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ABSTRACT

To any globally framed f -manifold carrying a structure of S-manifold we associate several
indefinite S-manifolds. We determine the links between the corresponding Levi-Civita
connections and sectional curvatures. We state some local semi-Riemannian decomposition
theorems.
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1. Introduction

Globally framed f -manifolds, also known as f -manifolds with parallelizable kernel (f.pk-manifolds),
represent a natural generalization of almost contact manifolds, [12, 11, 20]. Such manifolds have been
studied by several authors and from different points of view, [3, 7, 9, 15, 17]. They are manifolds M2n+s

equipped with an f -structure φ of rank 2n with kernel parallelizable by s vector fields ξ1, . . . ξs. Such
manifolds admit Riemannian metrics g which verify the so-called compatibility condition: g(φX,φY ) =
g(X,Y )−

∑s
i=1 η

i(X)ηi(Y ), where η1, . . . , ηs are 1-forms dual to ξ1, . . . ξs. When the so-called normality tensor
field N := [φ,φ] + 2

∑s
i=1 dη

i ⊗ ξi, [φ,φ] being the Nijenhuis torsion of φ, vanishes and the Sasaki 2-form
Φ = g(−, φ−) is closed, one obtains a class of manifolds that generalizes quasi-Sasakian manifolds. They are
called K-manifolds by D.E. Blair in [2]. Two special subclasses are also defined: S-manifolds, by requiring that
dη1 = · · · = dηs = Φ, and C-manifolds, by requiring that dη1 = · · · = dηs = 0.
In [4] we studied a generalization of such S-manifolds, called indefinite S-manifolds.
Furthermore, indefinite Sasakian manifolds have been widely studied by many authors and in [6] we studied
Lorentz Sasakian manifolds obtaining a classification result for compact Lorentz Sasakian space forms.
After a section collecting the fundamental data on globally framed f -manifolds, Section 3 is devoted to the
construction of indefinite S-manifolds associated to an S-manifold. In Section 4 we discuss the effects of
D-homothetic transformations. Then, in Section 5 we state some local decomposition theorems and we end
discussing, in Section 6, the so-called special S-manifolds.
Manifolds, tensor fields and maps are assumed to be smooth, and all manifolds are supposed to be connected.
Moreover, X(M) will denote the Lie algebra of vector fields on a manifold M . Finally, we adopt the notation in
[14] for the curvature tensor field and the exterior differentiation.

2. Preliminaries

A (2n+ s)-dimensional manifold M is called a globally framed f -manifold (briefly g.f.f -manifold) if it is
endowed with a (1, 1)-tensor field φ of constant rank 2n, such that kerφ is parallelizable i.e. there exist global
vector fields ξi, 1 ≤ i ≤ s, and 1-forms ηi, satisfying ηi(ξj) = δij and φ2 = −I +

∑s
i=1 η

i ⊗ ξi.
A g.f.f -manifold (M2n+s, φ, ξi, η

i), 1 ≤ i ≤ s, is said to be an indefinite g.f.f -manifold if g is a semi-Riemannian
metric on M2n+s satisfying the so-called compatibility condition g(φX,φY ) = g(X,Y )−

∑s
i=1 εiη

i(X)ηi(Y )
for any X,Y ∈ X(M2n+s). Here εi = ±1 according to the spacelike or timelike causal character of ξi. Then,
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for 1 ≤ i ≤ s, one has ηi(X) = εig(X, ξi), ([4]). A special class of indefinite g.f.f -manifolds consists on the
indefinite S-manifolds i.e. normal indefinite g.f.f -manifolds such that dηi = Φ, for any i ∈ {1, . . . , s}, where
Φ(X,Y ) = g(X,φY ) for any X,Y ∈ X(M2n+s). The normality condition is expressed by the vanishing of the
tensor field N = [φ,φ] + 2

∑s
i=1 dη

i ⊗ ξi, [φ,φ] being the Nijenhuis torsion of φ. Furthermore, as proved in [4],
the Levi-Civita connection of an indefinite S-manifold satisfies:

(∇Xφ)Y = g(φX,φY )ξ̄ + η̄(Y )φ2(X)

where ξ̄ =
∑s

i=1 ξi and η̄ =
∑s

i=1 εiη
i.

