
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY
VOLUME 9 NO. 1 PAGE 23–29 (2016)

Centro-Equiaffine Differential Invariants of
Curve Families
Yasemin SAǦIROǦLU
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ABSTRACT

The generator set of all centro-equiaffine differential invariant rational functions field for arbitrary
curves is obtained. By using these generators, the conditions of equivalence for two curve families
are found. Then the relations between elements of generator set are investigated.
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1. Introduction

Invariant theory has been studied for along time on the theory of curves and surfaces. There are many papers
on the invariant theory of curves in differential geometry. Also, there are many books on affine differential
geometry [12], [18], [20]. In most of the studies, special invariants were considered such as arc length, curvature
and torsion. The problem of equivalence has also been investigated.

The concept of affine geometry was introduced by Felix Klein in Erlangen Programme in 1872. According to
this programme, affine geometry deals with the properties of curves and surfaces which are invariant under
affine maps. Since that time, affine invariants of curves have been investigated. This paper is concerned with
the basic theory of centro-equiaffine geometry of curves and related questions of centro-equiaffine invariants.
We give the complete system of centro-equiaffine invariants for arbitrary r curves.

In [8] the problem of equivalence investigated for equiaffine curves and [14] it is solved for centro-affine
curves. The first comprehensive treatment of affine geometry is given in the seminal work of Paukowitsch
[13]. For further developments of subject, we refer the reader to [7], and more modern texts [1], [15], the
commentaries [5], [10], [19] and survey papers [11], [3]. The fundamental theorem of curves in centro-affine
geometry is obtained in [2]. A discussion of centro-affine plane and space curves can be found in [17]. A
detailed discussion of curves in centro-affine geometry can be obtained in [2]. In [6] equiaffine invariants of
3-dimensional curves and in [4], [13] equiaffine curvatures of n-dimensional curves are investigated. Complete
systems of global equiaffine invariants for space paths are obtained in [8]. The global SL(n)-equivalence of
path in Rn is considered in [7] and [16].

The problem of equivalence has been already solved for a single curve and for two curves by Sağıroğlu for
the group SL(n,R) [16]. It is solved the equivalence problem for arbitrary r curves in this paper. Firstly, the
generator system of SL(n,R)-differential invariants for arbitrary r parametric curves is obtained. Then it is
given the conditions of equivalence of curve families in terms of generator invariants. It is observed that the
generator invariants obtained are functionally independent, namely the generator invariant set is minimal.

Let R be the field of real numbers and Rn be n-dimensional Euclidean space. The set SL(n,R) = {A =
[aij ]|i, j = 1, 2, ..., n and aij ∈ R, which detA = 1} is a group in according to multiplication of matrix. The
action of group SL(n,R) on Rn is given by
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g.x =

g11 ... g1n
... ... ...
gn1 ... gnn

 .

x1

...
xn

 =

g11x1 + ...+ g1nxn

...
gn1x1 + ...+ gnnxn


for g ∈ SL(n,R) and x ∈ R.

Definition 1.1. A C∞-function x : I → Rn will be called a parametric curve or briefly a curve in Rn.

Definition 1.2. Let {x1, x2, ..., xr} and {y1, y2, ..., yr} be two pairs of curve families. If yi = gxi, i = 1, 2, ..., r
for some g ∈ SL(n,R), then these curve families will be called SL(n,R)-equivalent and denoted by
{x1, x2, ..., xr}G≈{y1, y2, ..., yr} for the group G = SL(n,R).

Definition 1.3. Let {x1, x2, ..., xr} be a curve family in Rn. The polynomial

P (x1, x2, ..., xr) = P (x1, x2, ..., xr, x
′
1, x

′
2, ..., x

′
r, ..., x

(m)
1 , x

(m)
2 , ..., x

(m)
r )

for some natural number m will be called the differential polynomial of x1, x2, ..., xr.

