On Deterministic and Random Rolling of Polyhedra

Norbert Hegyvári
(Communicated by Yusuf YAYLI)

Abstract

For a convex polyhedron standing with one of its face on a fixed plane we mean rolling when it is rotated into another similar position around any of its edge lying on the plane. A set is said to be the trace of the polyhedron \mathcal{P} if some point of it coincides of some vertex of \mathcal{P} in some position. In this note we investigate the trace of deterministic and random rolling of polyhedra.

Keywords: pseudo-Finsler manifold; Finsler connection; almost hypercomplex structure.
AMS Subject Classification (2010): 52B05

1. Introduction

Let us take a convex polyhedron \mathcal{P} standing with one of its face on a fixed plane Σ. We mean rolling of \mathcal{P} when it is rotated into another similar position around any of its edge lying on Σ. So after rolling another face of \mathcal{P} will lean on the plane. We take \mathcal{P} in an arbitrary initial position and we denote by R rolling and $R(\mathcal{P})$ the position of \mathcal{P} after R, and a word $R_{n} \ldots R_{2} R_{1}$ means that after rotation R_{1} we act R_{2}, \ldots, R_{n} respectively, and let $R_{n} \ldots R_{2} R_{1}(\mathcal{P})=R_{n} \ldots R_{2}\left(R_{1}(\mathcal{P})\right)$.

Set of all points

$$
\mathfrak{M}_{\mathcal{P}}:=\{X \in \Sigma: X \text { coincides of some vertex of } \mathcal{P} \text { in some position of } \mathcal{P}\} .
$$

We say that $\mathfrak{M}_{\mathcal{P}}$ is a trace of \mathcal{P} after all rolling and we say that \mathcal{P} is D-polyhedron if the set $\mathfrak{M}_{\mathcal{P}}$ is everywhere dense on Σ. E.g. when \mathcal{P} is a cube then $\mathfrak{M}_{\mathcal{P}}$ is a lattice (so a cube is not D-polyhedron), and when \mathcal{P} is a rectangular parallelepiped with at least two edges having irrational ratio is D-polyhedron (see in [3]).

In [3] I gave a sufficient condition for a general polyhedron to be D-polyhedron, and I characterized all regular D-polyhedra. In [4] we also charaterized all semi-regular (Archimedean) D-polyhedra. See related problems in [5] and [1].

2. Deterministic rolling of a polyhedron

We say that a subset Y of Σ is locally-dense if there is a point $P \in \Sigma$ and a neighborhood $U(P)$ of P such that $Y \cap U(P)$ is dense in $U(P)$.

A question may arise whether there is a polyhedron for which the set $\mathfrak{M}_{\mathcal{P}}$ is "spotted", i.e. $\mathfrak{M}_{\mathcal{P}}$ is locally-dense but \mathcal{P} is not D-polyhedron. Our first result is that the answer is no:

Theorem 2.1. If a polyhedron \mathcal{P} is locally-dense then it is a D-polyhedron.

Definition 2.1. Let $\mathcal{S} \subseteq \mathbb{R}^{2}$ be a subset of the plane and $\varepsilon>0$. A set \mathcal{X} is said to be $(\mathcal{S}, \varepsilon)$-dense if for every $P \in \mathcal{S}$ there is a point $X \in \mathcal{X} \cap \mathcal{S}$ for which $d(P, X)<\varepsilon . \mathcal{X}$ is said to be \mathcal{S}-dense if it is $(\mathcal{S}, \varepsilon)$-dense for every $\varepsilon>0$.

[^0]In the rest of this paper the set \mathcal{S} will be special; it will be a boundary of a circle.
We use the usual notations $\mathbb{N}, \mathbb{R}, \mathbb{R}^{+}, \mathbb{Q}, \mathbb{Q}^{*}=\mathbb{R} \backslash \mathbb{Q}$.