We remark that when each εi = 1, we are in the setting of S-manifolds.
We recall that the ξi’s are Killing vector fields, ∇Xξi = −εiφX and kerφ is an integrable flat distribution since

∇ξiξj = 0. In [4] we described two different indefinite S-structures with a metric of index ν = 2 on R6 and an
indefinite S-structure with Lorentz metric on R4. Clearly, for s = 1, we reobtain indefinite Sasakian manifolds
and when the index ν(g) = 0, then we obtain the notion of S-manifold. An (indefinite) S-manifold is never flat
since the mixed sectional curvatures are given by (X non lightlike) K(X, ξi) = εi.
In [4] we proved that the φ-sectional curvatures completely determine the sectional curvatures of an
indefinite S-manifold. Moreover, for the Riemannian curvature tensor field R, we gave the expression which
characterizes the pointwise constancy of the φ-sectional curvature.
Finally, we recall that an indefinite S-manifold is said to be special if ε =

∑s
i=1 εi = 0, i.e. s = 2p and, without

loss of generality, we suppose that ξ1, . . . , ξp are timelike vector fields, while ξp+1, . . . , ξ2p are spacelike vector
fields, [4].

3. From S-manifolds to indefinite S-manifolds

It is well known, [16], that one can define a Lorentz metric on a Sasakian manifold (M2n+1, φ, ξ, η, g) putting
g̃ = g − 2η ⊗ η.
Then it is easy to check that M2n+1 equipped with the structure (φ, ξ, η, g̃) becomes an indefinite Sasakian
manifold, more precisely a Lorentz Sasakian manifold. In [6] we proved the following result.

Theorem 3.1. Let (M2n+1, φ, ξ, η, g) be a Sasakian manifold, (M2n+1, φ, ξ, η, g̃) the associated Lorentz Sasakian
manifold. Then the Sasakian manifold has constant φ-sectional curvature c ∈ R if and only if the Lorentz Sasakian
manifold has constant φ-sectional curvature c̃ = c+ 6 and we have

c > −3 ⇔ c̃ > 3, c = −3 ⇔ c̃ = 3, c < −3 ⇔ c̃ < 3.

Then we classified compact Lorentz Sasakian manifolds of constant φ-sectional curvature, by using the
results stated by Tanno [18],[19] and the following result stated by Guediri and Lafontaine in [13].

Theorem 3.2. Let (M, g) be an n-dimensional compact semi-Riemannian manifold with signature (n− p, p) where
2p ≤ n. If there exist p Killing vector fields, linearly independent everywhere and timelike, then (M, g) is geodetically
complete.

Now we are looking to extend the above constructions to S-manifolds obtaining indefinite S-manifolds.

Let (M2n+s, φ, ξi, η
i, g) be an S-manifold. Fixed any integer p, 1 ≤ p ≤ s, we choose p vector fields among the

ξi’s and without loss of generality we can assume that they are ξ1, . . . , ξp. Then, we consider a new metric g̃
given by

g̃ = g − 2

p∑
j=1

ηj ⊗ ηj . (3.1)

For any characteristic vector field ξi, we have g̃(ξi, ξi) = 1− 2
∑p

j=1 δ
j
i δ

j
i , so that g̃(ξi, ξi) = −1 for any i ≤ p and

g̃(ξi, ξi) = 1 for any i ≥ p+ 1, i.e. any ξi with i ≤ p is timelike. Moreover, for any X,Y ∈ Imφ, g̃(X,Y ) = g(X,Y )
and g̃ has index p.