The derivation of P (x1, x2, ..., xr) will be denoted by P ′ and this derivation is obtained as follows:

x
(0)
τ = xτ , (x(m−1)

τ )′ = x
(m)
τ , τ = 1, 2, ..., r.

Definition 1.4. Let P1 and P2 be two differential polynomials. Then the function

f < x1, x2, ..., xr >= P1(x1,x2,...,xr)
P2(x1,x2,...,xr)

, P2(x1, x2, ..., xr) ̸= 0

will be called a differential rational function. If

f < gx1, gx2, ..., gxr >= f < x1, x2, ..., xr >

for some g ∈ SL(n,R), the differential rational function f is called centro-equiaffine invariant differential
rational function. Centro-equiaffine differential polynomial is defined by the same way.

There no exists centro-equiaffine differential polynomial except constant. But there exists the centro-
equiaffine differential rational function different from constant.

Remark 1.1. Let {x1, x2, ..., xr}G≈{y1, y2, ..., yr}. So for some g ∈ SL(n,R) we get yi = gxi, i = 1, 2, ..., r. Then for
all differential invariant rational function f , since

f < y1, y2, ..., yr >= f < gx1, gx2, ..., gxr >= f < x1, x2, ..., xr >

we obtain f < y1, y2, ..., yr >= f < x1, x2, ..., xr >. But the reverse is not true.

The set of all differential rational functions will be denoted by R < x1, x2, ..., xr >. It is a differential field
and R-algebra. Let G be the group SL(n,R). The set of all centro-equiaffine invariant differential rational
functions will be denoted by R < x1, x2, ..., xr >G. R < x1, x2, ..., xr >G is a differential subfield and subalgebra
of R < x1, x2, ..., xr >.

Definition 1.5. Let f1, f2, ..., fk ∈ R < x1, x2, ..., xr >G. If the differential field and algebra generated by
these functions is equal to R < x1, x2, ..., xr >G then these functions will be called the generator set of
R < x1, x2, ..., xr >G.

2. Centro-Equiaffine Invariants of Arbitrary Curves

Let x1, x2, ..., xn ∈ Rn. The determinant

∣∣∣∣∣∣
x11 ... xn1

... ... ...
x1n ... xnn

∣∣∣∣∣∣ will be denoted by [x1...xn]. In here, k.column of this

determinant is consist of the components of xk, which are xk1, xk2, ..., xkn.

Lemma 2.1. Let x0, x1, ..., xn, y2, ..., yn be vectors in Rn. Then the following equality holds:

[x1x2...xn][x0y2...yn]− [x0x2...xn][x1y2...yn]− ...− [x1x2...x0][xny2...yn] = 0 (2.1)
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Proof. [7].

Definition 2.1. A curve x in Rn will be called SL(n,R)-regular (briefly regular) if [xx′...x(n−1)] ̸= 0. Hence for
all t ∈ I , [x(t)x′(t)...x(n−1)(t)] ̸= 0.

Let G be the group SL(n,R).

Theorem 2.1. Let x1, x2, ..., xr be a curve family in Rn such that x1 is regular. Then the generator set of
R < x1, x2, ..., xr >G is

[x1x1
′...x1

(n−1)], [x1x1
′...x1

(i−1)x1
(n)x1

(i+1)...x1
(n−1)], i = 0, 1, ..., n− 1

[x1x1
′...x1

(i−1)xKx1
(i+1)...x1

(n−1)], i = 0, 1, ..., n− 1,K = 2, 3, ..., r.
(2.2)

Proof. For the group G = SL(n,R), the generator set of R < x1, x2, ..., xr >G is

[x1...xn], [x1...xi−1xτxi+1...xn], i = 1, 2, ..., n, τ ∈ ∆/{1, ..., n}

where ∆ is an index set [20]. Let us take x1, x2, ..., xr, x
′
1, x

′
2, ..., x

′
r, x

(K)
1 , x

(K)
2 , ..., x

(K)
r , ... instead of the vectors

xτ . Then the generator set of R < x1, x2, ..., xr, x
′
1, x

′
2, ..., x

′
r, x

(K)
1 , x

(K)
2 , ..., x

(K)
r , ... >G= R < U >G is

[x1x1
′...x1

(n−1)], [x1x1
′...x1

(i−1)x1
(s)x1

(i+1)...x1
(n−1)], s ≥ n

[x1x1
′...x1

(i−1)xK
(τ)x1

(i+1)...x1
(n−1)], τ ≥ 0,K = 2, 3, ..., r.

