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ABSTRACT

In this paper, we study pseudo-slant submanifolds of a Cosymplectic manifold. We research
integrability conditions for the distributions which are involved in the definition of a pseudo-slant
submanifold. The necessary and sufficient conditions are given for a pseudo-slant submanifold to
be pseudo-slant product.
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1. Introduction

The differential geometry of slant submanifolds has shown an increasing development since B.Y. Chen
defined slant submanifolds in complex manifolds as a natural generallization of both invariant and anti-
invariant submanifolds [9, 10]. After then many research articles have been appeared on the existence of these
submanifolds in various know spaces. The slant submanifols of an almost contact metric manifolds were
defined and studied by A. Lotta [15]. After, such submanifolds were studied in [5] and by J. L. Cabrerizo et al,
of Sasakian manifolds [6].

Semi-slant submanifolds of Kaehler manifold N. Papaghich [16], as a naturel generalization of slant
submanifolds. After then, bi-slant submanifolds was introduced in a almost Hermitian manifold. Recently,
Carriazo defined and studied bi-slant submanifolds in an almost Hermitian manifold and gave the notion
of pseudo-slant submanifold in an almost Hermitian manifold. After then, V. A. Khan and M. A. Khan [12],
defined and studied the contact version of pseudo-slant submanifold in a Sasakian manifold. Recently, M.
Atçeken [2] studied slant and pseudo-slant submanifold in (LCS)n−manifolds.

The present paper is organized as follows.

In this paper, we study the geometry of the pseudo-slant submanifolds of a Cosymplectic manifold. In
section 2, we review basic formulas and definitions for a Cosymplectic manifold and their submanifolds. In
section 3, we recall the definition and some basic results of a pseudo-slant submanifold of almost contact
metric manifold. We deal with the integrability of the distributions on the pseudo-slant submanifolds of
a Cosymplectic manifold and then we obtain analogous results for these submanifolds in the setting of
Cosymplectic manifolds. The necessary and sufficient conditions are given for a pseudo-slant submanifold
to be pseudo-slant product.

2. Preliminaries

In this section, we give some notations used throughout this paper. We recall some necessary fact and
formulas from the theory of Cosymplectic manifolds and their submanifols.
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Let M̃ be a (2m+ 1)-dimensional C∞− differentiable manifold with the almost contact metric structure
(ϕ, ξ, η, g), where ϕ is a tensor field of type (1, 1), ξ is a vector field, η 1-form and g Riemannian metric on
M̃ , satisfying

ϕ2X = −X + η(X)ξ, (2.1)

ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1, η(X) = g(X, ξ) (2.2)

and
g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), g(ϕX, Y ) = −g(X,ϕY ) (2.3)

for any vector fields X,Y on M̃ .

An almost contact structure (ϕ, ξ, η) is said to be normal if the almost complex structure J on the product
manifold M̃ ×R given by.

J(X, f
d

dt
) = (ϕX − fξ, η(X)

d

dt
)

where f is the C∞− function on M̃ ×R. The condition for normality in terms of ϕ, ξ and η is [ϕ, ϕ] + 2dη ⊗ ξ = 0

on M̃, where [ϕ, ϕ] (X,Y ) = ϕ2 [X,Y ] + [ϕX, ϕY ]− ϕ [ϕX, Y ]− ϕ [X,ϕY ] is the Nijenhuis tensor of ϕ. Finally
the fundamental 2−form Φ is defined by Φ(X,Y ) = g(X,ϕY ).

An almost contact metric structure (ϕ, ξ, η, g) is said to be Cosymplectic, if it is normal and both Φ and are η
closed, and structure equation of Cosymplectic manifold is given by

(∇̃Xϕ)Y = 0 (2.4)

for any vector fields X,Y on M̃.

Then, M̃ is called a Cosymplectic manifold, where ∇̃ is the Levi-Civita connection of g. We have also on a
Cosymplectic manifold M̃

∇̃Xξ = 0 (2.5)

for any X,Y ∈ Γ(TM̃).