Proposition 3.1. Let (M2n+s, φ, ξi, η
i, g) be an S-manifold. Fix p ∈ {1, . . . , s} and the metric g̃ in (3.1). Then

(M2n+s, φ, ξi, η
i, g̃) is an indefinite S-manifold of index p.
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Proof. Denoting by η̃i the dual 1-form of ξi with respect to g̃, we get

η̃i(X) = εi

(
g(X, ξi)− 2

p∑
j=1

ηj(X)δji

)
.

Then, εi = 1 for i ≥ p+ 1 and εi = −1 for i ≤ p imply η̃i = ηi for any i. Obviously φ2(X) = −X +
∑s

j=1 η
j(X)ξj ,

for any X ∈ X(M2n+s). Now we prove the compatibility condition between the metric g̃ and the g.f.f -structure.
For any X,Y ∈ X(M2n+s), using (3.1), we have

g̃(φX,φY ) = g(φX,φY ) = g(X,Y )−
s∑

i=1

ηi(X)ηi(Y )

= g(X,Y )− 2

p∑
i=1

ηi(X)ηi(Y ) +

p∑
i=1

ηi(X)ηi(Y )−
s∑

i=p+1

ηi(X)ηi(Y )

= g̃(X,Y )−
p∑

i=1

εiη
i(X)ηi(Y )−

s∑
i=p+1

ηi(X)ηi(Y )

= g̃(X,Y )−
s∑

i=1

εiη
i(X)ηi(Y ).

The normality condition holds since it does not depend on the metric. Moreover, Φ̃ = Φ = dηi for any
i ∈ {1, . . . , s} and (M2n+s, φ, ξi, η

i, g̃) turns out to be an indefinite S-manifold of index p.

We call such a manifold the associate indefinite S-manifold of index p.
Clearly, when p = 1, we obtain a Lorentz S-manifold.
Now, we look for the link between the Levi-Civita connections determined by g and g̃ and between the
corresponding φ-sectional curvatures.

Proposition 3.2. Let (M2n+s, φ, ξi, η
i, g) be an S-manifold and (M2n+s, φ, ξi, η

i, g̃) the associate indefinite S-manifold
of index p, p ∈ {1, . . . , s}. Then the Levi-Civita connections ∇ and ∇̃ and the corresponding φ-sectional curvatures are
related by

∇̃XY = ∇XY + 2

p∑
j=1

{
ηj(Y )φX + ηj(X)φY

}
(3.2)

K̃(X,φX) = K(X,φX) + 6p. (3.3)

Proof. By (3.1), for any X,Y, Z ∈ X(M2n+s), we obtain

g̃(∇̃XY, Z) = g(∇̃XY,Z)− 2

p∑
j=1

(X(ηj(Y ))− dηj(X,Y ))ηj(Z), (3.4)

since

ηj(∇̃XY ) = εj g̃(∇̃XY, ξj) = εj

(
X(εjη

j(Y ))− g̃(Y, ∇̃Xξj)
)

= X(ηj(Y ))− εj g̃(Y,−εjφX) = X(ηj(Y ))− dηj(X,Y ).

On the other hand, by the Koszul’s formula, with a standard computation, we find

g̃(∇̃XY, Z) =g(∇XY, Z)−
p∑

j=1

{
ηj(Z)(−2dηj(X,Y ) + 2X(ηj(Y ))) (3.5)

−2ηj(Y )dηj(Z,X)− 2ηj(X)dηj(Z, Y )
}
.

