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ÖZET

Bu çalışmada, keyfi fiber takviyeli viskoelastik ve piezoelektrik bir malzemenin dış çevreden maruz kaldığı  elektromekanik yükler karşısındaki davranışı Sürekli Ortamlar Mekaniği kapsamında sistematik bir şekilde incelenmiştir. Cismin matris kısmı viskoelastik ve piezoelektrik anizotropiye sahip olup buna ilave olarak fiber takviyesi  nedeniyle de cisim tüm ortam olarak  anizotropik bir yapıya sahip olacaktır. Bu bağlamda cisim  davranış olarak kendisini uyaran çevreye elastik gerilme, disipatif gerilme, ve elektriksel polarizasyon alanları tarzında cevap verecektir. Buradaki büyüklükler bünye  denklemleri olarak elde edilmiştir. Genel yaklaşım tarzı olarak elastik gerilme ve elektriksel polarizasyon alanları, işlemler içinde tanımlanan bir termodinamik potansiyelden (gerilme potansiyeli) türetilirken; dissipatif gerilme ise kendi argümanlarına bağlı tansörel bir fonksiyon olarak şekillendirilmiştir. Sözkonusu argümanlar, Modern Sürekli Ortamlar Mekaniğinin genel aksiyomlarına göre tesbit edilmiş olup bunlar, deformasyon ölçüsü olarak Green deformasyon tansörü, deformasyon hızları tansörü, elektrik alanı, fiber-dağılım tansörü, ve sıcaklık alanı’ndan ibaret argümanlardır. 

Diğer taraftan herhangi bir teoriyle bünye fonksiyonlarının bizzat kendilerini elde etmek mümkün olamayacağından dolayı, bu fonksiyonlar hakkındaki tüm bilgiler oluşturulduktan sonra, bunların analitik oldukları varsayılıp kuvvet serileriyle temsil edilmek suretiyle sıfır etkileşim civarındaki Taylor serisi açılımından ortaya çıkan terimler,  ağırlıklarına göre sınıflandırılıp (örneğin  lineer ve nonlineer davranışlar) göz önünde bulundurulan  fiziksel durumlar referans alınarak kullanılmaktadır. Örneğin, mekanik etkileşimlerin lineer, elektromekanik etkileşimlerin ise nonlineer kabül edildiği uygulama durumları dikkate alındığında bünye denklemlerindeki fonksiyonları veren kuvvet serilerinin  terimlerinin mertebeleri buna göre tesbit edilmektedir. Sonuç olarak elde edilen bünye denklemleri denge denklemlerinde yerlerine yazılarak alan denklemleri bulunmuştur.  

Anahtar Kelimeler: Viskoelastisite, fiber-dağılım tansörü, balans denklemleri, gerilme, polarizasyon, bünye aksiyomları, gerilme potansiyeli, alan denklemleri.
A MATHEMATICAL MODEL FOR THE

ELECTROTHERMOMECHANICAL BEHAVIOR OF AN
ARBITRARILY FIBER-REINFORCED VISCOELASTIC PIEZOELECTRIC BODY
ABSTRACT
In this work behavior of an arbitrarily fiber-reinforced viscoelastic and piezoelectric material is investigated systematically in the context of modern continuum mechanics when they are subjected to external  loadings. In addition to the strong anisotropy being caused by distribution of fibers in an otherwise isotropic material, we have assumed here that the matrix material is also by itself anisotropic with piezoelectric property. In this context the material will respond by means of elastic stress, dissipative stress, and electric polarization as relevant  constitutive response functions. In this general approach elastic stress and polarisation is derived from a thermodynamic potential (elastic stress potential), while dissipative stress is expressed as a tensorial function in terms of its relevant arguments. These arguments are the deformation measures which are fixed in conformity with the axioms of modern continuum mechanics. They are Green deformation tensor, rate of deformation tensor, electric field, fiber-distribution vector, and  absolute temperature. On the other hand, because of evident impossibility of obtaining authentic identification  of these response functions by any theory whatsoever , once general information has been established about their constitutive behavior, they are shaped by Taylor-series representations, about the zero-interaction,  assuming that they are analytical functions of  their  relevant arguments . Depending on the physical context of the problem (such as linear or nonlinear in certain measures) a number of nonlinear terms appearing on the power series are considered appropriately. We are to choose proper degrees of the terms accordingly when  for instance mechanical interactions are linear and electromechanical  interactions are nonlinear. In the conclusion, field equations have been obtained by substituting relevant constitutive equations into the differential balance equations. 

Keywords: Viscoelasticity, tensor of fiber distribution, balance equations, stress polarisation, constitutive axioms, stress potential, field equations.

1. GİRİŞ 

Mühendislik uygulamalarında (biyomekanikte ve tıp alanında doğal  elemanlar olmak üzere) fiber takviyeli kompozit malzemelerin kullanımı gittikçe yaygınlaş​maktadır. Bir elastomer matrisi yüksek çekme muka​vemetine sahip fiberlerle takviye ederek oluşturulan kompozit malzemeler otomobil lastiklerinde, taşıyıcı bantlarda ve şok sönümleyicilerinde kullanılmaktadır. Burada bahsedilen endüstri ürünlerinin fiziksel davra​nışı genellikle anizotropik bir mikroyapı gösteren biyomalzemelerin davranışları ile ortak özellikler gös​termekte ve bu yüzden de  kemikler veya yumuşak bi​yolojik dokular için geliştirilen bünye modelleri  aynı   kategorilerde   değerlendirilmektedir [1, 5].

Bu çalışmada geliştirilen matematiksel modelin üç te​mel özelliği;  matris malzemesinin  viskoelastik özel​lik taşıması, aynı ortamın fiber takviyesi ile kompozit hale getirilmiş olması, ve de piezoelektrik özellik taşımasıdır. Bu özelliklerin uygun tarzda bütünleş​ti​ril​mesi sayesinde oluşturulan matematiksel modelimizin biyomalzemelerin ve yapay elastomerik kompozitle​rin elektro-mekanik davranışını belirlemede pratik problemlerin  formüle edilip çözülmesinde yarar sağ​layacağı şüphesizdir.

Malzemelerin viskoelastik davranışı bir çok araştır​macı tarafından detaylı bir şekilde incelenmiştir [6-9]. Bu konudaki daha aksiyomatik çalışmalar,  nonlineer termo-viskoelastisitenin temelleri üzerine Koh ve Eringen [10] tarafından yapılmıştır. Ancak bu makale​lerdeki viskoelastik ortam fiber-takviyeli olarak ince​lenmemiştir. Biz bu çalışmamızda   fiber dağılımını belli bir şekilde kısıtlamış olmayıp  matematiksel ola​rak uzaysal ve  keyfi bir sürekli vektör alanı ile temsil edilmesine fırsat tanınmak suretiyle  doğal kompozit malzemelerin temsiline de imkan vermekteyiz.