Now, let M be a submanifold of a contact metric manifold M̃ with the induced metric g. Also, let ∇ and ∇⊥

be the induced connections on the tangent bundle TM and the normal bundle T⊥M of M , respectively. Then
the Gauss and Weingarten formulas are, respectively, given by

∇̃XY = ∇XY + h(X,Y ) (2.6)

and

∇̃XV = −AV X +∇
⊥

XV, (2.7)

where h and AV are the second fundamental form and the shape operator (corresponding to the normal vector
field V ), respectively, for the immersion of M into M̃ . The second fundamental form and shape operator are
related by formula

g(AV X,Y ) = g(h(X,Y ), V ) (2.8)

for all X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M).

If h(X,Y ) = 0, for each X,Y ∈ Γ(TM) then M is said to be totally geodesic submanifold.

www.iejgeo.com 46



S. Dirik, M. Atçeken

3. Pseudo-Slant Submanifolds of a Cosymplectic Manifold

In this section, we will obtain the integrability condition of the distributions of pseudo-slant submanifold
of a Cosymplectic manifold. Also, the necessary and sufficient conditions are given for a pseudo-slant
submanifold to be pseudo-slant product.

Now, let M be a submanifold of an almost contact metric manifold M̃ . Then for any X ∈ Γ(TM), we can
write

ϕX = TX +NX, (3.1)

where TX is the tangential component and NX is the normal component of ϕX . Similarly, for V ∈ Γ(T⊥M),
we can write

ϕV = tV + nV, (3.2)

where tV is the tangential component and nV is also the normal component of ϕV .

Thus by using (2.1), (3.1) and (3.2), we obtain

T 2 = −I + η ⊗ ξ − tN, NT + nN = 0 (3.3)

and

Tt+ tn = 0, Nt+ n2 = −I. (3.4)

Furthermore, for any X,Y ∈ Γ(TM), we have g(TX, Y ) = −g(X,TY ) and V,U ∈ Γ(T⊥M), we get g(U, nV ) =
−g(nU, V ). These show that T and n are also skew-symmetric tensor fields. Moreover, for any X ∈ Γ(TM) and
V ∈ Γ(T⊥M), we have

g(NX,V ) = −g(X, tV ), (3.5)

which gives the relation between N and t.

Furthermore, the covariant derivatives of the tensor field T , N , t and n are, respectively, defined by

(∇XT )Y = ∇XTY − T∇XY, (3.6)

(∇XN)Y = ∇⊥
XNY −N∇XY, (3.7)

(∇Xt)V = ∇XtV − t∇⊥
XV (3.8)

and

(∇Xn)V = ∇⊥
XnV − n∇⊥

XV. (3.9)

A submanifold M is said to be invariant if N is identically zero, that is, ϕX ∈ Γ(TM) for all X ∈ Γ(TM). On
the other hand, M is said to be anti- invariant if T is identically zero, that is, ϕX ∈ Γ(T

⊥
M) for all X ∈ Γ(TM).

By an easy computation, we obtain the following formulas

(∇XT )Y = ANY X + th(X,Y ) (3.10)

and

(∇XN)Y = nh(X,Y )− h(X,TY ). (3.11)

Similarly, for any V ∈ Γ(T⊥M) and X ∈ Γ(TM), we obtain

(∇Xt)V = AnV X − TAV X (3.12)
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and

(∇Xn)V = −h(tV,X)−NAV X. (3.13)

Since M is tangent to ξ, making use of (2.5), (2.6), (2.8) and (3.1), we obtain

∇Xξ = 0, h(X, ξ) = 0, AV ξ = 0 (3.14)

for all V ∈ Γ(T⊥M) and X ∈ Γ(TM).
In contact geometry, A. Lotta introduced slant submanifold as follows [15].

Definition 3.1. A submanifold M of an almost contact metric manifold M̃ is said to be a slant submanifold if for
any x ∈ M and X ∈ Tx(M)− ξ, the angle between ϕX and Tx(M) is constant. The constant angle θ(x) ∈

[
0, π

2

]
is called slant angel of M in M̃. If θ = 0 the submanifold is invariant submanifold, if θ = π

2 then it is anti-invariant
submanifold, if θ ̸= {0, π

2 } then it is proper slant submanifold. [15]. The tangent bundle TM of M is decomposed as
TM = D ⊕ ξ, where the orthogonal complementary distribution D of ξ is know as the slant distribution on M .
We have the following result in the setting of almost contact manifolds given by Cabrerizo et.al.