Comparing (3.4) and (3.5), using also Φ = dηj , we get

g(∇̃XY, Z) = g(∇XY,Z) + 2

p∑
j=1

{
ηj(Y )g(Z,φX) + ηj(X)g(Z,φY )

}
,
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which implies (3.2).
Now, we have ∇̃XY = ∇XY , for any X,Y ∈ Imφ. We consider X ∈ Imφ such that ∥X∥g = ∥X∥g̃ = 1 and since
ηj(∇φXφX) = −g(φX,∇φXξj) = g(φX,φ2X) = 0 and ηj(∇XφX) = −g(φX,∇Xξj) = g(φX,φX) = 1, we get

∇̃X∇̃φXφX = ∇̃X∇φXφX = ∇X∇φXφX (3.6)

∇̃φX∇̃XφX = ∇̃φX∇XφX = ∇φX∇XφX − 2pX. (3.7)

Furthermore,

∇̃[X,φX]φX = ∇[X,φX]φX + 2

p∑
j=1

ηj([X,φX])φ2X (3.8)

= ∇[X,φX]φX + 4

p∑
j=1

dηj(X,φX)X = ∇[X,φX]φX − 4pX.

From (3.6), (3.7) and (3.8) we get
R̃XφXφX = RXφXφX + 6pX (3.9)

and (3.3) follows.

Remark 3.1. The inverse transformation of (3.1), g = g̃ + 2
∑p

j=1 η
j ⊗ ηj , allows to construct S-manifolds starting

from indefinite S-manifolds, whose index only depends on the casual character of p characteristic vector fields
among the ξi’s. Furthermore, if we start from an indefinite S-manifold of index 2q, q ≤ n, with all the ξi’s
spacelike, then, using the same transformation (3.1) of the metric, we get an associate indefinite S-manifold of
index 2q + p and (3.2) and (3.3) hold as well. Namely, the proof goes on as in Proposition 3.2 with the remark
that considering g̃(X,X) = g(X,X) = εX = ±1 for a non null vector, last terms in (3.7), (3.8) and (3.9) become
−2pεXX , −4pεXX and 6pεXX , respectively.

Again, looking at the relation between the φ-sectional curvatures, it is clear that the behaviors of an S-
manifold and its associated Lorentz S-manifold are strictly related as the following theorem shows.

Theorem 3.3. Let (M2n+s, φ, ξi, η
i, g) be an S-manifold, (M2n+s, φ, ξi, η

i, g̃) the associated Lorentz S-manifold. Then
the S-manifold has constant φ-sectional curvature c ∈ R if and only if the Lorentz S-manifold has constant φ-sectional
curvature c̃ = c+ 6 and we have c > −3s ⇔ c̃ > −3s+ 6.

Now, considering a compact S-manifold M2n+s and the associated indefinite S-manifold with signature
(2n+ s− p, p), with 2p ≤ 2n+ s, then (M2n+s, g̃) is geodetically complete, by Theorem 3.2. In particular this
holds for p ≤ s

2 .

4. D-homothetic transformations

In the context of contact metric manifolds (M2n+1, φ, ξ, η, g) a Da-homothetic deformation, a > 0, is a change
of the structure tensors (φ, ξ, η, g) as follows

φ′ := φ, ξ′ :=
1

a
ξ, η′ := aη, g′ := ag + a(a− 1)η ⊗ η.

This notion was introduced by Tanno, [18], in the contact metric case and the class of Sasakian structures is
preserved by such deformations.

One can easily extend such a notion to more general contexts.
On a metric (g.f.f)-manifold (M2n+s, φ, ξi, η

i, g), by a Da-homothetic deformation of constant a we mean the
following change of the structure tensors, [8]:

φ̃ = φ, ξ̃i =
1

a
ξi, η̃

i = aηi, g̃ = ag + a(a− 1)

s∑
j=1

ηj ⊗ ηj
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and again the class of S-manifolds is preserved by such deformations.
Moreover, [7], the Levi-Civita connections of g and g̃ on an S-manifold are linked by

∇̃XY = ∇XY + (1− a)(η̄(Y )φX + η̄(X)φY )

where η̄ =
∑s

i=1 η
i.

For the φ-sectional curvatures, from

R̃XφXφX = RXφXφX − 3s(a− 1)X

one obtains
K̃(X,φX) =

1

a
(K(X,φX)− 3s(a− 1)).

