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Original Article

Abstract − In this article two methods, q-Homotopy analysis Method (q-HAM) and
Sine-Gordon expansion method are proposed for solving fractional Diffusive Predator-
Prey system. The fractional derivative is considered in the conformable sense. The
obtained solutions using the suggested methods are in good agreement with the exist-
ing ones and show that these approaches can be used for solving various conformable
time fractional partial differential equations arising in different branches of science.

Keywords − Sine-Gordon Expansion Method, Fractional Diffusive Predator-Prey system, q-Homotopy Analysis
Method, Conformable Fractional Derivative.

1. Introduction

Fractional calculus has a very long history. However, this field lagged behind classic analysis.
There is an increasing interest to study of the fractional differential equations because of their various
applications such as in viscoelasticity, anomalous diffusion, mechanics, biology, chemistry, acoustics,
control theory, etc. A great deal of effort has also been expanded in attempting to find robust and
stable numerical and analytical methods for solving fractional differential equations of physical interest.
In this paper, we have applied a numerical method called Homotopy analysis method and an analytical
method called Sine-Gordon expansion method to obtain solutions of Fractional Diffusive Predator-Prey
system. The homotopy analysis method (HAM) was first introduced by Liao [1], who employed the
basic ideas of the homotopy in topology to propose a general analytic method for nonlinear problems.
El-Tawil and Huseen [2] proposed a modified namely q-homotopy analysis method (q-HAM) which is
a more general method of HAM. This method is applied to solve many nonlinear problems [3, 4, 5, 6].

The Sine-Gordon expansion method is an efficient and powerful technique for solving differential
equations. This method is firstly proposed by the Chinese mathematician Yan [7]. The Sine-Gordon
expansion method is based on the explicit linearization of differential equations for traveling waves
which leads to a second-order differential equation with constant coefficients. Moreover, the solutions
obtained by this method are of general nature and a number of specific solutions can be deduced by
putting conditions on arbitrary constants present in the general solutions [8, 9, 10].

In this paper, we applied q-homotopy analysis and Sine-Gordon expansion methods for solving
fractional Diffusive Predator-Prey system. This work is organized as follows: In section 2 we provide
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some preliminaries of conformable fractional derivative. Section 3 introduces the concept of Sine-
Gordon expansion method, while section 4 gives to solutions of fractional Diffusive Predator-Prey
system. The q-Homotopy analysis method (q-HAM) is analyzed in section 5. Graphics of the numerical
examples are provided in section 6. The conclusions are given in section 7.

2.Governing equations

One of the most popular fractional predator-prey system in nonlinear fractional evolution equations
can be expressed as follows (for α = 1, see [11, 12])

∂αu

∂tα
=

∂2u

∂x2
− βu+ (1 + β)u2 − u3 − uv, (1)

∂αv

∂tα
=

∂2v

∂x2
+ κuv −mv − δv3, (2)

where κ, δ and β are positive parameters, and where ∂α

∂tα is conformable deravative operator of order
α ∈ (0, 1) in the t > 0 can be defined as follows [14]

∂αu

∂tα
= lim

ε→0

u(t+ εt1−α)− u(t)

ε
.

Later on, many useful methods for obtaining exact solutions of several nonlinear fractional evolution
equations by using this fractional derivative have been reported [15-33].
In this paper, we investigate a fractional order prey-predator interaction with following relations
between the parameters

m = β, κ+
1√
δ
= β + 1.

Based on these assumptions, Eqs. (2.1) and (2.2) are established by the following

∂αu

∂tα
=

∂2u

∂x2
− βu+

(
κ+

1√
δ

)
u2 − u3 − uv (3)

∂αv

∂tα
=

∂2v

∂x2
+ κuv − βv − δv3. (4)

The fractional prey-predator system incorporating diffusion is of profound interest because it involves
the heterogeneity of both the populations the environment. Formation of the spatial distribution
pattern with the diffusion models even in the absence of environmental heterogeneity is another in-
teresting event [13]. For better understand about the processes involved, existences of exact solutions
are needed.

3. Sine-Gordon expansion method

In this section we describe the first step of the Sine-Gordon expansion method for finding exact
solutions of nonlinear conformable fractional partial differential equations (PDEs).
We consider the following time conformable fractional nonlinear partial differential equation in two
variables and a dependent variable u

F

(
u,

∂αu

∂tα
,
∂u

∂x
,
∂2αu

∂t2α
,
∂2u

∂x2
, . . .

)
= 0, (5)

where F is a polynomial in u and its various partial derivatives, in which the highest order derivatives
and nonlinear terms are involved and ∂2αu

∂t2α
means two times conformable fractional derivative of

function u(x, t) . To solve Eq.(5), we take the traveling wave transformation

u(x, t) = U(ξ), ξ = x− c
tα

α
, (6)

where c ̸= 0 is a constant to be determined later. This enables us to use the following changes
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∂α(.)