Diğer taraftan, fiber takviyeli malzemelerin mekanik davranışı Mülhern, Rogers ve Spencer tarafından incelenmiştir [11,12]. Fiber takviyeli kompozitler konusunda Spencer’ın çalışmaları [12,13] yol gösteri​ci ve belirleyici olmuştur. Piezoelektrik malzemeler ve davranışları konusunda çok geniş bir literatür mevcuttur ve bu konuda yapılan çalışmaların önemli bir kısmı Mindlin, Parkus, Kamlah, Tiersten tarafın​dan yapılan yayınlarda ortaya dökülmekte [14-17] an​cak bu çalışmaların hiç birinde fiber takviyesi dik​kate alınmamaktadır. Sürekli ortamların elektro-dinamiği konusunda yakın zamanda hazırlanan önem​li iki ya​yın Eringen ve Maugin tarafından gerçekleş​tirilmiştir [18-19]. Yukarıda adıgeçen literatüre ilave olarak  ya​kın zamanda yapılmış olan diğer bazı yayın​lar da  şim​diki çalışmamızın temellerini oluşturmaktadır [20-23, 4].

2.  HAREKET VE DEFORMASYON 
Araştırmak istediğimiz sözkonusu ortama ait bir serbest cisim göz önüne alalım. Bu ortamın etkile​şimlerine geçmeden önce uzaydaki  konumunu  geo​metrik olarak belirlemek için bir dikgen eksen takımı seçelim (Şekil 1). Maddesel noktaların referans ko​numları X yer-vektörü, herhangi bir t anındaki uzay​sal konumları da  x  yer vektörü ile temsil edilmiş olsun. Ortama ait herhangi bir  X  maddesel noktası​nın  herhangi bir t anındaki konumu, yani ortamın hareketi x=x(X,t), fonksiyonu ile belirlidir. Ortamın deformasyonu,   X  in bir dX civarının  x  in bir dx civarına gitmesi ve iki civar arasındaki bağıntının belirlenmesi ile kesinlik kazanır. Bu da, 
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 şeklinde bir transformasyondur. Burada 
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  büyüklüğü  hareket verildiği müddetçe belli olup deformasyon gradyanı ismiyle anılmaktadır. Bu ifade​nin aynı eksen takımına göre matris temsili, 
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(1)

şeklinde olup bundan böyle koyu harfler vektörleri ve tansörleri; altı çift-çizgili harfler matrisleri temsil edecek, ayrıca bileşenlerle ifade edilen denklemlerde  iki-kerre tekrarlanan indeksler üzerinde  toplama işlemi anlaşılacaktır. Altı tek-çizgili harfler de ilgili vektörün verilen eksen takımına göre  sütun matrisini gösterecektir.
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  vektörünün uzunluğu dS, 
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  vektörünün uzunluğu ise ds ile gösterildiği takdirde, deformas​yondan önce iki maddesel nokta arasındaki mesafe ile deformasyondan sonraki iki nokta arasındaki mesafe için, maddesel ve uzaysal koordinatlarda,
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yazılabilir. Burada,
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 olup sırasıyla maddesel ve uzaysal koordinatlarda Kronecker–delta sembollerini göstermektedir.

Sürekli ortamlar mekaniğinde çok yaygın olarak kullanılan ve (2) deki son ifadelerde sembolize edilen  deformasyon ve genleme tansörlerine ait tanımlar aşağıdaki gibidir.

Green deformasyon tansörü;

[image: image10.wmf](

)

F

F

C

T

×

=

º

,

,

,

,

L

l

K

l

L

K

x

x

t

X

C

 
(3)

Cauchy deformasyon tansörü;
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Piola deformasyon tansörü;
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Finger deformasyon tansörü;
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Ayrıca   boy değişiminin bir ölçüsü olarak      
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şeklinde  beliren deformasyon ölçüleri de yeri geldiğinde aşağıdaki isim ve tanımlarla   anılacaktır:   

Lagrange genleme tansörü:
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Euler genleme tansörü:
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İleride kullanacağımız birkaç önemli bağıntıdan  birisi
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olup buradaki 
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şeklinde  tanımlanan  deformasyon hızları tansörünü göstermekte  ve 
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 EMBED Equation.3  [image: image21.wmf]hız gradyanı tansörünün si​metrik kısmı olarak tanımlanmakta; bu tansörün anti​simetrik kısmı da  spin tansörü olarak 
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şeklinde verilmektedir. Bu ayrışım 
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şeklinde de gösterilmekte olup kinematik olarak birin​ci terim  bir maddesel noktanın maruz kaldığı defor​masyon hızlarını, ikincisi de rijid dönme hızlarını temsil etmektedir.

3. FİBER DEFORMASYON GEOMETRİSİ VE KİNEMATİĞİ 


Gerek doğal gerekse yapay kompozit malzemelerin önemli bir alt sınıfını fiber takviyeli kompozitler oluşturmaktadır [1,3,4,5,12,13]. Bu çalışmada ele aldığımız kompozit malzemenin her noktasından fiber ailesini temsil eden bir maddesel eğri geçmektedir. Bu fiber ailesi deformasyondan önce sürekli bir  
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vektör alanı ile deformasyondan sonra ise yine sürekli bir 
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 vektör alanı ile temsil edilmektedir. Bu vektörler Şekil 2’de gösterilmiştir. Deformasyon​dan önceki fiber alanının deformasyondan sonraki konumlarına geçişleri ortamla birlikte sürüklenme şeklinde gerçekleşmektedir.

Deformasyondan sonraki diferansiyel fiber uzunluğu 
[image: image26.wmf]l
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 için, deformasyondan önceki dL cinsinden aşağıdaki bağıntı yazılabilir.
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Bu bağıntının sağ tarafı X noktası civarında Taylor serisine açılıp yüksek mertebeden terimler ihmal edilirse, deformasyondan önceki ve sonraki fiber uzunlukları arasındaki ilişki elde edilir:
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Fiber ailesine ait uzama oranını veren
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(16) ifadesi,  (15) eşitliğinde yerine yazılırsa 
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ifadeleri elde edilmiş olur.

Fiber ailesine ait deformasyon geometrisi (17) bağıntısıyla ifade edilmektedir. Burada A ve a vektörleri deformasyondan önceki ve sonraki birimize edilmiş fiber vektörlerini göstermekte olduğundan, 


[image: image32.wmf]1

=

=

a

A

 ve 
[image: image33.wmf]1

=

×

=

×

a

a

A

A


(18)


[image: image34.wmf]L

K

L

K

a

L

K

L

k

K

k

a

k

k

A

A

C

A

A

x

x

a

a

2

,

,

2

1

-

-

=

=

=

l

l


(19)    

işlemleri geçerlidir. (Burada (17) ifadeleri dikkate alınmıştır). Buna göre


[image: image35.wmf]A

C

A

A

A

C

T

a

L

K

L

K

a

=

=

2

2

,

l

l


(20) 

ifadesi yazılır. Bu son eşitlik, deformasyon ve fiber dağılımı verildiği zaman uzayabilen fiberler söz konusu olduğunda fiber-uzama oranını bulmak için kullanılır. 
4. BALANS DENKLEMLERİ
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Çalışmada bütünlüğü sağlamak için yerel balans denklemleri özet olarak verilecektir. S(t) yüzeyi ile sınırlandırılmış, V(t) hacmine sahip bir sürekli ortamda 
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 hızı ile hareket eden bir 
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süreksizlik yüzeyinin bulunduğu düşünülmektedir (Şekil 3).