We know that [x1x1
′...x1

(n−1)]′ = [x1...x1
(n−2)x1

(n)].
Firstly, we want to show that [x1x1

′...x1
(i−1)x1

(s)x1
(i+1)...x1

(n−1)], s ≥ n is generated by
[x1x1

′...x1
(i−1)x1

(n)x1
(i+1)...x1

(n−1)], i = 0, 1, ..., n− 2. Let s = n. Then R < U >G is generated by (2.2).
Let s > n. By induction hypothesis, for s− 1 let the set (2.2) be the generator set. Therefore

[x1x1
′...x1

(i−1)x1
(s−1)x1

(i+1)...x1
(n−1)] is generated by (2.2). We get

[x1...x1
(i−1)x1

(s)x1
(i+1)...x1

(n−1)] = [x1...x1
(i−1)x1

(s−1)x1
(i+1)...x1

(n−1)]′−

[x1...x1
(i−2)x1

(i)x1
(s−1)x1

(i+1)...x1
(n−1)]− [x1...x1

(i−1)x1
(s−1)x1

(i+1)...x1
(n−2)x1

(n)].

In this equality, except of the last determinant, the others is generated by the set (2.2) and in according
to induction hypothesis. In Lemma 2.1, if we take x1 = x1, x2 = x′

1, ..., xn = x1
(n−1), x0 = x1

(n), y2 = x1, ...,
yi+1 = x1

(i−1), yi+2 = x1
(s−1), yi+3 = x1

(i+1), ..., yn = x1
(n−2) and eliminate the zero terms it is obtained that

[x1x1
′...x1

(n−1)].[x1
(n)x1x1

′...x1
(i−1)x1

(s−1)x1
(i+1)...x1

(n−2)]+

[x1...x1
(i−1)x1

(n)x1
(i+1)...x1

(n−1)].[x1
(i)x1...x1

(i−1)x1
(s−1)x1

(i+1)...x1
(n−2)]+

[x1...x1
(n−2)x1

(n)].[x1
(n−1)x1...x1

(n−2)] = 0.

So the term [x1
(n)x1x1

′...x1
(i−1)x1

(s−1)x1
(i+1)...x1

(n−2)] generated by the set (2.2).
Similarly, [x1...x1

(i−1)xK
(τ)x1

(i+1)...x1
(n−1)], τ ≥ 0,K = 2, 3, ..., r is obtained by induction on τ . For τ = 0,

[x1...x1
(i−1)xKx1

(i+1)...x1
(n−1)] is the generator. For τ = n− 1, let [x1...x1

(i−1)xK
(n−1)x1

(i+1)...x1
(n−1)] generated

by the set (2.2) in according to induction hypothesis. Let us show that this is true for τ = n.

[x1...x1
(i−1)xK

(n−1)x1
(i+1)...x1

(n−1)]′ =
[x1...x1

(i−2)x1
(i)xK

(n−1)x1
(i+1)...x1

(n−1)]+
[x1...x1

(i−1)xK
(n)x1

(i+1)...x1
(n−1)]+

[x1...x1
(i−1)xK

(n−1)x1
(i+1)...x1

(n−2)x1
(n)].