∂tα
= −c

d(.)

dξ
,

∂(.)

∂x
=

d(.)

dξ
,

∂2α(.)

∂t2α
= −c

d2(.)

dξ2
, . . . .

Substituting Eq.(6) in Eq. (5) yields a nonlinear ordinary differential equation as following

G(U,U ′, U ′′, U ′′′, . . .) = 0, (7)

where U = U(ξ), U ′ = dU
dξ , U

′′ = d2U
dξ2

, . . . and so on.

Now lets describe the procedure of Sine-Gordon expansion method.This method established on the
Sine-Gordon equation and wave transform. The Sine-Gordon equation which is presented as a model
field theory;

uxx − utt = τ2sin(u), (8)

where τ is a real constant and u = u(x, t). Considering the wave transformation ξ = µ(x−ct) over the
Eqn. (8) the function u = u(x, t), turns into U(ξ), then we have the following nonlinear differential
equation,

U ′′ =
τ2

µ2(1− c2)
sin(U). (9)

By simplifying the Eq. (9), [(
U

2

)′]2
=

τ2

µ2(1− c2)
sin2

(
U

2

)
+K, (10)

where K is integration constant. Supposing K = 0, Φ(ξ) = U
2 , ϱ

2 = τ2

µ2(1−c2)
and subrogating into

Eqn. (10),

Φ′ = ϱ sin(Φ), (11)

regarding ϱ = 1 in Eqn. (11), led to

Φ′ = sin(Φ). (12)

Evaluating the solution of (12) by using separation of variables method, we attain the following
equations,

sin(Φ) = sin(Φ(ξ)) =
2ζeξ

ζ2e2ξ + 1
|ζ=1 = sech(ξ), (13)

cos(Φ) = sin(Φ(ξ)) =
ζ2e2ξ − 1

ζ2e2ξ + 1
|ζ=1 = tanh(ξ), (14)

where ζ is integration constant. To obtain the solution of nonlinear conformable PDE (5);

G(u,Dα
t u,Dxu,Dxxu,D

α
t D

α
t u, ...), (15)

we design,

U(ξ) =

n∑
i=1

tanhi−1(ξ) [Bi sech(ξ) +Ai tanh(ξ)] +A0, (16)

due to to Eqns. (13) and (14), Eqn. (16) can be regulated as

U(Φ) =

n∑
i=1

cosi−1(Φ) [Bi sin(Φ) +Ai cos(Φ)] +A0. (17)

The parameter n can be determined balancing the degrees between the highest order linear term and
nonlinear term in Eq.(7). Next equating all the coefficients of cosi(Φ) and sini(Φ) to be zero yields an
equation system. Solving system using an computer software such as Maple the values of Ai, Bi, µ
and c can be derived. Lastly subrogating the values of Ai, Bi, µ and c in Eqn. (16), we can express
the traveling wave solutions.
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4.Application of the Sine-Gordon expansion method to Fractional Diffusive Predator-

Prey system

We suppose that

u(x, t) = U(ξ), v(x, t) = V (ξ), ξ = x+ ν
tα

α
, (18)

where ν is constant. Using the conformable chain rule and on substituting these into Eq.(3), we
have

U ′′ − νU ′ − βU +

(
κ+

1√
δ

)
U2 − U3 − UV = 0, (19)

V ′′ − νV + κUV − βUV − δV 3 = 0.

In order to solve system (19), let us consider the following transformation

V =
U√
δ
. (20)

Substituting the transformation (20) into (19),we get

U ′′ − νU ′ − βU + κ+ U2 − U3 = 0. (21)

Due to procedure of Sine-Gordon expansion method, assume that U can be written in the form

U(Φ) =

n∑
i=1

cosi−1(Φ) [Bi sin(Φ) +Ai cos(Φ)] +A0. (22)

Balancing the terms U ′′ and U3 led to n = 1, thus

U = B sinΦ +A cosΦ + C, (23)

and
U ′′ = −B(sinΦ)3 +B(cosΦ)2 sinΦ− 2A(sinΦ)2 cosΦ. (24)

Replacing the equations (23) and (24) into (21), using some trigonometric identities and setting all
the coefficients of cosiΦ and siniΦ produces the following algebraic equation system

A3 + 3B2A+ 2A = 0,

2B +B3 − 3BA2 = 0,

κA2 + 3B2C − 3A2C − κB2 + νA = 0,

νB + 2κBA− 6BAC = 0, (25)

2κAC − βA− 3B2A− 3AC2 − 2A = 0,

−βB + 2κBC −B −B3 − 3BC2 = 0,

κB2 − 3B2C − βC + κC2 − C3 − νA = 0.