3. Random rolling of a polyhedron

We start again with a convex polyhedron \mathcal{P} standing in some initial position of Σ. Assume that the touching face \mathcal{F} is a k-gon. Now roll \mathcal{P} around one of the edges of \mathcal{F} - or keep the position of \mathcal{P} - with probability $\frac{1}{k+1}$ uniformly at random. (For a technical reason we include the identical rotation as a rolling too). Define the trace in a similar way as it is in the first paragraph and denote it by $R A N(\mathfrak{M})$. Now one can ask what the structure of $R A N(\mathfrak{M})$ is. Is it true that with probability 1 after finitely many rolling \mathcal{P} will be "close" to the initial position of it?

In this paragraph we are going to investigate the simplest case. We say that a tetrahedron is general if the four vertices are selected at random. Then we act a random roll on a general tetrahedron. We will show

Theorem 3.1. Let $\varepsilon>0$. For almost all tetrahedron \mathcal{P} with probability 1 there are infinitely many circle \mathcal{S} for which $R A N\left(\mathfrak{M}_{\mathcal{P}}\right) \cap \mathcal{S}$ is an ε-dense set on \mathcal{S}

4. Proofs

Proof of Theorem 2.1: Let $P \in \Sigma$ be a point in the plane for which $U(P) \cap \mathfrak{M}_{\mathcal{P}}$ is a dense set, where $U(P):=U_{\Delta}(P)=\{Q \in \Sigma: d(P, Q)<\Delta\}$ for some radius $\Delta \in \mathbb{R}^{+}$, and $d(\cdot, \cdot)$ is the usual metric. Denote by $\left\{Y_{1}, Y_{2}, \ldots, Y_{s}\right\}$ the set of all vertices and by $\left\{F_{1}, F_{2}, \ldots, F_{r}\right\}$ the set of all faces of \mathcal{P}, and write

$$
\mathfrak{M}_{\mathcal{P}}\left(Y_{i}, F_{j}\right):=
$$

$=\left\{X \in \Sigma: X\right.$ coincides of vertex Y_{i} in some position of \mathcal{P} standing on face $\left.F_{j}\right\}$.
We claim that there exist a pair $i, j(1 \leq i \leq s ; 1 \leq j \leq r)$ and an $U\left(P^{\prime}\right) \subseteq U(P)$ for which $U\left(P^{\prime}\right) \cap \mathfrak{M}_{\mathcal{P}}\left(Y_{i}, F_{j}\right)$ is a dense set. To see this, let us suppose the opposite: assume that there is a neighborhood, $U\left(P_{1}\right) \subseteq U(P)$ for which $U\left(P_{1}\right) \cap \mathfrak{M}_{\mathcal{P}}\left(Y_{1}, F_{1}\right)=\{\emptyset\}$. Presume now that the sets $U\left(P_{z}\right) \subseteq \cdots \subseteq U\left(P_{1}\right) \subseteq U(P)(z \geq 1)$ have been defined for which for every pair $(t, p) ; t+p=k,(1 \leq k \leq z)$ we get that

$$
U\left(P_{k}\right) \cap \mathfrak{M}_{\mathcal{P}}\left(Y_{t}, F_{p}\right)=\{\emptyset\} .
$$

This process is terminated since $z \leq s+r$ and since $\cup_{t, p} \mathfrak{M}_{\mathcal{P}}\left(Y_{t}, F_{p}\right)=\mathfrak{M}_{\mathcal{P}}$ we obtain that there is a subset $U\left(P^{\prime \prime}\right) \subseteq U(P)$ such that

$$
U\left(P^{\prime \prime}\right) \cap \mathfrak{M}_{\mathcal{P}}=\{\emptyset\}
$$

This contradicts the fact that $U(P) \cap \mathfrak{M}_{\mathcal{P}}$ is a dense set.
So there are $i, j ; 1 \leq i \leq s ; 1 \leq j \leq r$ and $U\left(P^{\prime}\right)$ for which $U\left(P^{\prime}\right) \cap \mathfrak{M}_{\mathcal{P}}\left(Y_{i}, F_{j}\right)$ is a dense set. Without loss of generality we can assume that $P^{\prime} \in \mathfrak{M}_{\mathcal{P}}\left(Y_{i}, F_{j}\right)$. Let the radius of the disc $U\left(P^{\prime}\right)$ be ϱ. Our task is to show that there is a radius $\delta \in \mathbb{R}^{+}$, such that for every point $Q \in \Sigma, U_{\delta}(Q) \cap \mathfrak{M}_{\mathcal{P}}$ is a dense set.