Theorem 3.1. Let M be a slant submanifold of an almost contact metric manifold M̃ such that ξ ∈ Γ(TM). Then, M is
slant submanifold if and only if there exists a constant λ ∈ [0, 1] such that

T 2 = −λ(I − η ⊗ ξ) (3.15)

furthermore, in this case, if θ is the slant angle of M , then λ = cos2 θ [6].

Corollary 3.1. Let M be a slant submanifold of an almost contact metric manifold M̃ with slant angle θ. Then for any
X,Y ∈ Γ(TM), we have

g(TX, TY ) = cos2 θ {g(X,Y )− η(X)η(Y )} (3.16)

and

g(NX,NY ) = sin2 θ {g(X,Y )− η(X)η(Y )} . (3.17)

It is well known that th = 0 plays an important role in the geometry of submanifolds. This means that the
induced structure T is a cosymplectic structure on M. By using ( 3.10) and (3.14), we obtain

η((∇XT )Y ) = 0 (3.18)

for X,Y ∈ Γ(Dθ).

Definition 3.2. Let M be a submanifold of an almost contact metric manifold M̃ . M is said to be pseudo-slant
of M̃ if there exist two orthogonal distributions D⊥ and Dθ on M such that:
i) TM has the orthogonal direct decomposition TM = D⊥ ⊕Dθ, ξ ∈ Γ(Dθ).
ii) The distribution D⊥ is an anti-invariant, that is, ϕD⊥ ⊂ T⊥M .
iii) The distribution Dθ is a slant, that is, the slant angle between of Dθ and ϕ(Dθ) is a constant.

If θ = 0 then, the submanifold becomes a semi-invariant submanifold.
Let m1 =dim(D⊥) and m2=dim(Dθ). We distinguish the following five cases.
i) If m2 = 0 or θ = π

2 , then M is an anti-invariant submanifold.
ii) If m1 = 0 and θ = 0, then M is invariant submanifold.
iii) If m1 = 0 and θ ̸= 0,π2 , then M is a proper slant submanifold.
iv) If m2m1 ̸= 0 and θ = 0, then M is a semi-invariant submanifold.
v) If m2m1 ̸= 0 and θ ̸= 0,π2 , then M is a pseudo-slant submanifold [12].

If we denote the projections on D⊥ and Dθ by P1 and P2, respectively, then for any vector field X ∈ Γ(TM),
we can write

X = P1X + P2X + η(X)ξ. (3.19)
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Now operating ϕ on both sides of equation (3.19), we have

ϕX = ϕP1X + ϕP2X

and

TX +NX = NP1X + TP2X +NP2X.

We can easily to see

TX = TP2X, NX = NP1X +NP2X

and

ϕP1X = NP1X, TP1X = 0, ϕP2X = TP2X +NP2X, TP2X ∈ Γ(Dθ).

If we denote the orthogonal complementary of ϕ(TM) in T⊥M by µ, then the normal bundle T⊥M can be
decomposed as follows

T⊥M = N(D⊥)⊕N(Dθ)⊕ µ. (3.20)

We can easily see that the bundle µ is an invariant subbundle with respect to ϕ. Since D⊥ and Dθ are orthogonal
distribution on M , g(Z,X) = 0 for each Z ∈ Γ(D

⊥
) and X ∈ Γ(Dθ). Thus, by equation (2.3) and (3.1), we can

write

g(NZ,NX) = g(ϕZ, ϕX) = g(Z,X) = 0

that is, the distributions N(D⊥) and N(Dθ) are also mutually perpendicular. In fact, the decomposition (3.20)
is an orthogonal direct decomposition.

Theorem 3.2. Let M be a submanifold of an almost contact metric manifold M̃ . Then Dθ is slant distribution if only
and if there is a constant λ ∈ [0, 1] such that

(TP2)
2X = −λX. (3.21)

for any X ∈ Γ(Dθ). In this case, the slant angle θ satisfies λ = cos2 θ [6].