4.1. Elektrostatik Balans Denklemleri

Göz önüne aldığımız ve t anında V(t) hacmini kapla​yan ortamın çevresi ile olan etkileşiminde mekanik ol​mayan kuvvetlerin tabi olduğu quazi-statik elektriksel alanı yöneten integral denklemler “Genelleştirilmiş” Gauss ve Stokes teoremleri kullanılarak yerelleştiril​diğinde aşağıdaki diferansiyel ifadeler elde edilmiş olur.

Gauss Yasası:
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Faraday yasası:
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Burada, 
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 elektrik yer-değiştirme vektörü, 
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 süreksizlik yüzeyinin dış birim normali,  
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 elektrik alan vektörü, 
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 elektrostatik potansiyel, 
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 boşluğun elektriksel permitivitesi, 
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 polarizasyon alan vektörü, 
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 süreksizlik yüzeyi üzerinde 
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 nin sıçrama değerini göstermektedir [17]. (21) ve (22) denklemlerinden gözüktüğü gibi, göz önünde bulundurduğumuz ortam, serbest elektrik yük dağılımı içermemektedir.

4.2.  Termomekanik Denge Denklemleri
Benzer şekilde global balans denklemleri (kütle, line​er momentum, açısal momentum, enerji ve entropi üretimi) yerelleştirildiği takdirde elde edilen diferan​siyel ifadeler şu şekilleri alır:
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Lineer Momentumun Dengesi
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Açısal Momentumun Dengesi
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Enerji Denkliği

V(t) içinde
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Termodinamiğin İkinci Kanunu (Clausius-Duhem Eşitsizliği)
V(t)  içinde
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Burada U, süreksizlik yüzeyinin sürekli ortama göre bağıl yer değiştirme hızı olup aşağıdaki gibi tanımlanmıştır: 
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Ayrıca 
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 sürekli ortamdaki  hız alanı, u süreksizlik yüzeyinin hızı, 
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 bi​rim kütle başına mekanik hacımsal kuvvet, 
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 birim hacim başına elektrostatik gövde kuvveti, 
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[image: image76.wmf]ε
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  açısal hız, 
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 birim kütle başına entropi yoğunluğu, 
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 birim kütle başına entropi üre​timi olup 
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 permütasyon tansörünü göstermek​tedir.  

Denge denklemlerinde geçen elektrostatik kaynaklı kuvvet ve kuvvet-çifti ve enerji kaynak ifadeleri de 


[image: image82.wmf]j

i

j

E

i

E

E

P

F

,

⇒

=

×

=

E

∇

P

F


(38)


[image: image83.wmf]k

j

k

j

i

E

i

E

E

P

C

e

=

´

⇒

≡

E

P

C


(39)


[image: image84.wmf]kl

E

kl

k

k

E

E

E

d

t

P

E

h

h

+

=

+

×

*

*

⇒

:

≡

r

r

d

t

P

E


(40)

şeklinde olup, burada (40) ifadesindeki (
[image: image85.wmf]*

) işareti aşağıdaki anlamda kullanılmıştır.
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Burada sembol üzerindeki nokta da maddesel türevi göstermektedir [17]. 

Asimetrik bir tansör olan 
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şeklinde tanımlanmaktadır [15, 17]. Burada 
[image: image89.wmf]Ä

 tansö​rel çarpımı göstermektedir. 
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 nin tanımı (31) denk​leminde yerine yazılırsa
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olur. Burada 
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 antisimetrik bir tansör olduğundan parantez içindeki ifadenin simetrik olması gerekir. buna yeni bir isim vererek
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şeklinde simetrik bir tansör oluşturmuş oluruz. Eski tansörümüz yenisi cinsinden  
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şeklinde yazılıp diverjansı alınırsa, 
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ifadesi elde edilir. Lineer momentumun yerel korunu​mu (29) denkleminde (38) ve (46) eşitlikleri yerine konulduğunda da 
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şeklinde lineer momentum denklemimiz simetrik bir gerilme tansörü cinsinden yazılmış olur. Diğer taraftan (11), (41) ve (42) ifadeleri (40) da yerine yazılırsa enerji kaynak terimi de
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şeklini alır. Birim kütle başına polarizasyon vektörünü 
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 şeklinde alınıp (48) de yerine yazılır ve kütle-korunum yasası dikkate alına​rak uygun indis değişimi ve sadeleştirmeler yapılırsa enerji kaynak yoğunluğu için 
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elde etmiş oluruz. Açısal hızı spin tansörünün düalin​den 
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 şeklinde çekersek ve (39) da verilen 
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nin tanımını göz önüne alırsak yerel enerji denkle​minde  (33) ün  son terimi, 
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         (50)

şekline girer. Yukarıda verilen (49) ve (50) ifadeleri toplanır ve gerekli sadeleştirmeler yapılırsa
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şeklinde elde edilmiş olur. (51) ifadesi (33) de yerine yazıldığında enerji korunumu için 
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(52)

şeklinde  yerel denklem ortaya çıkmış olur. 

Bu düzenlemelerden sonra denge denklemlerinde elektrik alan ve polarizasyon vektörüne ait bileşenler açıkça gözükmektedir. Yerel elektro-termomekanik denge denklemlerini son haliyle aşağıda özetliyoruz.