(2.3)

In (2.3), we want to show that the determinant [x1...x1
(i−1)xK

(n)x1
(i+1)...x1

(n−1)] is generated by the set 2.2.
Except the determinant

[x1...x1
(i−1)xK

(n−1)x1
(i+1)...x1

(n−2)x1
(n)]

other determinants in (2.3) are generated by the set (2.2) and the induction hypothesis. For the last determinant,
we use Lemma 2.1. If we take x1 = x1, x2 = x′

1, ..., xn = x1
(n−1), x0 = x1

(n), y2 = x1, ..., yi+1 = x1
(i−1), yi+2 =

xK
(n−1), yi+3 = x1

(i+1), ..., yn = x1
(n−2) and eliminate the zero terms, it is obtained that
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[x1x1
′...x1

(n−1)].[x1
(n)x1x1

′...x1
(i−1)xK

(n−1)x1
(i+1)...x1

(n−2)]+

[x1...x1
(i−1)x1

(n)x1
(i+1)...x1

(n−1)].[x1
(i)x1...x1

(i−1)xK
(n−1)x1

(i+1)...x1
(n−2)]+

[x1...x1
(n−2)x1

(n)].[x1
(n−1)x1...x1

(i−1)xK
(n−1)x1

(i+1)...x1
(n−2)] = 0.

So the term [x1...x1
(i−1)xK

(n−1)x1
(i+1)...x1

(n−2)x1
(n)] generated by the set (2.2). By the induction hypothesis,

the set (2.2) is generator set of R < U >G.

Theorem 2.2. Let G = SL(n,R) and {x1, x2, ..., xr} and {y1, y2, ..., yr} be two curve families such that x1 and y1 are
regular. If for i = 0, 1, ..., n− 1 and K = 2, 3, ..., r

[x1x1
′...x1

(n−1)] = [y1y1
′...y1

(n−1)]

[x1x1
′...x1

(i−1)x1
(n)x1

(i+1)...x1
(n−1)] = [y1y1

′...y1
(i−1)y1

(n)y1
(i+1)...y1

(n−1)]

[x1x1
′...x1

(i−1)xKx1
(i+1)...x1

(n−1)] = [y1y1
′...y1

(i−1)yKy1
(i+1)...y1

(n−1)]

then {x1, x2, ..., xr}G≈{y1, y2, ..., yr}.

Proof. Since x1 and y1 are regular, we get [x1x1
′...x1

(n−1)] ̸= 0 and
[y1y1

′...y1
(n−1)] ̸= 0. Let us take the matrices

Ax1 =

x11(t) ... x11
(n−1)(t)

... ... ...
x1n(t) ... x1n

(n−1)(t)

 and A′
x1

=

x11
′(t) ... x11

(n)(t)
... ... ...

x1n
′(t) ... x1n

(n)(t)

.

Since [x1x1
′...x1

(n−1)] ̸= 0, there exists matrix inverse of Ax1 . Take the matrix A−1
x1

.A′
x1

= C. Then A′
x1

= Ax1 .C.
So the matrix C has the form

C =

 0 ... 0 c1n
1 ... 0 c2n
... ... ... ...
0 ... 1 cnn


where

c1n = [x(n)x1
′...x1

(n−1)]
[x1x1

′...x1
(n−1)]

, c2n = [x1x1
(n)...x1

(n−1)]
[x1x1

′...x1
(n−1)]

, ..., cnn = [x1x1
′...x1

(n−2)x1
(n)]

[x1x1
′...x1

(n−1)]
.

From conditions of the theorem, it is obtained that A−1
x1

.A′
x1

= A−1
y1

.A′
y1

. So we have that

(Ay1 .A
−1
x1

)′ = A′
y1
.A−1

x1
+Ay1 .(A

−1
x1

)′ = A′
y1
.A−1

x1
+Ay1 .(−A−1

x1
.A′

x1
.A−1

x1
)

= Ay1 .(A
−1
y1

.A′
y1

−A−1
x1

.A′
x1
).A−1

x1
= 0

Therefore Ay1 .A
−1
x1

= g, g is constant. And we get Ay1 = gAx1 . So detAy1 = det(gAx1) and since
[x1x1