Now, we construct on example of a pseudo-slant submanifold in an almost contact metric manifold.

Example 3.1. Let M be a submanifold of R7 defined by the equation

(u, v, s, t, z) = (
√
3u, v, v sinα, v cosα, s cos t,−s cos t, z).

We can easily to see that the tangent bundle of M is spanned by the tangent vectors

e1 =
√
3

∂

∂x1
, e2 =

∂

∂y1
+ sinα

∂

∂x2
+ cosα

∂

∂y2

e3 = cos t
∂

∂x3
− cos t

∂

∂y3
, e4 = −s sin t

∂

∂x3
+ s sin t

∂

∂y3

e5 = ξ =
∂

∂z
.

For the contact structure ϕ of R7, choosing

ϕ(
∂

∂xi
) =

∂

∂yi
, ϕ(

∂

∂yj
) = − ∂

∂xj
, 1 ≤ i, j ≤ 3

ϕ(
∂

∂z
) = 0, ξ =

∂

∂z
, η = dz.

For any vector field W = µi
∂

∂xi
+ νj

∂
∂yj

+ λ ∂
∂z ∈ T (R7), then we have

ϕW = µiϕ(
∂

∂xi
) + νjϕ(

∂

∂yj
) + λϕ(

∂

∂z
) = µi

∂

∂yj
− νj

∂

∂xi
,
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g(ϕW,ϕW ) = g(µi
∂

∂yj
− νj

∂

∂xi
, µi

∂

∂yj
− νj

∂

∂xi
) = µ2

i + ν2j ,

g(W,W ) = g(µi
∂

∂xi
+ νj

∂

∂yj
+ λ

∂

∂z
, µi

∂

∂xi
+ νj

∂

∂yj
+ λ

∂

∂z
) = µ2

i + ν2j + λ2,

η(W ) = g(W, ξ) = g(µi
∂

∂xi
+ νj

∂

∂yj
+ λ

∂

∂z
,
∂

∂z
) = λ

and

ϕ2W = −µi
∂

∂xi
− νj

∂

∂yj
− λ

∂

∂z
+ λ

∂

∂z
= −W + η(W )ξ

for any i, j = 1, 2, 3. It follows that g(ϕW,ϕW ) = g(W,W )− η2(W ). Thus (ϕ, ξ, η, g) is an almost contact metric
structure on R7. We call the usual contact metric structure of R7. Then we have

ϕe1 =
√
3

∂

∂y1
, ϕe2 = − ∂

∂x1
+ sinα

∂

∂y2
− cosα

∂

∂x2

ϕe3 = cos t
∂

∂y3
+ cos t

∂

∂x3
, ϕe4 = −s sin t

∂

∂y3
− s sin t

∂

∂x3
.

By direct calculations, we can infer Dθ = span{e1, e2} is a slant distribution with slant angle
cos θ = g(e2,ϕe1)

∥e2∥∥ϕe1∥ =
√
2
2 , θ = 45◦. Since

g(ϕe3, e1) = g(ϕe3, e2) = g(ϕe3, e4) = g(ϕe3, e5) = 0,

g(ϕe4, e1) = g(ϕe4, e2) = g(ϕe4, e3) = g(ϕe4, e5) = 0,

ϕe3 and ϕe4 are orthogonal to M and D⊥ = span{e3, e4} is an anti-invariant distribution. Thus M is a 5 -
dimensional proper pseudo-slant submanifold of R7 with it’s usual almost contact metric structure.

Moreover, for any Z,W ∈ Γ(D⊥) and U ∈ Γ(TM), also by using (2.4), (2.7) and (2.8), we have

g(ANZW −ANWZ,U) = g(h(W,U), NZ)− g(h(Z,U), NW )

= g(∇̃UW,ϕZ)− g(∇̃UZ, ϕW )

= g(ϕ∇̃UZ,W )− g(ϕ∇̃UW,Z)

= g(∇̃UϕZ − (∇̃Uϕ)Z,W )

+g((∇̃Uϕ)W − ∇̃UϕW,Z)

= g(∇̃UϕZ,W )− g(∇̃UϕW,Z)

= −g(ANZU,W ) + g(ANWU,Z)

= g(ANWZ −ANZW,U).