Kütlenin korunumu;
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Lineer  momentumun  dengesi;
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Açısal momentumun  dengesi;

[image: image110.wmf]0

=

p

r

p

r

k

t

e


(55)

Enerji dengesi;
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Clausius-Duhem eşitsizliği;
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5. TERMODİNAMİK KISITLAR VE BÜNYE DENKLEMLERİNİN MODELLENMESİ
Yerel enerji denklemi (56) dan (ρh) çekilir, entropi eşitsizliği (57) de yerine yazılırsa,
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şeklindeki eşitsizlik elde edilir.Bu ifadedeki entropi yoğunluğunun ve polarizasyonun maddesel türevi ter​modinamik bir proses içinde kontrol edilemeye​ceğinden dolayı bu büyüklüklerin türevini, kontrol edilebilen 
[image: image115.wmf]q

 ve E büyüklüklerine intikal ettirmek için, bir Legendre transformasyonu kullanılabilir:
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Sonuç olarak yeni terimler cinsinden  entropi eşit​sizliği,
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şekline dönüşmüş olur. Bu eşitsizlik bilinen yöntemle [15, 17] maddesel forma sokulduğunda 
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elde edilmiş olur. Burada geçen yeni büyüklüklerle ilgili terimler aşağıda verilmektedir:
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(61) eşitsizliği, quazi-elektrostatik bir alanın etkisinde bulunan ve viskoelastik özellik taşıyan termomekanik ortamlar için entropi üretiminin genel bir ifadesidir. Bu eşitsizliğin kullanılabilmesi için ( termodinamik potansiyelinin  hangi bağımsız değişkenlere ne şekil​de bağlı olduğunun bilinmesi gerekir. Buna göre (’nın argümanlarını seçmek formal olarak belli bir malzeme seçmek demektir. Seçilen malzemeye göre (’nın argümanları ve bağlı olduğu değişkenler, bünye aksiyomlarını kullanarak bulunmuştur. Ele alınan malzemede  X maddesel noktasının  t  anındaki ( ge​rilme potansiyeli, cismi meydana getiren tüm madde​sel noktaların hareket ve sıcaklık tarihi ile elektro​statik alanına   bağlı olduğundan,  
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şeklinde ifade edilebilir. Burada 
[image: image139.wmf]'

t

; şu an ve geçmiş arasında herhangi bir zamandır.  
[image: image140.wmf]'

X

,  
[image: image141.wmf]X

 den başka diğer bütün maddesel noktaları göstermektedir. (69) ifadesinden görüldüğü gibi t anında X maddesel noktasındaki gerilme potansiyeli (sol taraf), cismin tüm 
[image: image142.wmf]'

X

 noktalarının geçmişteki tüm 
[image: image143.wmf]t
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 zamanların​daki hareket, sıcaklık, ve elektrik alanlarına bağlı bir fonksiyoneldir (kozalite aksiyomuna göre). Bilinen yöntemlerle bu argüman fonksiyonların şimdiki zaman t ve ölçüm noktası X noktası civarında Taylor serisi temsillerinde uygun sayıda terim muhafaza ederek ve de objektivite, yakın civarsallık, hafıza ve tutarlılık aksiyomlarının  sonuçlarını kullanırsak [24, 25], ısı iletiminin olmadığı, elektro-mekanik yükleme​ye maruz tek fiber aileli piezoelektrik ve viskoelastik bir yapıya imkan veren ( nın bağlı olduğu argümanlar aşağıdaki gibi ortaya dökülebilir.  
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(70)   

Malzemenin homojen olduğunu kabul ederek, (70) ifadesi ile verilen 
[image: image145.wmf]Σ

 nın bağlı olduğu argümanlardan X  kaldırılmıştır. 
[image: image146.wmf])

(

X

A

nın maddesel türevinin sıfır olduğunu düşünerek  (70)  ifadesinin maddesel türevi alındığında  aşağıdaki ifade  elde edilir. 
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(71) ifadesi (61) eşitsizliğinde yerine yazılır, ortak terimlerin parantezleri alınırsa, 
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eşitsizliğine ulaşırız. (72) eşitsizliğinin keyfi  her bağımsız termodinamik proseste sağlanabilmesi için gerilme potansiyelinin argümanları içinde bulunma​yan 
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 nın katsayılarının sıfıra eşit olması gerekir [25]. (
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 nın argümanları içerisinde yer aldığından bu eşitsizlikteki  
[image: image156.wmf]KL

C

&

 nin katsayısı sıfıra eşitlenemez).  
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şeklinde bir isimlendirme yaparsak, (dissipative gerilme), bu durumda 
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elde edilir. (77) ifadesi baştan tasarladığımız gibi ortamda ısı iletiminin olmadığını ifade etmektedir. (73)-(77) ifadeleri kullanılarak (72) eşitsizliği de aşağıdaki hale indirgenmiş olur. 
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Bu eşitsizlik, dissipatif gerilme için bir kısıt getirmek​tedir. 
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 simetrik bir tansör olduğundan 
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 nin antisimetrik kısmının dissipasyon eşitsiz​liğine bir kat​kısı olmaz. Antisimetrik kısım için ayrı bir bünye denkleminin  yazılması mümkün olmakla birlikte, fi​ziksel mülahaza olarak dissipasyona katkı​sızlığı nede​niyle bu kısmın sıfır olduğunu farzedi​yoruz.  Buna göre,  
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şeklinde olur. (78) eşitsizliğindeki 
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 tansörünün, 
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 cinsinden  sürekli bir fonksiyon olduğu düşünü​lürse, 
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  nin de sıfır olması gerekir. Buna göre (79) ifadesinde bağımsız bünye değişkenlerinin sırası muhafaza edilerek,
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(80)         

ifadesi yazılmalıdır. Bu da dissipatif gerilme için ikinci bir kısıt oluşturmaktadır.

Bu çalışmada viskoelastik bir malzeme ele alındığın​dan, malzeme içinde oluşan 
[image: image175.wmf]L
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 simetrik gerilme tansörü, iki gerilme tansöründen meydana gelmekte​dir. Her biri simetrik olan bu gerilme tansörleri elastik gerilme ve dissipatif gerilme olarak adlandırılır. Buna göre 
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 gerilme tansörü aşağıdaki gibi tanımla​na​bilir.
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(81) ifadesindeki 
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 disipatif gerilme tansörü (79) ifadesiyle tanımlanmıştı. 
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 elastik gerilme tansö​rü ise (73) ve (81) e göre aşağıdaki şekilde yazılabilir.
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Bu ifade elastik gerilme için bünye denklemidir ve elastik gerilmedeki (’nın bağlı olduğu argümanlar daha önce (74) denklemiyle belirlenmiştir. (81) ifade​siyle verilen ve bünye denklemlerinden olan simetrik gerilme tansörü uzaysal koordinatlarda şağıdaki gibi yazılabilir. 
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Açısal momentum balansının ve elektrostatik kaynaklı kuvvet-çiftinin bir neticesi olarak gerilme tansörümüz asimetrik bir karakterle ortaya çıkmıştı (45). Asimet​rik gerilmenin maddesel koordinatlardaki ifadesinin  
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şeklinde olduğu rutin işlemlerle gösterilebilir.                              

Diğer taraftan iç enerji yoğunluğu ,
[image: image184.wmf]e

, (59) ve (62) ifadelerinden aşağıdaki gibi yazılabilir. 
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Asimetrik gerilmenin hesaplanması için elastik geril​menin, disipatif gerilmenin ve polarizasyon alanı​nın bilinmesi gerekir. (82) ve (75) ifadeleriyle verilen bünye denklemlerinden elastik gerilmenin ve polari​zasyon alanının serbest enerji fonksiyonu ( dan türe​tildiği, dissipatif gerilmenin gerilme potansiye​linden bağımsız olarak argümanları belli olan bir form şek​linde ortaya çıktığını önceden görmüştük, (79). Bu durumda bünye fonksiyonları olarak ortaya çıkan ve argümanları belli olan ( ve 
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 nin açık formları​nın ortaya konulması gerekir. Ancak öncelikle madde​sel simetri aksiyomunun, ele alınan malzemenin bün​ye fonksiyonları üzerine getirdiği kısıtlar gözden geçi​rilmelidir.