Then, if (M2n+s, φ, ξi, η
i, g) is an S-manifold with constant φ-sectional curvature c, we obtain that the

Da− homothetic S-manifold (M2n+s, φ, ξ̃i, η̃
i, g̃) has constant φ-sectional curvature c̃ given by

c̃ =
1

a
(c− 3s(a− 1)).

Note that the three subclasses defined by c > −3s, c = −3s and c < −3s are invariant by Da-homothetic
deformations, a > 0. Therefore, any S-manifold of φ-sectional curvature c > −3s, choosing a = c+3s

1+3s > 0 is
D-homothetic to an S-manifold of φ-sectional curvature 1. By the contrary, a Da-homothetic deformation with
a < 0 maps the subclass defined by c > −3s in that defined by c < −3s and vice versa.

Now, we consider indefinite S-manifolds.
Let (φ, ξi, η

i, g), 1 ≤ i ≤ s, be an indefinite g.f.f -structure and α ∈ R∗. We mean by a D-homothetic
transformation of constant α a change of the structure tensors as follows:

φ̃ = φ, ξ̃i =
1

α
ξi, η̃i = αηi, g̃ = αg + α(α− 1)

s∑
i=1

εiη
i ⊗ ηi.

Remark 4.1. One can directly verify that a structure (φ̃, ξ̃i, η̃
i, g̃) obtained by a D-homothetic transformation

from an indefinite g.f.f -structure (φ, ξi, η
i, g) maintains the same properties of (φ, ξi, η

i, g). Moreover, the
transformation preserves the signature of the metrics g and g̃ on kerφ, when α > 0 and the signature of the
metrics on Imφ is again preserved. By the contrary, if α < 0, the transformation changes the spacelike vector
fields into timelike ones and vice versa so that the signatures change.

The link between the Levi-Civita connections ∇ and ∇̃ of g and g̃ is given by:

∇̃XY = ∇XY + (1− α)(η̄(X)φY + η̄(Y )φX)

where η̄ =
∑s

i=1 εiη
i. Consider X ∈ Imφ such that g(X,X) = εX , by the above formula it follows that

R̃XφXφX = RXφXφX − 3εεX(α− 1)X , where ε =
∑s

i=1 εi and this yields

K̃(X,φX) =
1

α
(K(X,φX)− 3εεX(α− 1)).

5. Local semi-Riemannian decomposition of indefinite S-manifolds

Firstly we recall that an almost contact metric structure (φ, ξ, η, g) on a manifold M2n+1 is called an
α-Sasakian structure, α > 0, if it is normal and its Sasaki 2-form Φ verifies dη = αΦ. In [8] the authors have
proved that an S-manifold (M2n+s, φ, ξi, η

i, g) is locally a Riemannian product of a
√
s -Sasakian manifold and

an (s− 1)-dimensional flat manifold.
We are going to discuss a similar problem in Lorentz context, remarking that the distributions considered by
the authors in [8] have to be adapted to the Lorentz case because they are neither orthogonal nor parallel with
respect to the Levi-Civita connection when the metric is Lorentz. Following [1] we recall some fundamental
notion about distributions and foliations in semi-Riemannian manifolds. A distribution D on M is said to be
parallel with respect to a linear connection ∇ if D is invariant under parallel transport τ , i.e. τσ(Dx) = Dy for
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all x, y ∈ M and all piecewise smooth paths σ from x to y. In [1, pg 155] it is stated that a distribution D on a
manifold M is parallel with respect to a linear connection ∇ on M if and only if ∇ is a connection adapted to D,
that is ∇XY ∈ Γ(D) for any X ∈ Γ(TM) and Y ∈ Γ(D). Moreover, a foliation on a semi-Riemannian manifold
is said to be non-degenerate (resp.: parallel) if its tangent distribution is non-degenerate (resp.: parallel). It is
well known that a semi-Riemannian manifold admitting a parallel non-degenerate foliation admits a local
semi-Riemannian product decomposition, [1, Theorem 4.2, pg 165],[21], and now we apply this result to a
Lorentz S-manifold.