Solving the system with the aid of Maple, we obtain the following solution sets,

A = ∓
√
2, B = 0, C = ∓ ν√

2
, β = −2 +

ν2

2
, κ = ∓

√
2ν,

A = ±
√
2, B = 0, C = ∓

√
2, β = 4 + 2ν, κ = ∓

√
2(6 + ν)

2
,

A = ∓
√
2, B = 0, C = ∓

√
2, β = 4− 2ν, κ = ±

√
2(ν − 6)

2
,

A = ±
√
2

2
, B = ∓ i

√
2

2
, C = ∓

√
2

2
, β = ν + 1, κ = ∓

√
2(3 + ν)

2
,

A = ∓
√
2

2
, B = ∓ i

√
2

2
, C = ∓

√
2

2
, β = 1− ν, κ = ±

√
2(−3 + ν)

2
,

A = ∓
√
2

2
, B = ∓ i

√
2

2
, C = ∓ν

√
2

2
, β =

ν2 − 1

2
, κ = ∓

√
2ν.
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Using the above values of A,B,C, β, κ and (20), the solutions of u(x, t) and v(x, t) can be obtained as

u1(x, t) = ∓ ν√
2
∓

√
2 tanh

[
x+

tαν

α

]
,

u2(x, t) = ∓
(√

2−
√
2 tanh

[
x+

tαν

α

])
,

u3(x, t) = ∓
(√

2 +
√
2 tanh

[
x+

tαν

α

])
,

u4(x, t) = ±

(
− 1√

2
−

isech
[
x+ tαν

α

]
√
2

+
tanh

[
x+ tαν

α

]
√
2

)
,

u5(x, t) = ±

(
− 1√

2
−

isech
[
x+ tαν

α

]
√
2

−
tanh

[
x+ tαν

α

]
√
2

)
,

u6(x, t) = ∓

(
ν√
2
+

isech
[
x+ tαν

α

]
√
2

+
tanh

[
x+ tαν

α

]
√
2

)
,

v1(x, t) =
∓ ν√

2
∓

√
2 tanh

[
x+ tαν

α

]
√
δ

,

v2(x, t) =

√
2−

√
2 tanh

[
x+ tαν

α

]
√
δ

,

v3(x, t) =
−
√
2 +

√
2 tanh

[
x+ tαν

α

]
√
δ

,

v4(x, t) = ±

− 1√
2
−

isech
[
x+ tαν

α

]
√
2

+
tanh

[
x+ tαν

α

]
√
2√

δ

 ,

v5(x, t) = ±

− 1√
2
−

isech
[
x+ tαν

α

]
√
2

−
tanh

[
x+ tαν

α

]
√
2√

δ

 ,

v6(x, t) = ∓

 ν√
2
+

isech
[
x+ tαν

α

]
√
2

+
tanh

[
x+ tαν

α

]
√
2√

δ

 .

5.Numerical Solution of Fractional Diffusive Predator-Prey system

In this section, we implement q-homotopy analysis method (q-HAM) which is generalized version of
homotopy analysis method (HAM) [34] to obtain the numerical solution of diffusive predator-prey
system. q-HAM involves the parameter h which is used for adjusting and controlling the convergence
of solution series.(See [35, 36]) Regard the nonlinear system of equations in with the following initial
conditions

u(x, 0) = 1 +
√
2 tanh[x], (26)

v(x, 0) = 2 + 2
√
2 tanh[x].

We consider the coefficients ν =
√
2, δ = 1

4 , κ = 2, β = 2 for both calculations in the rest of article. We
can chose the linear operators To obtain the series solutions of system of equations in (3) with initial
conditions 26) as follows

L1 [φ1(x, t; q)] = Dα
t φ1(x, t; q),

L2 [φ2(x, t; q)] = Dα
t φ2(x, t; q),
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where the linear operators satisfies the condition Lj [m] = 0 for each j ∈ {1, 2}, where m is constant.
The non-linear operators can be defined from the system (3) such as

N1 [φ1(x, t; q)] =
∂αφ1(x, t; q)

∂tα
− ∂2φ1(x, t; q)

∂x2
+ βφ1(x, t; q),

−
(
κ+

1√
δ

)
φ1(x, t; q)

2 − φ1(x, t; q)
3 + φ1(x, t; q)φ2(x, t; q),

N2 [φ(x, t; q)] =
∂αφ2(x, t; q)

∂tα
− ∂2φ2(x, t; q)

∂x2
− κφ1(x, t; q)φ2(x, t; q) + βφ2(x, t; q) + δφ2(x, t; q)

3.