Malzemenin simetri grubu ful ortogonal grub (izotro​pik malzeme) veya onun herhangi bir  alt grubu olsun (anizotropik  malzeme). 
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 , maddesel koordi​natların ortogonal dönüşümünü (veya maddesel orta​mın referans eksen takımına göre rijid konfigüras​yonlarını)  temsil eden ve ortamın simetri grubuna ait keyfi herhangi bir  simetri operasyonu (matris) olsun. Maddesel simetri aksiyomuna göre her  
[image: image189.wmf]S

 ortogonal matrisi ile oluşturulan  
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(Her 
[image: image191.wmf]S

için, yani her simetri operasyonu için)

şeklindeki dönüşüm altında bünye fonksiyonları form-invaryant kalmalıdır. Bu, matematiksel olarak 
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dönüşümlerinin geçerli olması demektir.

Diğer taraftan gerek fiberlerin uzamazlığı ve gerekse de ortamın sıkışmazlığı,  formülasyon açısından  pra​tikte yaygın bir kabul görmektedir.  Ortam sıkışmaz ve fiber ailesi uzamaz kabul edildiğinde (20) denk​lemi gereğince  


[image: image194.wmf]1

det

2

=

=

=

III

J

C

   (sıkışmazlık)
(89)  


[image: image195.wmf]1

2

=

=

L

K

L

K

a

A

A

C

l

      (uzamazlık)
 (90)   

şeklindedir. Bu durumda elastik gerilme için  bünye denklemi maddesel ve uzaysal koordinatlarda aşağı​daki gibi elde edilir.
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Bu ifadelerdeki 
[image: image198.wmf]a
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 , Lagrange çarpanları olup  alan denklemleri ve sınır şartları ile belirlenir.

O halde (66) ve (64) ifadelerine göre, J =1 alınmak suretiyle, polarizasyon alanı, elastik ve dissipatif gerilme tansörleri aşağıdaki gibi yazılabilir.
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Bu çalışmada matris malzemesi genel anizotrop bir ortam olarak düşünülmüştür. Bu yaklaşım çerçeve​sin​de, 
[image: image202.wmf]S

gerilme potansiyeli ve dissipatif gerilme fonk​si​yonu bağlı oldukları argümanların bileşenleri cin​sinden  kuvvet serisine açılarak kompozit ortamın vis​koelastik davranışı ve polarizasyon tepkisi elde edile​cektir. Seri açılımında dikkate alınan terimlerin türü ve sayısı ortamın nonlinerlik mertebesini belirlemiştir. Bu çalışmada mekanik etkileşimlerin lineer; elektrik​sel etkileşimlerin ise nonlineer olduğu varsayılmıştır. Diğer taraftan matris malzemesinin fiber boyunca yön değişimine duyarsız kalması gerektiğinden, fiber dağılımını temsil eden vektör alanının  argüman ola​rak çift sayıdaki dış çarpımlarlarla ifadeleri dikkate alınması gerekmektedir. Bu durum, aşağıdaki bölüm​lere ait işlemlerde dikkate alınacaktır.

6. ELASTİK GERİLME VE POLARİZASYON ALANININ TAYİNİ 
Green deformasyon tansörü ile genleme  tansörü ara​sında 
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 bağıntısı olduğundan, (74) denklemiyle verilen gerilme potansiyelinin argü​manları 
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şeklinde de yazılabilir. Bu fonksiyonun 
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 büyüklükleri cinsinden analitik olduğu varsayılarak  
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   civarında  Taylor serisine açılırsa gerilme potansiyeli için,
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ifadesi bulunur. Bu denklemdeki katsayıların sadece sıcaklığa bağlı  olduğu açıktır. 
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[image: image225.wmf]KL

E

  tansörünün simetrisi ve (98) ifadelerindeki ta​nımlarda yer alan  türevlerin sıraya bağlı olmaması nedeniyle, bu katsayılar aşağıda verilen simetri özel​liklerini taşırlar.
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Uzamaz fiber aileli sıkışmaz ortamlar için elastik gerilmenin bünye denklemini (91) den, polarizasyon alanını da (75) den alabiliriz:
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şeklinde verilmişti. (100) ve (101) deki türevler (97) den alınıp yerlerine konduğunda, 
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(103)    

elde edilir. Buna göre; tek fiber aileli, viskoelastik, anizotrop bir ortamda, ortamın sıkışmaz, fiber ailesi​nin uzamaz olduğu ve mekanik etkileşimlerin lineer, elektro-mekanik etkileşimlerin nonlineer kabul edil​diği bir durumda elastik gerilme ve polarizasyon için bünye denklemleri maddesel koordinatlarda bileşen​leri cinsinden (102) ve (103) ifadeleri ile  ifade edil​miş olur.

Elastik gerilme için (102)  bünye denkleminde sağ taraftaki birinci ve ikinci terimler sırasiyle ortamın sıkışmazlığından ve fiber ailesinin uzamazlığından kaynaklanmaktadır.  p, hidrostatik basıncı 
[image: image242.wmf]a
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 ise fiber germesini göstermekte olup her ikisi de alan denk​lem​leri ve sınır şartlarından tayin edilir. Bu iki terim reak​siyon gerilmeleri olup herhangi bir bünye denkle​miyle ifade edilemezler. Üçüncü terim klasik Hooke kanunundaki terim olup gerilmeye genleme tansörü ile katkıda bulunur. Dördüncü terim piezoelektrik etkiden kaynaklanan gerilmeyi, beşinci terim fiber alanının ve son terim ise elektrik alanının nonlineer etkisinin oluşturduğu gerilmeyi göstermektedir. Ayrı​ca (102) deki en son terim elektrik alanına göre kare​sel olup elektrik alanının kuvvetli olması durumunda ortaya çıkan bir etkidir. Lineer teoride bu terim mev​cut değildir.

