek oluşturulan 
[image: image351.wmf]d
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 sinyali de (89)’a eklenip çıkartılarak

[image: image352.wmf]dd

sruNNN

=--+-+

&&


(91)

denklemi elde edilebilir. (91)’de kullanılan 
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olarak da ifade edebiliriz. Bilinmesi gerekli bir husus da 
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 olduğudur. Sistem durumlarını ihtiva eden 
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olarak tanımlanmıştır. Burada gürbüz denetimimizin öngörüsü 
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 fonksiyonunu, 
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(94)
şeklinde üstten sınırlanabilir olmasıdır ki bu öngörü bilinen bir çok sistem için geçerlidir. (91) ifadesini (93)’ü kullanarak yeniden düzenleyelim:
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(95)’da yer alan denetleyici sinyalinin türev değerini
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 bir kazanç katsayısı olacak şekilde tasarlarsak yeni tanımladığımız filtrelendirilmiş hata değerinin kapalı çevrim dinamik modelini
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şeklinde elde ederiz. Bu hesaplamalar ışığında Teorem-7’yi sunalım.
Teorem-7:
Sistem modeli (1) ile belirlenebilen sistem için denetim sinyalinin türevi, (96) biçiminde tanımlanır ve bu ifadede yer alan 
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 kazanç katsayısı 
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 olacak şekilde seçilirse; (86)’da tanımlanan sistemin filtrelendirilmiş hata endeksi ve (3) ile tanımlanan filtrelenmiş hata değerleri zaman 
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 sonsuza ıraksadığında sıfıra yakınsar. Yani sistem hatası
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ifadesini sağlamış olur.
İspat:

Teorem-7’yi ispatlayabilmek için pozitif tanımlı skaler 
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şeklinde tanımlayalım. Bu fonksiyonda 
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 biçiminde tanımlanmış olup aşağıdaki açıklama ile detaylandırıldığı üzere 
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Açıklama: Yukarda verilen 
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 yargısını kanıtlamak için öncelikle
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ifadesinin doğruluğunu ispatlayalım. Verilen ifadenin bilinen değerleri yerlerine yazılarak integral 
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tt

-

 sınır değerlerinde hesaplanırsa
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eşitliği elde edilir. Bu ifadenin sondan bir önceki integral teriminde görüleceği üzere kısmi integral işlemi uygulanmıştır. Bu ifadede 
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 terimi yerine (92)’de tanımlanan eşiti yazılır ve düzenlenirse
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eşitliği elde edilir. Bu eşitlikte integrali alınabilen terimlerin integrali alınıp sınır değerleri yazıldığında
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ifadesi elde edilir. Bir basamak daha ilerlenip 
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eriminin üstel sınırı hesaplandığında
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ifadesine ulaşılır. Burada 
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 terimi Teorem-7’de seçildiği üzere

[image: image388.wmf]()()

dd

NtNt

b

³+

&


biçiminde tanımlandığında
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ifadesini elde ederiz. Bu ifadeden de 
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 yargısının doğru olduğu direkt olarak görülmektedir.

Bu açıklamadan sonra Teoremimizin ispatına devam edebiliriz. (99) ile tanımlanan fonksiyonun zaman içinde değişimi zamana göre türevi alınarak
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şeklinde bulunur. (100) ifadesinde, Teorem-7’de tanımlanan 
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 değeri yazılarak yeniden düzenleme yapılırsa
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eşitliği elde edilir. (101), birbirini yok eden terimler ortadan kaldırılarak yeniden düzenlendiğinde
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şeklinde sadeleştirilebilir. 
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 teriminin yerine (94)’de tanımlanan üstel sınırı kullanılarak (102)
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biçimde sınırlanabilir. Sınırlama işleminin devamında

[image: image397.wmf]22

()

PIs

Vzszzks

r

éù

£-+-

ëû

&


(104)
eşitliği elde edilir. 
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 terimi 
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 şeklinde tasarlandığında (101)’de verilen üstel sınır

[image: image400.wmf]2

2

()

(1)