Let (M2n+s, φ, ξi, η
i, g) be a Lorentz S-manifold. By the metric compatibility condition it is clear that the

metric index can only depend on the causal character of the characteristic vector fields, thus one of them has
to be timelike and, to fix the ideas, let us assume that ξ1 is timelike.

Theorem 5.1. Let (M2n+s, φ, ξi, η
i, g) be a Lorentz S-manifold with ξ1 timelike. Then (M2n+s, g) is locally a semi-

Riemannian product of a
√
s− 2 -Sasakian manifold and of an (s− 1)-dimensional flat manifold.

Proof. Let us consider ξ̄ =
∑s

i=1 ξi and η̄ =
∑s

j=1 εjη
j , putting ξ̃i = ε1ξ1 − ξi, i ∈ {2, . . . , s}, we get a basis

of span{ξ̄}⊥kerφ . Note that any ξ̃i is lightlike. Hence TM2n+s = (Imφ⊕ span{ξ̄})⊕ span{ξ̃2, . . . , ξ̃s} and by
the properties of indefinite S-manifolds it is easy to show that the distributions D1 = (Imφ⊕ span{ξ̄}) and
D2 = span{ξ̃2, . . . , ξ̃s} are integrable, parallel with respect to the Levi-Civita connection and they are not
degenerate. In fact the distribution D1 is not degenerate because Imφ and span{ξ̄} are orthogonal and
g(ξ̄, ξ̄) = s− 2 ̸= 0, then D2 = D⊥

1 is not degenerate. Therefore, [1], (M2n+s, g) is locally a semi-Riemannian
product of integral submanifolds M1 and M2 of D1 and D2, respectively. Let ξ̃ = 1√

s−2
ξ̄ and η̃ = 1√

s−2
η̄. It

is easy to verify that (M1, φ, ξ̃, η̃, g) is a normal contact metric manifold. Finally, a computation shows that
dη̃ = 1√

s−2
dη̄ = 1√

s−2

∑s
i=1 εidη

i =
√
s− 2Φ. So (M1, φ, ξ̃, η̃, g) is a

√
s− 2 -Sasakian manifold. Obviously M2 is

an (s− 1)-dimensional flat manifold.

Let (M2n+s, φ, ξi, η
i, g) be an indefinite S-manifold and p and q two integers. We suppose that the metric

index ν(g) = 2q + p depends even on the characteristic vector fields and, to fix the ideas, let us assume that
ξ1, . . . , ξp are timelike.

Theorem 5.2. Let (M2n+s, φ, ξi, η
i, g), be an indefinite S-manifold with g of index 2q + p, p ̸= s

2 and ξ1, . . . , ξp timelike
vector fields. Then (M2n+s, g) is locally a semi-Riemannian product of an indefinite

√
|s− 2p|-Sasakian manifold and an

(s− 1)-dimensional flat manifold.

Proof. Let ξ̄ =
∑s

i=1 ξi, η̄ =
∑s

j=1 εjη
j . Then putting ξ̃i = ε1ξ1 − εiξi, i ∈ {2, . . . , s}, we get a basis of span{ξ̄}⊥kerφ

and TM2n+s = (Imφ⊕ span{ξ̄})⊕ span{ξ̃2, . . . , ξ̃s}. The integrable two distributions D1 = Imφ⊕ span{ξ̄} and
D2 = span{ξ̃2, . . . , ξ̃s} are parallel with respect to the Levi-Civita connection. Moreover, the distribution D1

is not degenerate when p ̸= s
2 because g(ξ̄, ξ̄) = s− 2p, and D2 is orthogonal to D1. Therefore, using the

result of [1], (M2n+s, g) is locally a semi-Riemannian product of integral submanifolds M1 and M2 of D1

and D2 respectively. Let ξ̃ = 1√
|s−2p|

ξ̄ and η̃ =
εp√
|s−2p|

η̄, where εp = 1 if 2p < s and εp = −1 otherwise. It

is easy to verify that (M1, φ, ξ̃, η̃, g) is a normal contact metric manifold. Finally, with a straightforward
computation we obtain that dη̃ =