Polarizasyon alanının bünye denklemini veren (103) ifadesine dikkat edilirse, elektrik alanının ve genleme tansörünün lineer, elektrik alanının nonlineer etkile​rinin, genleme tansörü ile elektrik alanının birlikte etkileşiminin ve fiber dağılımının sözü edilen ortamda polarizasyon alanının oluşumuna katkıda bulunduğu görülmektedir. Burada birinci terim bilinen elektriksel duyarlılığı, ikinci terim ise piezoelektrik etkiyi gös​ter​mektedir (Piezoelektrik terimi bu çalışmada defor​masyon alanı ile elektrik alanının tüm etkileşimlerinin cümlesi için kullanılmıştır). Üçüncü terim, polarizas​yona nonlineer elektriksel katkıyı belirler. Dördüncü terim de genelleştirilmiş anlamda yine piezoelektrik özelliğin katkısını göstermektedir. Beşinci terime ge​lince, bununla ilgili iki türlü yorum oluşturulabilir. Birincisi, ortam hiçbir şekilde yüklenmediğinde 
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 elektriksel polarizasyona uğ​ramayacağı için fiziksel olarak 
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, alınmalıdır. Çünkü sadece fiberlerle yüklenmiş bir ortam kendi​liğinden polarize olamaz. Diğer bir yorum ise şöyle olabilir. Ne bu çalışmamızda ve ne de fiber-takviyeli ortamların makroskopik davranışlarını inceleyen diğer çalışmalarda fiber kesit kalınlığı ile ilgili hiçbir parametre kullanılmamaktadır. Diğer bir deyişle fiber dağılımı sadece anizotropi oluşturan topolojik bir varlık olarak ortamda yer almaktadır. Yani tamamen geometriktir. Bu açıdan fiber takviyesini moleküler boyutlarda yapmamızı engelleyen hiçbir kısıtlama yoktur. Bu nedenle ortam içine pratik olarak mole​küler zincir yapısında bir dağılım konabilirse bunun pekala başka hiçbir etki olmadan mevcut iyonik dağı​lımı değiştirerek ortamı polarize edebileceğini düşün​memiz mümkündür. Bu durumda beşinci terimdeki  
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 katsayısı sıfırdan farklı olur ve fiziksel olarak böyle bir anlam kazanır. Daha önceki fiber takviyeli ortamlarla ilgili çalışmalar sadece mekanik etkileri dikkate almış oldukları için yukarıdaki terimler özel olarak  ilk defa bu şekilde yorumlanmıştır. Aynı mülahazalar, (102) nin beşinci terimi içinde geçerli olup dislokasyon uyarmalı iç-gerilme katkısı olarak yorumlanabilir.

Bu çalışmada, (102) ve (103) denklemlerindeki terim​ler söz konusu kabuller altında ortaya çıkmış olup özel hallerde bilinen klasik ifadelere indirgenmek​tedir. Bu da, oluşturduğumuz modelin güvenirliliğini sağlamakta olduğu görüşümüzü desteklemektedir. Bu yeni terimler  biyolojik bir yapı elemanı için olsun, veya fabrikasyon kompozitler için olsun, tamamen keyfi bir takviye dağılımını kapsayacak nitelikteki malzemeler için de geçerli sayılacak tarzda oluştu​ru​lan matematiksel modelde elastik gerilme ve polari​zasyon alanı için bünye denkleminin maddesel koor​dinatlardaki ifadeleridir. 

7. DİSSİPATİF GERİLMENİN TAYİNİ
Dissipatif gerilme için verilen (79) ve (80) denklemlerindeki 
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 tansörleri, 
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 tansörleri cinsinden ifade edildiğinde bu denklemler
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şeklinde yazılabilir. Dissipatif gerilme için bünye denklemi, daha önce ( için yapılan yaklaşıma paralel olarak bağlı olduğu argümanların bileşenleri cinsin​den Taylor serisine açılıp benzer işlemler yapılarak, 
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denklemi elde edilir. (105) kısıtlamasında 
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 olduğuna göre (106) denkle​mindeki aşağıdaki katsayılar sıfır olmalıdır.
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Bu kısıtlamadan sonra dissipatif gerilmeyi veren  bünye denklemi aşağıdaki şekle dönüşmüş olur:
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Bu denkleme dikkat edilirse, dissipatif gerilmeye kat​kıda bulunan terimlerin sırasıyla; genleme hızları tan​sörü, genleme hızları tansörü ile elektrik alan vek​tö​rünün birlikte etkileşimi, genleme hızları tansörü ve fiber alanının etkileşimi ve son olarak da elektrik ala​nının ikinci mertebeden terimleri ile genleme hızla​rı tan​sörünün birlikte  etkileşimlerinden oluştuğu gö​rül​mektedir. 
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 tansörlerinin simetrilerinden ve açılım terimlerdeki türevler sıraya bağlı olmadığı için bu kat​sayılar aşağıdaki simetri özelliklerini taşır.
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(102) ifadesiyle verilen elastik gerilme ile (108) ifadesiyle verilen dissipatif gerilme denklemleri (81) denkleminde yerlerine yazılırsa simetrik gerilme için bünye denklemi aşağıdaki gibi elde edilir.
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(110) ifadesiyle verilen simetrik gerilme ile  (103) ifadesiyle verilen polarizasyon alanı (84) denkleminde yerlerine yazılırsa asimetrik gerilme aşağıdaki gibi bulunmuş olur.  
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Bu denklem ele alınan malzeme için söz konusu kabüller altında elde edilen gerilmenin nonlineer ifa​desidir. Elektriksel etkileşimler de lineer kabul edi​lir​se bu ifadedeki elektriksel alanının ikinci dereceden  terimleri ortadan kalkar. Ancak buna rağmen bu şekil​de indirgenen ifadede beşinci ve altıncı mertebeden malzeme tansörleri gözükeceğinden, elde edilecek  bünye denklemleri ile problem çözmek zor olacaktır. Bu nedenle lineer bünye denklemleri  aşağıdaki gibi elde edilecektir.

8. YARI – LİNEER TEORİ
Şekil değiştirmeler, 
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), çok küçük kabul edildiği taktirde; (102) , (103) ve (108) denklemleri ile verilen polarizasyon alanı, elastik gerilme ve dissipatif gerilme kolaylıkla lineerleştiri​le​bilir. Lineer teoriyi elde etmek için, genleme tansörü ile şekil değiştirme hızları tansörünün;
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tarzındaki kısıtlamalara uyduğu bilinmektedir. Bu du​rumda elastik gerilme, polarizasyon alanı ve dissipatif gerilmenin bünye denklemleri aşağıdaki şekillere in​dirgenmiş olur.
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(113)-(115) denklemlerindeki  4’üncü   mertebeden malzeme tansörlerinin bileşen sayıları 81’dir. Bu mal​zeme tansörlerinin taşıdığı simetri özellikleri (99) ve (109) ifadelerinden,
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şeklinde yazılır. Bu ifadelerdeki simetri özellikleri, 
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 malzeme modülünün bileşen sayısını 21 e, 
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 malzeme modüllerinin bileşen sayılarını ise 36 ya  düşürür. Ayrıca, Relaksas​yon tansörü 
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 nin lineer tersinir termodinamik​teki onsager ilkesinin sonucu olarak; 
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şeklinde simetri özelliğinin olduğu kabul edilmiştir. 
[image: image299.wmf]PRSN
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 ve 
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 malzeme modüllerindeki son iki indis iki fiber vektör alanı ile iki elektrik vektör alanı​na aittir. İki vektörün dış çarpımı ikinci  dereceden bir tansöre denk olduğundan, bu malzeme modüllerindeki son indis çiftleri ikinci dereceden bir tansöre ait indis gibi düşünülebilir. (98) ifadesiyle tanımlanan  
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 malzeme modüllerinin bu tanımlardaki tü​revlerin sıraya bağlı olmamasından dolayı aşağıda ve​rilen simetri özelliklerini de taşıdıkları varsayılabilir.
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(117) ve (118) simetri şartlarından 
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  malzeme modüllerinin bileşen sayıları 21’e düşmüş olur.