So the zero-order deformation equations can be constituted as:

(1− nq)L1 [φ1(x, t; q)− u0(x, t)] = qh1N [φ1(x, t; q)] ,

(1− nq)L2 [φ2(x, t; q)− v0(x, t)] = qh2N [φ2(x, t; q)] .

When Hj(x, t) = 1 chosen properly [35], for each j ∈ {1, 2}, the mth-order deformation equation is

um(x, t) = χ∗
mum−1(x, t) + h1L−1

1 [R1,m (um−1)] , (27)

vm(x, t) = χ∗
mvm−1(x, t) + h2L−1

2 [R2,m (vm−1)] , (28)

where χ∗
m

χ∗
m =


0 m 6 1,

n otherwise.
(29)

Finally using using Equations (27) and (28) with initial conditions given by (26), we respectively
obtain the approximate analytical solutions

u0(x, t) = 1 +
√
2 tanh[x],

v0(x, t) = 2 + 2
√
2 tanh[x],

u1(x, t) =
htαsech[x]2

(
−1 + 3cosh[2x] + 3

√
2sinh[2x]

)
2α

,

v1(x, t) =
htαsech[x]2

(
−1 + 3cosh[2x] + 3

√
2sinh[2x]

)
α

,

u2(x, t) =
h2tαsech[x]3 ((−45tα + 2α) cosh[x] + (33tα + 6α) cosh[3x])

8α2

+
2
√
2
(
12αcosh[x]2 + tα(−5 + 27cosh[2x])

)
sinh[x]

8α2

+
hntαsech[x]2

(
−1 + 3cosh[2x] + 3

√
2sinh[2x]

)
2α

,

v2(x, t) =
h2tαSech[x]3

(
2
√
2
(
12αCosh[x]2 + tα(−5 + 27Cosh[2x])

)
Sinh[x]

)
4α2

h2tαSech[x]3
(
(−45tα + 2α)Cosh[x] + (33tα + 6α)Cosh[3x] + 2

√
2
(
12αCosh[x]2

))
4α2

+
h2t2αSinh[x]Sech[x]3(−5 + 27Cosh[2x])

4α2

+
hntαSech[x]2

(
−1 + 3Cosh[2x] + 3

√
2Sinh[2x]

)
α

,

...

We can obtain um(x, t), vm(x, t), for m = 3, 4, 5, · · · , following the same approach, using Mathematica,
Maple or MATLAB.
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As a result series solution expression by q-HAM can be written in the form

u(x, t, n, h) = 1 +
√
2 tanh[x] +

∞∑
i=1

ui(x, t;n;h)

(
1

n

)i

, (30)

v(x, t, n, h) = 2 + 2
√
2 tanh[x] +

∞∑
i=1

vi(x, t;n;h)

(
1

n

)i

. (31)

6.Graphical Comparisons
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Fig. 1. The h-curves of u(x, t) and v(x, t) for x = 0.1, t = 0.01, α = 0.7 respectively.
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Fig. 2. The h-curves of u(x, t) and v(x, t) for x = 0.1, t = 0.01, α = 0.8 respectively.
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Fig. 3. The h-curves of u(x, t) and v(x, t) for x = 0.1, t = 0.01, α = 0.9 respectively.

Figures 1, 2, 3 show the convergence region of the obtained approximate solutions. By the help of
this graphics we can adjust and control the convergence of approximate analytical solution to the exact
solution. These graphics helps us for choosing appropriate value of h which is involved in the series
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solutions (30) and (31). As a consequence of this choice of h the following graphics appears. Both of
these graphics shows the obtained numerical solutions are converges properly to exact solutions for
different values of α.

Fig. 4. The graphics of the numerical and exact solutions of u(x, t) for h = −1, α = 0.7 respectively.

Fig. 5. The graphics of the numerical and exact solutions of v(x, t) for h = −1, α = 0.7 respectively.

Fig. 6. The graphics of the numerical and exact solutions of u(x, t) for h = −1, α = 0.8 respectively.

To be more satisfying lets give the numerical comparisons of both exact and approximate analytical
solutions over Figures 4,5,6,7 and 8.

7. Conclusion

In this work, we successfully apply the q-homotopy analysis method and Sine-Gordon expansion
method to obtain solutions of Fractional Diffusive Predator-Prey system. It may be concluded that
the two methods are powerful and efficient techniques for finding exact as well as approximate solutions
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Fig. 7. The graphics of the numerical and exact solutions of u(x, t) for h = −1, α = 0.9 respectively.
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Fig. 8. Comparisons of solutions for t = 0.001, α = 0.8, h = −2.7.

ofhomogeneous fractional partial differential equations. The results reveal that these methods are very
effective, convenient and quite accurate to systems of fractional nonlinear equations.
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