εp√
|s−2p|

dη̄ =
εp√
|s−2p|

∑s
i εidη

i =
√

|s− 2p|Φ. Therefore, (M1, φ, ξ̃, η̃, g) is an

indefinite
√

|s− 2p|-Sasakian manifold. On the other hand M2 is obviously an (s− 1)-dimensional flat
manifold.

We remark that the above theorems do not work in the case s = 2, or more generally, s even and p = s
2 . We

shall discuss them in next section.

6. The case of special indefinite S-manifolds

We recall that an indefinite S-manifold is said to be special if ε = 0, i.e. s = 2p and, without loss of generality,
we suppose that ξ1, . . . , ξp are timelike vector fields, while ξp+1, . . . , ξ2p are spacelike vector fields, [4].
A known example of special S-manifold is given in [5] for the group U(2). The 4-dimensional manifold U(2)
has a structure (φ, ξ1, ξ2, η

1, η2, g) of S-manifold described in [9] and the φ-sectional curvatures are

K(X,φX) = −2, K(X, ξ1) = K(Y, ξ1) = 1, K(X, ξ2) = K(Y, ξ2) = 1.
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We can define a left-invariant Lorentz metric g̃, with ξ1 timelike, obtaining a Lorentzian S-structure of constant
φ-sectional curvature K̃(X,φX) = −2 + 6 = 4. Finally, K̃(X, ξ1) = K̃(Y, ξ1) = −1 and K̃(X, ξ2) = K̃(Y, ξ2) = 1.
Note that ξ1 + ξ2 is a lightlike vector field and, as proved in [5], the Lorentz S-manifold (U(2), φ, ξ1, ξ2, η

1, η2, g̃)
is foliated by Reinhart lightlike manifolds.

Now we recall that a submanifold M of a semi-Riemannian manifold (M̄, ḡ) is said to be lightlike if the
induced metric g on M is degenerate [10]. Moreover, let (M, g) be a lightlike manifold of dimension m. Suppose
that Rad(TM) is an integrable distribution of rank r > 0. Then M is called a Reinhart lightlike manifold if
locally there exists a system of coordinates of M , (U, x1, . . . , xm), such that ∂gij

∂xα = 0 for i, j ∈ {r + 1, . . . ,m} and
α ∈ {1, . . . , r}, where xα are the coordinates of a leaf L of Rad(TM) [10].

More in general, we state the following result.

Theorem 6.1. Any Lorentz S-manifold (M2n+2, φ, ξi, η
i, g), 1 ≤ i ≤ 2, is foliated by Reinhart lightlike manifolds.

Proof. We assume ξ1 timelike. We put ξ̄ = ξ1 + ξ2 and η̄ = −η1 + η2. Putting ξ̄2 = −ξ1 + ξ2, we get g(ξ̄, ξ̄2) = 2.
Note that ξ̄ and ξ̄2 are lightlike. Hence TM2n+2 decomposes as TM2n+2 = (Imφ⊕ span{ξ̄})⊕ span{ξ̄2} and
by the properties of indefinite S-manifolds, in particular using (3.2), with p = 1, it is easy to show that
the distributions D1 = (Imφ⊕ span{ξ̄}) and D2 = span{ξ̄2} are integrable, and degenerate. Therefore, M2n+2

is locally a product of integral submanifolds M1 and M2 of D1 and D2, respectively. It is foliated by the
integral submanifolds of D1, which are lightlike hypersurfaces. Then, for such an M1 one considers the radical
distribution Rad(TM1), such that for any p ∈ M1

Rad TpM1 = {V ∈ TpM1 | gp(V,W ) = 0 for all W ∈ TpM1} = TpM
⊥
1 ∩ TpM1.