8.1. Yarı – Lineer Bünye Denklemlerinin Uzaysal Koordinatlardaki İfadeleri

Lineer teoride 
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  büyük​lükle​rinin çok küçük olduğunu söylemiştik (matris normu anlamında). Bu durumda sürekli ortamların lineer teoride bilinen bağıntılarından faydalanarak ve  (113)-(115) denklemlerini (93)-(95) denklemlerinde yerle​rinde yazarak elastik gerilmenin, polarizasyonun ve dissipatif gerilmenin lineer bünye denklemleri uzaysal koordinatlarda, 
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şeklinde elde edilir.Bu denklemlerdeki 
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 mad​desel malzeme tansörleri ile aynı simetri özelliklerini taşır ve aşağıdaki gibi tanımlanır.
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 şeklindeki simetrileri nedeniyle (119)-(121) denklemleri yer değiştirme gradyanı ve yer değiştirme gradyanının türevi cinsinden aşağıdaki gibi elde edilmiştir.                                                                                                 
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(123)-(125) denklemlerindeki katsayılar, sabit 
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 sıcaklığına bağlıdır. Bu  denklemler elastik gerilme​nin, polarizasyon alanının ve dissipatif gerilmenin, ortamın sıkışmaz, fiber ailesinin uzamaz kabul edildiği tek fiber aileli, viskoelastik ve piezoelektrik anizotrop ortamda uzaysal koordinatlardaki lineer bünye denklemleridir. (123) ifadesindeki son terim elektriksel etkileşimlerin nonlineer olduğunu göster​mektedir. Elektriksel etkileşimler lineer kabul edilirse bu ifadedeki son terim ortadan kalkar. Ayrıca ortam fiber takviyesiz ise bu ifade sıkışmaz piezoelektrik ortamlarda gerilme ifadesini vermektedir. (124) ifade​sindeki üçüncü terim, deplasman gradyanı küçük ol​duğu için elektriksel etkileşimlerin lineer olması ha​linde ihmal edilebilir. Ayrıca (124) ifadesi ortam fiber takviyesiz ise ilk iki terimi içerecek hale indirgene​bilir. (125) ifadesi, dissipatif gerilmenin uzaysal koordinatlarda lineer bünye denklemini vermektedir. 

(113) ve (115) ifadeleriyle verilen elastik ve dissipatif gerilmelerin yarı-lineer bünye denklemleri (81) ifade​sinde yerlerine yazılırsa, simetrik gerilmenin yarı-lineer maddesel bünye denklemi, 
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(126)

şeklinde elde edilir. (126) ve (114) denklemleri (84) ifadesinde yerlerine yazılarak ele alınan anizotrop malzemede asimetrik olarak ortaya çıkan yarı-lineer maddesel gerilme tansörü söz konusu kabuller altında aşağıdaki gibi elde edilmiştir.
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(123) ve (125) denklemleri (83) ifadesinde yerlerine yazılırsa, simetrik gerilmenin yer değiştirme gradya​nı​na bağlı yarı-lineer uzaysal bünye denklemi aşağı​daki gibi elde edilmiş olur.
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(128) ve (124) denkemleri (45) ifadesinde yerlerine yazılırsa, asimetrik  gerilmenin yarı-lineer uzaysal bünye denklemi aşağıdaki gibi elde edilir.               
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Şu ana kadar yapılan işlemlerle uzaysal koordinat​larda simetrik gerilme, asimetrik gerilme ve polarizas​yon vektörü  (128), (129) ve (124) denklemleriyle deplasman vektörünün gradyanları, elektrik alanı ve fiber dağılımı cinsinden ifade edilmiş oldu. Elde edi​len bu uzaysal bünye denklemleri kısım 4 de verilen balans denklemlerinde yerlerine yazılarak alan denk​lemleri bulunacaktır. 

(124) denklemi (25)  denkeminde yerine yazılır ve (23) ifadesi kullanılırsa, toplam elektriksel yer değiş​tirme vektörü aşağıdaki gibi elde edilmiş olur.
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Burada aşağıdaki tanımlama yapılmıştır.
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(131)  

Ortamın homojen ve izotermal olduğu göz önünde bulun​​durularak, (130) ifadesinin diverjansı alınır ve (21) denkleminde yerine yazılırsa aşağıdaki ifade elde edilir.


[image: image366.wmf](

)

r

q

l

k

q

r

l

k

r

q

l

k

r

l

k

r

l

k

r

q

q

r

r

r

u

u

u

D

,

,

,

,

,

,

,

0

f

f

m

l

f

+

+

-

Î

-

=

=


              
[image: image367.wmf](

)

r

n

s

n

r

s

r

n

s

a

a

a

a

,

,

+

-

x


(132)

(132) denkeminde  
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 şeklinde alınmış​tır. (128) ve (124) denklemleriyle  verilen simetrik ge​rilmenin ve polarizasyon alanının bünye denklem​le​rinde (23) ifadesi yerine yazılır, ortamın homojen ve izotermal olduğu göz önünde bulundurularak diver​jansı alınır (54) denkleminde yerlerine yazılırsa söz konusu kabuller altında aşağıdaki alan denklemi elde edilir.     
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(133)      
(132) ve (133) ifadeleri ile 
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 bilinmeyenlerini ihtiva eden alan denklemleri bulun​muş olur. Bu alan denklemlerinin  probleme uygun olarak verilen ilk ve  sınır şartları altındaki çözümü, gözönüne alınacak sınır değer probleminin matema​tiksel yapısını oluşturur. Bu şekilde (132) ve (133) alan denklemlerinden oluşan sistem;  (22), (30) ve (24)  zıplama şartlarının muhteviyatı içinde bulunan sınır şartları ile birlikte anizotropik, lineer, visko​elastik ve keyfi fiber-takviyeli piezoelektrik ortamlar ile ilgili sınır-değer problemlerinin yönetici denklem​lerini oluşturur. Adı geçen sınır şartları açıkça yazıla​cak olursa,  
[image: image379.wmf]f

n

n

D

D

w

-

=

+

,   
[image: image380.wmf]k

k

l

l

t

t

n

=

,  
[image: image381.wmf]+

=

k

k

E

E

 şeklinde olduğu kolayca gösterilebilir.