We are going to prove that $\delta=\frac{\varrho}{3}$ is admissible. Write briefly $\mathfrak{M}_{\mathcal{P}}^{0}:=\mathfrak{M}_{\mathcal{P}}\left(Y_{i}, F_{j}\right)$
We follow an iteration process. Let $X_{1}=P^{\prime}$. For $i=2,3, \ldots$ we proceed as follows:
If $d\left(X_{i-1}, Q\right)<\frac{\varrho}{2}$ then we are done.
If not, pick a point $X_{i} \in U\left(X_{i-1}\right)_{\varrho} \cap \mathfrak{M}_{\mathcal{P}}^{0}$ for which the following two conditions are valid:

$$
\text { (i) } d\left(X_{i}, X_{i-1}\right) \geq \frac{9 \varrho}{10}
$$

and

$$
\text { (ii) } X_{i} X_{i-1} Q \ll \frac{\pi}{10} \text {. }
$$

An easy calculation shows that $d\left(X_{i}, Q\right)<d\left(X_{i-1}, Q\right)-\varrho / 2$. Then increase i by 1 and repeat the previous steps. This process is terminated since $i \leq \frac{d\left(P^{\prime}, Q\right)}{\varrho / 2}$. Therefore there is an $i \in \mathbb{N}$ for which $Q \in U\left(X_{i}\right)_{\varrho}$ and $d\left(X_{i}, Q\right)<\varrho / 2$. It implies that

$$
X_{i} \in U(Q)_{\varrho / 3} \cap \mathfrak{M}_{\mathcal{P}}^{0} \subseteq X_{i} \in U\left(X_{i}\right)_{\varrho} \cap \mathfrak{M}_{\mathcal{P}}^{0}
$$

as required.
Proof of Theorem 3.1:
Let \mathcal{P} be a general tetrahedron and denote the vertices by $A_{1}, A_{2}, A_{3}, A_{4}$ its vertices respectively. Denote by $\sigma\left(A_{i}\right) ;(i=1,2,3,4)$ the sum of all angles which occur at A_{i} on the faces.

Firstly note that for almost all \mathcal{P}, there exists an $i \in\{1,2,3,4\}$ for which $\sigma\left(A_{i}\right) / \pi \in \mathbb{Q}^{*}$. Indeed seven data determine uniquely a tetrahedron; let them be

$$
\left(d\left(A_{1}, A_{2}\right) ; A_{3} A_{1} A_{2} \angle, A_{1} A_{2} A_{3} \angle, A_{3} A_{4} A_{1} \angle, A_{1} A_{3} A_{4} \angle, A_{1} A_{4} A_{3} \angle, \sigma\left(A_{1}\right)\right)
$$

The set of tetrahedra \mathcal{P} for which $\sigma\left(A_{1}\right) / \pi \in \mathbb{Q}$ has Lebesgue measure 0 in \mathbb{R}^{7}. Hence for almost all tetrahedron we have $\sigma\left(A_{1}\right) / \pi \in \mathbb{Q}^{*}$.

Denote $F_{1}, F_{2}, F_{3}, F_{4}$ the faces $A_{1} A_{2} A_{3}, A_{2} A_{3} A_{4}, A_{1} A_{3} A_{4}, A_{1} A_{2} A_{4}$ of \mathcal{P} respectively. Assume that \mathcal{P} stands at the initial position on F_{1}.