Any decomposition TpM1 = RadTpM1⊥S(TpM1) gives rise to a non-degenerate distribution S(TM1) on M1,
called a screen distribution. We recall the following theorem [10, p.79].

Theorem 6.2. Let (M, g, S(TM)) be a lightlike hypersurface of a semi-Riemannian manifold (M̄, ḡ). Then there
exists a unique rank one vector subbundle ltr(M) of TM̄ , with base space M , such that for any non-zero section
E of TM⊥ on a coordinate neighborhood U ⊂ M , there exists a unique section N of ltr(M) on U satisfying:
ḡ(N,E) = 1, ḡ(N,N) = 0, ḡ(N,W ) = 0 for anyW ∈ Γ(S(TM)|U ). The vector bundle ltr(M) is called the lightlike
transversal vector bundle of M with respect to S(TM).

Now, we have Rad(TM1) = span{ξ1 + ξ2} and S(TM1) = Imφ. We construct a global section N of ltr(M1).
Being S(TM1)

⊥ = span{ξ1, ξ2}, we choose E = ξ1 + ξ2 so that the vector field N = 1
2 (ξ2 − ξ1) verifies the

conditions in Theorem 6.2. Moreover, it is easy to verify that Rad(TM1) is a Killing distribution so that, via
Theorem 5.1, p.49 in [10], M1 is a Reinhart lightlike manifold.

We discuss the same situation when s = 2p.

Theorem 6.3. Any special indefinite S-manifold (M2n+s, φ, ξi, η
i, g), i ∈ {1, s}, s = 2p is foliated by Reinhart lightlike

manifolds.

Proof. Without loss of generality, we assume ξ1, . . . , ξp timelike. We put ξ̄ =
∑s

i=1 ξi, η̄ =
∑s

j=1 εjη
j . Then

putting ξ̃i = ε1ξ1 − εiξi, for all i ∈ {2, . . . , s}, we get a basis of span{ξ̄}⊥kerφ and TM2n+2p decomposes as
TM2n+2p = (Imφ⊕ span{ξ̄})⊕ span{ξ̃2, . . . , ξ̃s}.
Note that ξ̄ is lightlike and by the properties of indefinite S-manifolds, in particular using (3.2), it is easy to
show that the distributions D1 = (Imφ⊕ span{ξ̄}) and D2 = span{ξ̃2, . . . , ξ̃s} are integrable, and degenerate.
Therefore, M2n+2p is locally a product of integral submanifolds M1, of dimension 2n+ 1, and M2 of dimension
2p− 1, of D1 and D2, respectively. Moreover M2n+2p is foliated by the integral submanifolds of D1, which are
lightlike. Then, for an integral submanifolds M1 one considers the radical distribution Rad(TM1), such that for
any p ∈ M1

Rad TpM1 = {V ∈ TpM1 | gp(V,W ) = 0 for all W ∈ TpM1} = TpM
⊥
1 ∩ TpM1.

Any decomposition TpM1 = RadTpM1⊥S(TpM1) gives rise to a non-degenerate distribution S(TM1) on M1,
called a screen distribution.
Now, we have Rad(TM1) = span{ξ̄} and S(TM1) = Imφ. We construct a global section N of ltr(M1).
Being S(TM1)

⊥ = span{ξ1, . . . , ξs}, we choose E = ξ1 + ξ2 so that the vector field N = 1
2 (ξ2 − ξ1) verifies the

conditions in Theorem 6.2. Moreover, via Theorem 5.1, p.49 in [10], since Rad(TM1) is a Killing distribution,
we get that M1 is a Reinhart lightlike manifold.
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