9. SONUÇLAR
Bu çalışmada, bir yaklaşım olarak gerilme potansi​ye​linin ve dissipatif gerilme fonksiyonunun analitik olduğu varsayılarak bağlı oldukları argümanları cin​sinden Taylor serisine açılmıştır. Seri açılımında alı​nan terimlerin türü ve sayısı ortamın nonlineerlik mer​tebesini belirlemiştir. Ayrıca mekanik etkileşimler li​neer, elektriksel etkileşimler nonlineer kabul edilmiş ve matris malzemesi fiber boyunca yön değişimine duyarsız kaldığından fiber vektörünün dış çarpımında bileşenlerinin sadece çift sayıda olanları dikkate alın​mıştır. Bu durumda elastik gerilmenin, polarizasyon alanının ve dissipatif gerilmenin non-lineer bünye denklemleri sırasıyla (102), (103) ve (108) ifadele​riyle ortaya konmuştur. Bu denklemlerde malzemenin fiberli yapısından ve elektriksel etkileşimlerin non-lineer kabul edilmesinden dolayı yeni terimler ortaya çıkmıştır. Sözü edilen bu denklemleri kullanarak, si​metrik ve asimetrik gerilmeler (110) ve (111) ifadele​riyle maddesel formda elde edilmiştir. 

Yapılan bütün basitleştirici kabullere rağmen, elde edilen bünye denklemlerinin uygulamaya dönük prob​lemlerin çözümünde kullanılması çok zor olduğun​dan, lineer teori oluşturulmuştur. Lineer teoride şekil değiştirme, yer değiştirme gradyanları ve genleme hızlarının çok küçük olduğu kabul edilerek, elastik gerilmenin, polarizasyon alanının ve dissipatif geril​menin bünye denklemleri belli ölçülerde lineer​leş​ti​ril​miş ve yarı-lineer bünye denklemeleri maddesel koor​dinatlarda (113)-(115) ifadeleriyle, uzaysal koor​di​nat​larda (123)-(125) ifadeleriyle verilmiştir. (113)-(115) ve (123)-(125) denklemleri kullanılarak da simetrik ve asimetrik gerilmelerin yarı-lineer bünye denklem​leri maddesel formda (126) ve (127) denk​lemleriyle, uzaysal formda (128) ve (129) ifadeleriyle ortaya ko​nulmuştur. Alan denklemlerine ulaşmak için; (124) denklemiyle verilen polarizasyonun bünye denklemi, (21) ile verilen balans  denkleminde, (128) denkle​miyle verilen simetrik gerilmenin bünye denk​lemi Cauchy hareket denklemi olan (54) denkleminde yeri​ne yazılmış ve (132) ve (133) alan denklemleri bulun​muştur. Alan denklemlerinin uygulamada kulla​nılacak  problemin yapısına uygun başlangıç ve sınır şartları ile birlikte çözümü, göz önüne alınacak her​hangi bir sınır değer probleminin yapısını oluştu​ra​caktır. 

Diğer taraftan bu alan denklemleri simetri açısından genel manada anizotropik olduklarından, herhangi bir  simetriye sahip malzemelere de uygulanabilecek for​mattadırlar. (132) alan denklemi fiber varlığının ve elektrik alanı ile deformasyon gradyanının birlikte etkileşimlerinden kaynaklanan nonlineer etkilerin or​tadan kalkması özel durumunda Eringen ve Maugin (1990) tarafından verilen denklemin solunda kalan ilk iki terime indirgenmiş olur (Eringen ve Maugin (1990), s. 243) [17]. Aynı şekilde (133) denklemi ile aynı sayfadaki lineer momentum balansı da karşılaş​tı​rıldığında, (133) denkleminin sağındaki ilk üç terimden sonraki ifadelerin fiber-takviyesi, sıkışmaz-ve-uzamazlık ve de nonlineer elektro-statik etkileşim​lerle viskoelastik katkılardan oluştuğu görülmektedir. (132) ve (133) alan denklemlerinin bilinmeyenleri, 
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    tayin edildikten sonra geriye dönüş yaparak 
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  denkleminden elektrik alanı; 
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 da bulunduktan sonra (124) den polarizasyon; (128) den 
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,  yani toplam gerilme dağılımı tayin edilmiş olur. Gerilme dağılımı tansör alanı olarak bulunduktan sonra da istenilen kesitteki gerilme vektörünü 
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 ifadesinden rahatça hesaplama imkanı ortaya çıkmış olur. Burada deformasyondan sonraki 
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 fiber dağılımının, uzamaz-fiberler için deformasyondan önceki fiber-dağılımı cinsinden  
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 olarak verildiğini hatırlamak ge​rekir.

Ayrıca (133) nolu hareket denklemine bakarak ortama tesir eden iç elektromekanik kuvvetleri de görmemiz mümkündür. Sağdaki terimlerin türü birim hacim başına kuvvet boyutundadır. Sağdaki ilk terim elastik deformasyonların oluşturduğu kuvvetleri, ikinci terim elektrik alan gradyanının oluşturduğu kuvveti, üçüncü terim mekanik gövdesel kuvveti, dördüncüsü basınç gradyanını, beşinci terim yine (102) ve (103) denk​lemlerindeki moleküler mülahazalara dayanmak​tadır. Altıncı ve yedinci terimler fiber eğriliklerinden kay​naklanan kuvvet terimleri olup sekizinci ve onun​cu terimler ikinci mertebeden elektrostatik kuvvetleri, dokuzuncu terim viskoelastik kuvvetleri, onbirinci ve onikinci terimler sırasıyla deformasyon alanının lineer elektrik alanı ile ve nonlineer elektrik alanı ile etkile​şimlerinden doğan kuvvetleri göstermektedir. Diğer bir deyişle ortam içinde bir maddesel elemanın ser​best-cisim diyagramını çizersek, bu elemanın maruz kaldığı bütün bu kuvvet katkılarını görmüş oluruz. Daha önce değindiğimiz gibi ilk ve sınır şartlarımızı uygulayabileceğimiz alan denklemlerimiz, söz konusu ortamlar için (132) ve (133) denklemlerimizdir. Bu denklemler üzerinde daha kapsamlı yorumlar yapıla​bilir. Bu makaleden ve izotropik matrisli dielektrikleri içeren ikinci makalemizden sonra maddesel ortam içindeki parametrik denklemleri X = X(S) şeklinde olan muhtelif fiber dağılımları için A(X) vektör alanları oluşturularak pratik problemler çözülecek ve gerekli yorumlar daha sonra somut olarak verilecektir.
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Şekil 1. Hareket ve deformasyon





Şekil 3. � EMBED Equation.3  ��� Süreksizlik yüzeyi
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Şekil 2. Deformasyondan önce ve sonra fiber eğrisi [22].
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