For a random rolling of the tetrahedron \mathcal{P} corresponds a random sequence of

$$
\widehat{\mathcal{F}}:=\left\{F_{i_{1}}, F_{i_{2}}, \ldots, F_{i_{j}}, \ldots\right\}
$$

$i_{j} \in\{1,2,3,4\}$. It is easy to see, that it is a bijection between the sequence of rolling and the sequence of $\widehat{\mathcal{F}}$. We need to look at the Erdős-Rényi type result as follows.

Lemma 4.1. Let $k \in \mathbb{N}$. Then with probability 1 in a random sequence of $F_{i_{1}}, F_{i_{2}}, \ldots, F_{i_{j}}, \ldots$ the longest run of the pattern $F_{1} F_{3} F_{4}$ is bigger than k.

It is a very special case of [1, Theorem 2].
Take two rollings that correspond to $F_{1} F_{3} F_{4}$. At F_{1} the vertices A_{1}, A_{2} and A_{3} touch the plane. After $F_{1} F_{3} F_{4}$ denote the new position of A_{2} by A_{2}^{\prime}. Then $A_{2}^{\prime} A_{1} A_{2} \angle=\sigma\left(A_{1}\right)$.

Now consider a random sequence of rolling. Let $\varepsilon>0$ real number be given. Since $\sigma\left(A_{1}\right) \in \mathbb{Q}^{*}$, by the Dirichlet approximation theory we get that there is $k_{0}(\varepsilon)$ such that for every $k>k_{0}$ the set $\left\{j \sigma\left(A_{1}\right) / 2 \pi\right\}_{j=1}^{k} \bmod (1)$ is ε-dense. By Lemma 4.1 we obtain that there are k many consecutive repetition of the pattern $F_{1} F_{3} F_{4}$ in $\widehat{\mathcal{F}}$. Hence there is a circle with radius $d\left(A_{1}, A_{2}\right)$ for which $\mathfrak{M}_{\mathcal{P}} \cap \mathcal{S}$ is ε-dense in \mathcal{S}.

Since infinitely many times there are k many consecutive repetitions of the pattern $F_{1} F_{3} F_{4}$ in $\widehat{\mathcal{F}}$, we obtain the theorem.

5. Concluding remarks

Considering Theorem 2.1 it is reasonable to ask the following
Problem 1: Let \mathcal{P} be a polyhedron, \mathcal{S} is a smooth curve, say a boundary of a circle. Assume that $\mathfrak{M}_{\mathcal{P}}$ is \mathcal{S}-dense. Is it true that $\mathfrak{M}_{\mathcal{P}}$ is locally-dense and a fortiori is a D-polyhedron?

Furthermore we mention two questions on random rolling of a polyhedron.
Problem 2: Assume that \mathcal{P} is a D-polyhedron. Is it true that with probability of $1, R A N(\mathfrak{M})$ is an everywhere dense subset of Σ ?

Problem 3: Is it true that for almost all tetrahedron \mathcal{P} with probability $1 R A N\left(\mathfrak{M}_{\mathcal{P}}\right)$ is a dense set?
I conjecture that the answers for these questions will be yes.

References

[1] Dekker, T. J. On reflections in Euclidean spaces generating free products, Nieuw Arch. Wisk . 3 (1959)7, 57-60.
[2] Erdős, P. and Rényi, A. On a new law of large numbers, J. Analyse Math. 23 (1970), 103-111
[3] Hegyvári, N. On the trace of polyhedra. Geom. Dedicata 55 (1995), no. 1, 71-74.
[4] Hegyvári, N. and Wintsche, G. The rolling polyhedra. Publ. Math. Debrecen. 52 (1998), no. 1-2, 43-54.
[5] Wagon, S. The Banach-Tarski paradox, Cambridge Univ. Press (1986) Chap. 5 p. 69.

Affiliations

Norbert Hegyvári
Address: Eötvös University, Institute of Mathematics, H-1117 Pázmány st. 1/c, Budapest, Hungary E-MAIL: hegyvari@elte.hu

[^0]: Received : 16-08-2014, Accepted : 11-11-2015

 * Corresponding author

 The author is supported by OTKA grants K-81658 and K-100291.