′...x1
(n−1)] = [y1y1

′...y1
(n−1)], then it is obtain that g ∈ SL(n,R). If we write this equality obviously, we

have that y1(t) = gx1(t), ∀t ∈ I .
Let us take the matrix

DxK
=


x11(t) ... x11

(n−2)(t) xK1(t)
x12(t) ... x12

(n−2)(t) xK2(t)
... ... ... ...

x1n(t) ... x1n
(n−2)(t) xKn(t)


Let take A−1

x1
.DxK = H = [hij ], i, j = 1, 2, ..., n. Let us find the elements of this matrix. We have that DxK =

Ax1 .H . Then similarly we get that

H =

 1 ... 0 h1n

0 ... 0 h2n

... ... ... ...
0 ... 0 hnn


where

h1n = [xKx1
′...x1

(n−1)]
[x1x1

′...x1
(n−1)]

, h2n = [x1xK ...x1
(n−1)]

[x1x1
′...x1

(n−1)]
, ..., hnn = [x2x1

′...x1
(n−2)xK ]

[x1x1
′...x1

(n−1)]
.
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Similarly, we can find the matrix A−1
y1

.DyK
. From conditions of the theorem, we have that A−1

x1
.DxK

=
A−1

y1
.DyK . We know that Ay1 = gAx1 . Therefore we get

A−1
x1

.DxK = (gAx1)
−1.DyK = A−1

x1
.g−1.DyK

and then

DxK
= g−1.DyK

=⇒ DyK
= g.DxK

.

Then we get yK(t) = gxK(t), ∀t ∈ I,K = 2, 3, ..., r. So for the same g ∈ SL(n,R), it is obtained
that y1(t) = gx1(t) and yK(t) = gxK(t). Therefore we get yK(t) = gxK(t), ∀t ∈ I,K = 1, 2, ..., r. Hence
{x1, x2, ..., xr}G≈{y1, y2, ..., yr}.

Theorem 2.3. Let G = SL(n,R) and f1(t), f2(t), ..., fn(t), fn(t) ̸= 0 and fKi(t) (i = 1, 2, ..., n− 1,K = 2, 3, ..., r) be
C∞-functions on I . Then there exist curves x1, x2, ..., xr where x1 is regular such that

[x1...x1
(i−1)x1

(n)x1
(i+1)...x1

(n−1)] = fi(t), i = 0, 1, ..., n− 1
[x1x1

′...x1
(n−1)] = fn(t)

[x1...x1
(i−1)xKx1

(i+1)...x1
(n−1)] = fKi(t), i = 0, 1, ..., n− 1,K = 2, 3, ..., r.

Proof. Including an x1 unknown,

[x1...x1
(i−1)x1

(n)x1
(i+1)...x1

(n−1)]

[x1x1
′...x1

(n−1)]
=

fi(t)

fn(t)
= gi(t), i = 0, 1, ..., n− 1

[x1...x1
(i−1)xKx1

(i+1)...x1
(n−1)]

[x1x1
′...x1

(n−1)]
=

fKi(t)

fn(t)
= gKi(t), i = 0, ..., n− 1,K = 2, ..., r.

We take the matrix multiplication A−1
x1

.A′
x1

= B such that A′
x1

= Ax1 .B. In here, matrix B has the form

B =

 0 ... 0 g1(t)
1 ... 0 g2(t)
... ... ... ...
0 ... 1 gn(t)

.

Then we have the following differential equation system from this multiplication:

x11g1(t) + x11
′g2(t) + ...+ x11

(n−1)gn(t) = x11
(n)

x12g1(t) + x12
′g2(t) + ...+ x12

(n−1)gn(t) = x12
(n)

...
x1ng1(t) + x1n

′g2(t) + ...+ x1n
(n−1)gn(t) = x1n

(n)

Let we take x1i = y, i = 1, 2, ..., n. So we can write the above differential equation system as g1(t)y + g2(t)y
′ +

...+ gn(t)y
(n−1) − y(n) = 0.