It follows that
ANZW = ANWZ. (3.22)

Theorem 3.3. Let M be pseudo-slant submanifold of Cosymplectic manifold M̃ , then

∇⊥
WNZ −∇⊥

ZNW ∈ N(D⊥)

for any Z,W ∈ Γ(D⊥).

Proof. For any Z,W ∈ Γ(D⊥) and V ∈ µ, we have

g(∇⊥
WNZ −∇⊥

ZNW,V ) = g(∇̃WϕZ +AϕZW − ∇̃ZϕW −AϕWZ, V )

= g(∇̃WϕZ − ∇̃ZϕW,V )

= g((∇̃Wϕ)Z + ϕ∇̃WZ, V )

−g((∇̃Zϕ)W + ϕ∇̃ZW,V )

= g(ϕ∇̃WZ, V )− g(ϕ∇̃ZW,V )

= g(∇̃ZW,ϕV )− g(∇̃WZ, ϕV )

= g(∇ZW,ϕV )− g(∇WZ, ϕV )

+g(h(Z,W ), ϕV )− g(h(W,Z), ϕV ) = 0.
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Thus the proof is complete.

Theorem 3.4. Let M be a pseudo-slant submanifold of a Cosymplectic manifold M̃ . Then the anti-invariant distribution
D⊥ is completely integrable and its maximal integral submanifold is an anti-invariant submanifold of M̃.

Proof. For any Z,W ∈ Γ(D⊥) and X ∈ Γ(Dθ), by using (2.4), (2.6), (2.7) and (2.8), we have

g([Z,W ] , X) = g(∇̃ZW − ∇̃WZ,X) = g(∇̃WX,Z)− g(∇̃ZX,W )

= g(ϕ∇̃WX,ϕZ)− g(ϕ∇̃ZX,ϕW )

= g(∇̃WϕX, ϕZ)− g(∇̃ZϕX, ϕW )

−g((∇̃Wϕ)X,ϕZ) + g((∇̃Zϕ)X,ϕW )

= g(∇̃WTX + ∇̃WNX,NZ)

−g(∇̃ZTX + ∇̃ZNX,NW )

= g(h(TX,W ), NZ)− g(h(TX,Z), NW )

+g(∇
⊥

WNX,NZ)− g(∇
⊥

ZNX,NW )

= g(ANZW −ANWZ, TX) + g(∇
⊥

WNX,NZ)

−g(∇
⊥

ZNX,NW )

by using (3.7), (3.11) and (3.22), we have

g([Z,W ] , X) = g(∇
⊥

WNX,NZ)− g(∇
⊥

ZNX,NW )

= g((∇WN)X +N∇WX,NZ)

−g((∇ZN)X +N∇ZX,NW )

= g(nh(W,X)− h(W,TX), NZ)

−g(nh(Z,X)− h(Z, TX), NW )

+g(N∇WX,NZ)− g(N∇ZX,NW )

= −g(h(W,TX), NZ) + g(h(Z, TX), NW )

+g(N∇WX,NZ)− g(N∇ZX,NW )

by using (3.17), we obtain

g([Z,W ] , X) = sin2 θg(∇WX,Z)− sin2 θg(∇ZX,W )

= sin2 θg(∇ZW,X)− sin2 θg(∇WZ,X)

= sin2 θg([Z,W ] , X)

hence
cos2 θg([Z,W ] , X) = 0.

Thus [Z,W ] ∈ Γ(D⊥) for any Z,W ∈ Γ(D⊥), that is, anti-invariant distribution D⊥ is always integrable and its
integral submanifold is an anti- invariant submanifold of M̃ . Thus the proof is complete.

Now, by using (2.4), we have
(∇̃Xϕ)Y = ∇̃XϕY − ϕ∇̃XY = 0.