4

PI

s

z

Vz

k

r

£--

&


(105)
şeklinde yeniden ifade edilebilir ve bu ifade
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olarak da yazılabilir. (99) ile (106)’dan görülebileceği üzere
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 olmaktadır. r ve s’nin sınırlanabilir olması ve (86)’da verilen s’nin tanımından 
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 düzenli olarak sürekli bir fonksiyondur. Barbalat Lemma’nın direkt uygulamasından 
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 yargısının doğruluğu ispatlanmış olur. Filtrelendirilmiş hatanın sıfıra yakınsaması hatanın (3) ifadesi ve aynı zamanda da hata değerinin türevinin de sıfıra yakınsayacağını gösterir. Standart sinyal izleme yöntemleri ile 
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 de ispatlanır. Böylece teoremimizde vermiş olduğumuz savı ispatlamış olduk. Geri dönüp denetim sinyali ifadesinin türevi (96)’nın integral ifadesini alıp sisteme uygulanacak gerçek denetimi hesaplarsak
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ifadesi elde ederiz. Dikkatinizi bu ifadeye çekip analizimizi filtrelenmiş hata olan 
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 yerine izleme hatası olan 
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 üzerine kurulduğunda ilk terim denetleyicimizin orantılı terimi, integral içinde yer alan ikinci terim ise integral kazancını temsil edebileceği görülebilir. Kısaca bu yeni gürbüz denetleyici model bazlı bir çeşit PI denetleyici olarak da yorumlanabilir.
4. SONUÇLARIN İRDELENMESİ
Çalışmamızda incelediğimiz denetleyicilerin performanslarını ve zayıflıklarını gösteren Tablo 1 aşağıda verilmiştir.
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Yukarıdaki tabloda özetlendiği gibi, eğer sistem modelini tam olarak biliyorsak ve bu modelde belirsizlikler yok ise, en iyi yaklaşım tam bilinen denetleyici kullanmaktır. Bu denetleyici Bölüm 2’de gösterildiği üzere hatayı üstel bir zarf içinde sıfıra götürür. Uyarlamalı denetim ise belirsizlikler içeren sistem modelinin parametrelerinin lineer olarak ayrılabilir olduğu durumlarda kullanılır. Uyarlamalı denetim sistemi rahatsız edici etkileri bulundurmamaktadır; bundan dolayı hata performansı iyi sonuç verir. Ancak analiz sonucunda sistem parametrelerini tam olarak tanıyabildiğini gösteremeyiz. Buna rağmen hata ve türevini asimptotik olarak sıfıra götürdüğü Bölüm 3.1’de ispatlanmıştır. Öğrenme tabanlı denetleyicide ise belirsizlikleri içeren modelimiz lineer olarak parametrelerine ayrılamıyor ancak referans sinyalimiz periyodik olarak seçilmişse kullanılır ve takip etme hatasını uygulama denetleyici gibi asimptotik olarak sıfıra götürür. Uygulamalı denetleyiciye göre üstünlüğü sistem belirsizliklerini bir bütün olarak öğrenebilmesidir. Yapay sinir ağları ile denetimde ise daha çok belirsizlik içermelerine karşın öngörülen YSA’nın bu belirsizlikleri ‘yeterince’ öğrenmesine olanak sağlayıncaya kadar denetim altında tutulabilen sistemlerde kullanılmaktadır. Bu denetim kullanıldığında denetim sonucunda takip etme hatası daha önceden belirlenebilen, mutlak bir sınır içine götürür. Özellikle kontrol altında tutulabilen ve performans artırması gerekli olan sistemlerde kullanılması salık verilir. Gürbüz denetleyiciler parametreleri zaman içinde değişenler dahil her türlü belirsizlikle başa çıkabilirler. Gürbüz denetleyicilerde belirsizlikler için kullanılan tahmin değerleri sabit olup, tam olarak bilinemeyen sistem parametreleri için en akılcıl değerler seçilip denetleyicinin ileri besleme terimi düzenlenir. Daha sonra denetleyicinin geri besleme bölümü, tahmin ile gerçek değer arasında oluşacak farkı, sisteme dışarıdan etki eden gürültüymüşçesine davranıp ve bu bozucu etmene karşı gürbüz olacak şekilde tasarlanır. Gürbüz yüksek frekans ve yüksek kazanç modelleri sistem takip etme hatasını üstel bir zarf içerisinde mutlak bir sınır içine götürür. Ancak seçilebilen bu mutlak sınır çok küçük ise sisteme uygulanan gürbüz denetim sinyali yüksek salınımlar içerip çatırtıya yol açabilir. Bu durumlarda ise Bölüm 3.4.3’te tanıtılan yumuşak gürbüz denetleyicilerin kullanılması daha uygun olabilir.
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EK: Ekponansiyel Olarak Kararlı, AK: Asimtotik Olarak Kararlı, MYS: Mutlak Sınıra Yakınsar








�Bu çalışma TÜBİTAK Kariyer Program Proje No: 104E061 tarafından desteklenmiştir.





�Sunumumuzda verilecek kontrol formulasyonlarnn vektörel yapda olan sistemlere entegrasyonu mümkündür ancak anlatım kolaylığı açısından skaler bir sistem seçilmiştir.


�Analizimizin bu bölümünde Teorem-1'de önerilen sonuça ulaşmış bulunuyoruz ancak halen denetim sinyalinin bağımlı olduğunu gösteremediğimiz için henüz sonuca tam ulaşmış sayılmayız.


� �EMBED Equation.3���’nin bilinen bir �EMBED Equation.3��� periyodunu sağladığını varsaymak, ilk bakışta tasarlanacak kontrolör için bir zayıflık olarak yorumlanabilse de, manyetik disk okuyucular, video ve audio cihazları, uydu verici cıhazları ve sürekli olarak aynı işi tekrarlayan robot kolları gibi bir çok mekanizma bu varsayımı sağlamaktadır.


�Her ne kadar analizimiz sonucunda �EMBED Equation.3��� ve �EMBED Equation.3��� sinyallerinin mutlak bir sınıra yakınsayacağı ispatlanmış olsada bu sınıra sokulmaları için geçen zaman üzerinde teorik olarak bir denetime sahip olabileceğimizi ispatlanamadı.
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