It is known that the theory of differential equations, there exist one solution of this differential equation. Let
x1(t) = (y1, y2, ..., yn) be the solution. Then the curve x1(t) satisfies the conditions of the theorem.

Similarly, take the matrices DxK and Ax1 . Let A−1
x1

.DxK = C. So DxK = Ax1 .C. Then we get the matrix C as:

C =


1 0 ... 0 gK0(t)
0 1 ... 0 gK1(t)
... ... ... ... ...
0 0 ... 1 gKn−2(t)
0 0 ... 0 gKn−1(t)

.

Since DxK
= Ax1 .C, we have the following differential equation system:

xK1 = x11gK0(t) + x11
′gK1(t) + ...+ x11

(n−1)gKn−1(t)
xK2 = x12gK0(t) + x12

′gK1(t) + ...+ x12
(n−1)gKn−1(t)

...
xKn = x1ngK0(t) + x1n

′gK1(t) + ...+ x1n
(n−1)gKn−1(t)
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So we get the curves xK =


xK1

xK2

...
xKn

, K = 2, 3, ..., r.

It is obtained that
[x1x1

′...x1
(n−1)]′

[x1x1
′...x1

(n−1)]
=

fn
′(t)

fn(t)
. Let [x1x1

′...x1
(n−1)] = p(t). Then we get

p′(t)

p(t)
=

fn
′(t)

fn(t)
.

So we get for some λ ∈ R/{0}, fn(t) = λp(t). Then it can be found a matrix h such that deth ̸= 0. Let y(t) be
the curve hx1(t) and yK(t) be the curves hxK(t), K = 2, 3, ..., r. Then y(t) and yK(t) are curves which provide
the conditions of the theorem. Really, since

[y...y(n−1)] = [(hx1)...(hx1)
(n−1)

] = [hx1...hx1
(n−1)] = deth.[x1...x1

(n−1)] = fn(t) ̸= 0

then y(t) is regular.

[y...y(i−1)y(n)y(i+1)...y(n−1)]

[y...y(n−1)]
=

deth.[x1...x1
(i−1)x1

(n)x1
(i+1)...x1

(n−1)]

deth.[x1x1
′...x

(n−1)
1 ]

=
fi(t)

fn(t)

[y...y(i−1)yKy(i+1)...y(n−1)]

[y...y(n−1)]
=

deth.[x1...x1
(i−1)xKx1

(i+1)...x1
(n−1)]

deth.[x1x1
′...x

(n−1)
1 ]

=
fKi(t)

fn(t)

and since [y...y(n−1)] = fn(t), then for i = 0, 1, ..., n− 1,K = 2, 3, ..., r we get

[y...y(i−1)y(n)y(i+1)...y(n−1)] = fi(t)

[y...y(i−1)yKy(i+1)...y(n−1)] = fKi(t).

Hence curves y(t) and yK(t), K = 2, 3, ..., r satisfy conditions of the theorem.
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[8] Khadjiev, D., Pekşen, Ö., The complete system of global differential and integral invariants for equi-affine curves, Differential Geometry

and It’s Applications, 20 (2004), 167-175.
[9] Klingenberg W., A Course in Differential Geometry, Springer-Verlag, New York, 1978.

[10] Looijenga, E.J.N., Invariants of quartic plane curves as automorphic forms, Contemporary Mathematics, 422 (2007), 107-120.
[11] Mokhtarian, F., Abbasi, S., Affine Curvature Space Scale with Affine Length Parametrization, Pattern Analysis & Applications, 4 (2001),

1-8.
[12] Nomizu, K., Sasaki, T., Affine Differential Geometry, Cambridge Univ. Pres., 1994.
[13] Paukowitsch, H.P., Begleitfiguren und Invariantensystem Minimaler Differentiationsordnung von Kurven im Reellen n-dimensionalen

Affinen Raum, Mh. Math., 85 (1978), no.2, 137-148.
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