Hence, by using (2.6), (2.7), (3.1) and (3.2), we obtain

−ANY X +∇
⊥

XNY − T∇XY −N∇XY − th(X,Y )− nh(X,Y ) = 0.

for any X,Y ∈ Γ (D⊥). From the tangent components of this last equation, we obtain

ANY X + T∇XY + th(X,Y ) = 0. (3.23)

By interchange roles of X and Y in (3.23), we have

ANXY + T∇Y X + th(X,Y ) = 0 (3.24)
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which is equivalent to
T [X,Y ] = ANXY −ANY X.

From (3.22), we can easily to see that the anti-invariant distribution D⊥ is always integrable.

Since the ambient manifold M̃ is Cosymplectic, for any Z,W ∈ Γ (D⊥)

(∇̃Zϕ)W = 0

which implies that
∇̃ZϕW − ϕ∇̃ZW = ∇̃ZNW − ϕ(∇ZW + h(W,Z)) = 0.

So we have
−ANWZ +∇⊥

ZNW − T∇ZW −N∇ZW − th(W,Z)− nh(W,Z) = 0.

From the tangent components of the last equation, we obtain

ANWZ + T∇ZW + th(W,Z) = 0.

From the above equation, we conclude

T [W,Z] = ANWZ + T∇WZ + th(W,Z).

The anti-invariant distribution D⊥ is in integrable, ϕ [Z,W ] = N [Z,W ] because of the tangent component of
ϕ [Z,W ] is zero. So we have

ANWZ + T∇WZ + th(W,Z) = 0. (3.25)

Similarly, we obtain
ANZW + T∇ZW + th(Z,W ) = 0. (3.26)

Here, by using (3.22), (3.25) and (3.26), we obtain

(∇ZT )W = (∇WT )Z

Lemma 3.1. Let M be a pseudo-slant submanifold of a Cosymplectic manifold M̃ . Then we have

(∇ZT )W = (∇WT )Z (3.27)

for any Z,W ∈ Γ (D⊥).

Theorem 3.5. Let M be a pseudo-slant submanifold of a Cosymplectic manifold M̃. Then the slant distribution Dθ is
integrable if and only if

P1 {∇XTY − T∇Y X −ANY X − th(X,Y )} = 0 (3.28)

for any X,Y ∈ Γ(Dθ).

Proof. For any X,Y ∈ Γ(Dθ), by using (2.4) and considering the tangential component, we obtain

T [X,Y ] = ∇XTY − T∇Y X −ANY X − th(X,Y ). (3.29)

Applying P1 to (3.29), we get (3.28)

Theorem 3.6. Let M be a pseudo-slant submanifold of a Cosymplectic manifold M̃ . Then the slant distribution Dθ is
integrable if and only if

∇⊥
ZNW −∇⊥

WNZ + h(Z, TW )− h(W,TZ) ∈ µ⊕N(Dθ)

for any Z,W ∈ Γ(Dθ).

Proof. For any Z,W ∈ Γ(Dθ) and X ∈ Γ(D⊥), by using (2.3), we have

g([Z,W ] , X) = g(∇̃ZW,X)− g(∇̃WZ,X)

= g(ϕ∇̃ZW,ϕX) + η(∇̃ZW )η(X)

− g(ϕ∇̃WZ, ϕX)− η(∇̃WZ)η(X).
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Thus we obtain

g([Z,W ] , X) =g(∇̃ZϕW,NX)− g(∇̃Zϕ)W,NX)

− g(∇̃WϕZ,NX) + (∇̃Wϕ)Z,NX).

Taking into account (2.4) and (3.1), we have

g([Z,W ] , X) = g(∇̃Z(TW +NW ), NX)− g(∇̃W (TZ +NZ), NX).

Then from the Gauss and Weingarten formulas the above equation takes the form, we have

g([Z,W ] , X) = g(h(Z, TW ), NX) + g(∇⊥
ZNW,NX)

− g(h(W,TZ), NX)− g(∇⊥
WNZ,NX).

Since, we have NX ∈ N(D⊥) ⊆ T⊥M we conclude

∇⊥
ZNW −∇⊥

WNZ + h(Z, TW )− h(W,TZ) ∈ µ⊕N(Dθ).

Theorem 3.7. Let M be a pseudo-slant submanifold of a Cosymplectic manifold M̃. Then the slant distribution Dθ is
integrable if and only if

TANUX +ANUTX = 0

for any U ∈ Γ (D⊥) and X ∈ Γ(Dθ).

Proof. For any U ∈ Γ (D⊥) and X,Y ∈ Γ(Dθ), by direct calculation, we have

g([X,Y ] , U) = g(∇̃XY − ∇̃Y X,U)

= g(ϕ∇̃XY, ϕU)− g(ϕ∇̃Y X,ϕU)

= g(ϕ∇̃XY,NU)− g(ϕ∇̃Y X,NU)

= g(∇̃XϕY,NU)− g(∇̃Y ϕX,NU)

− g((∇̃Xϕ)Y,NU) + g((∇̃Y ϕ)X,NU).

Hence, by using (2.4) and (3.1), we obtain

g([X,Y ] , U) = g(∇̃Y NU, ϕX)− g(∇̃XNU, ϕY )

= g(∇̃Y NU, TX) + g(∇̃Y NU,NX)

− g(∇̃XNU, TY )− g(∇̃XNU,NY ).

On the other hand, from (2.4), (2.6) and (2.7), we have

(∇̃Xϕ)U = ∇̃XϕU − ϕ∇̃XU

0 = ∇̃XNU − T∇XU −N∇XU − th(X,U)− nh(X,U)

that is,

−ANUX +∇
⊥

XNU = T∇XU +N∇XU + th(X,U) + nh(X,U).

From the tangential components, we obtain

−ANUX = T∇XU + th(X,U)

and
(∇XN)U = nh(X,U). (3.30)
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Also, by using (3.7) and (3.30) we conclude that

g([X,Y ] , U) = g(ANUX,TY )− g(ANUY, TX) + g(∇
⊥

Y NU,NX)− g(∇
⊥

XNU,NY )

= −g(TANUX,Y )− g(ANUTX, Y ) + g((∇Y N)U +N∇Y U,NX)

− g((∇XN)U +N∇XU,NY )

= −g(TANUX,Y )− g(ANUTX, Y ) + g(nh(Y, U), NX) + g(N∇Y U,NX)

− g(nh(X,U), NY )− g(N∇XU,NY )

= −g(TANUX,Y )− g(ANUTX, Y ) + g(N∇Y U,NX)− g(N∇XU,NY )

= −g(TANUX,Y )− g(ANUTX, Y ) + sin2 θ {g(∇Y U,X)− g(∇XU, Y )}
= −g(TANUX,Y )− g(ANUTX, Y ) + sin2 θ {g(∇XY,U)− g(∇Y X,U)}
= −g(TANUX,Y )− g(ANUTX, Y ) + sin2 θ {g([X,Y ] , U)} .

So we conclude
cos2 θ {[X,Y ] , U} = −g(TANUX,Y )− g(ANUTX, Y )

which verifies our assertion.

For a pseudo-slant submanifold M of M̃, the slant and anti- invariant distributions are totally geodesic in
M, then M is called pseudo-slant product.

The following theorem characterize the pseudo-slant product in Cosymplectic manifolds.

Theorem 3.8. Let M be a pseudo-slant submanifold of a Cosymplectic manifold M̃.Then M is a pseudo-slant product if
and only if the second fundamental form h satisfies

th(X,Z) = 0 (3.31)

for all X ∈ Γ(Dθ) and Z ∈ Γ(TM).

Proof. For all X,Y ∈ Γ(Dθ) and U, V ∈ Γ(D⊥), we have

g(∇XY,U) = −g(∇XU, Y ) = −g(∇̃XU, Y )

= −g(ϕ∇̃XU, ϕY )− η(∇̃XU)η(Y )

= g((∇̃Xϕ)U − ∇̃XϕU, ϕY )

− g(∇XU + h(X,U), ξ)η(Y )

= −g(∇̃XϕU, ϕY )− g(∇XU, ξ)η(Y )

= −g(∇̃XϕU, ϕY ) + g(∇Xξ, U)η(Y )

= −g(∇̃XϕU, TY )− g(∇̃XϕU,NY ).

ϕU = NU and using (3.14), we obtain

g(∇XY, U) = −g(∇̃XNU, TY )− g(∇̃XNU,NY ).

Using (2.6) and (2.7), we have

g(∇XY, U) = g(ANUX −∇
⊥

XNU, TY ) + g(ANUX −∇
⊥

XNU,NY )

= g(ANUX,TY )− g((∇XN)U,NY )− g(N∇XU,NY )

= g(ANUX,TY )− g(N∇XU,NY )− g(nh(X,U), NY )

hence using (3.14) and (3.17), we have

g(∇XY, U) = g(ANUX,TY )− g(N∇XU,NY )

= g(ANUX,TY )− sin2 θ {g(∇XU, Y )− η(∇XU)η(Y )}
= g(h(X,TY ), NU)− sin2 θg(∇XU, Y ) + sin2 θg(∇XU, ξ)η(Y )

= g(h(X,TY ), NU) + sin2 θg(∇XY, U)− sin2 θg(∇Xξ, U)η(Y )

= g(h(X,TY ), NU) + sin2 θg(∇XY, U)
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that is
cos2 θg(∇XY,U) = g(h(X,TY ), NU) = −g(th(X,TY ), U). (3.32)

In the same way, we obtain

g(∇V U,X) = g(∇̃V U,X) = −g(∇̃V X,U)

= −g(ϕ∇̃V X,ϕU)− η(∇̃V X)η(U)

= g((∇̃V ϕ)X,ϕU)− g(∇̃V ϕX, ϕU).

For U, V ∈ Γ(D⊥), since the tangent component of ϕU and TU are zero, we have

g(∇V U,X) = −g(∇̃V ϕX,NU) + g((∇̃V ϕ)X,NU)

= −g(∇̃V ϕX,NU) = −g(∇̃V TX,NU)− g(∇̃V NX,NU)

= −g(∇V TX + h(TX, V ), NU) + g(ANXV −∇⊥
V NX,NU)

= −g(h(TX, V ), NU)− g(∇⊥
V NX,NU)

= −g(h(TX, V ), NU)− g((∇V N)X +N∇V X,NU)

hence using (3.14), we have

g(∇V U,X) = −g(h(V, TX), NU)− g(N∇V X,NU)

+ g(h(V, TX), NU)− g(nh(V,X), NU)

= −g(N∇V X,NU)− g(nh(V,X), NU)

= −g(nh(V,X), NU) + sin2 θg(∇V U,X)

that is
cos2 θg(∇V U,X) = −g(nh(V,X), NU) = g(th(V,X), U). (3.33)

From equation(3.32) and (3.33). Thus Dθ and D⊥ are totally geodesic in M if and only if (3.31) is satisfied.

Theorem 3.9. Let M be a pseudo-slant submanifold of a Cosymplectic manifold M̃. If N is parallel on Dθ, then either
M is a Dθ− geodesic submanifold or h(X,Y ) is an eigenvector of n2 with eigenvalue − cos2 θ, for any X,Y ∈ Γ(Dθ).

Proof. For any X,Y ∈ Γ(Dθ), from (3.11), we have

nh(X,Y )− h(X,TY ) = 0. (3.34)

On the other hand, since Dθ is a slant distribution, we obtain

0 = nh(X,Y − η(Y )ξ)− h(X,T (Y − η(Y )ξ))

= nh(X,Y − η(Y )ξ)− h(X,TY ),

that is
nh(X,Y − η(Y )ξ) = h(X,TY ). (3.35)

Now, applying n to (3.35), we have

n2h(X,Y − η(Y )ξ) = nh(X,TY ).

On the other hand, by interchanging of Y and TY in (3.34), we have

nh(X,TY ) = h(X,T 2Y ).

Hence, using (3.15), we obtain

n2h(X,Y − η(Y )ξ) = nh(X,TY ) = h(X,T 2Y ) = − cos2 θh(X,Y − η(Y )ξ).

This implies that either h vanishes on Dθ or h is an eigenvector of n2 with eigenvalue − cos2 θ.
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