On Deterministic and Random Rolling of Polyhedra

Norbert Hegyvári

(Communicated by Yusuf YAYLI)

ABSTRACT

For a convex polyhedron standing with one of its face on a fixed plane we mean rolling when it is rotated into another similar position around any of its edge lying on the plane. A set is said to be the trace of the polyhedron \mathcal{P} if some point of it coincides of some vertex of \mathcal{P} in some position. In this note we investigate the trace of deterministic and random rolling of polyhedra.

Keywords: pseudo-Finsler manifold; Finsler connection; almost hypercomplex structure. *AMS Subject Classification (2010):* 52B05

1. Introduction

Let us take a convex polyhedron \mathcal{P} standing with one of its face on a fixed plane Σ . We mean *rolling* of \mathcal{P} when it is rotated into another similar position around any of its edge lying on Σ . So after rolling another face of \mathcal{P} will lean on the plane. We take \mathcal{P} in an arbitrary initial position and we denote by R rolling and $R(\mathcal{P})$ the position of \mathcal{P} after R, and a word $R_n \dots R_2 R_1$ means that after rotation R_1 we act R_2, \dots, R_n respectively, and let $R_n \dots R_2 R_1(\mathcal{P}) = R_n \dots R_2(R_1(\mathcal{P}))$.

Set of all points

 $\mathfrak{M}_{\mathcal{P}} := \{ X \in \Sigma : X \text{ coincides of some vertex of } \mathcal{P} \text{ in some position of } \mathcal{P} \}.$

We say that $\mathfrak{M}_{\mathcal{P}}$ is a *trace* of \mathcal{P} after all rolling and we say that \mathcal{P} is D-polyhedron if the set $\mathfrak{M}_{\mathcal{P}}$ is everywhere dense on Σ . E.g. when \mathcal{P} is a cube then $\mathfrak{M}_{\mathcal{P}}$ is a lattice (so a cube is not D-polyhedron), and when \mathcal{P} is a rectangular parallelepiped with at least two edges having irrational ratio is D-polyhedron (see in [3]).

In [3] I gave a sufficient condition for a general polyhedron to be D-polyhedron, and I characterized all regular D-polyhedra. In [4] we also characterized all semi-regular (Archimedean) D-polyhedra. See related problems in [5] and [1].

2. Deterministic rolling of a polyhedron

We say that a subset *Y* of Σ is locally-dense if there is a point $P \in \Sigma$ and a neighborhood U(P) of *P* such that $Y \cap U(P)$ is dense in U(P).

A question may arise whether there is a polyhedron for which the set $\mathfrak{M}_{\mathcal{P}}$ is "spotted", i.e. $\mathfrak{M}_{\mathcal{P}}$ is locally-dense but \mathcal{P} is not D-polyhedron. Our first result is that the answer is no:

Theorem 2.1. *If a polyhedron* \mathcal{P} *is locally-dense then it is a D-polyhedron.*

Definition 2.1. Let $S \subseteq \mathbb{R}^2$ be a subset of the plane and $\varepsilon > 0$. A set \mathcal{X} is said to be (S, ε) -dense if for every $P \in S$ there is a point $X \in \mathcal{X} \cap S$ for which $d(P, X) < \varepsilon$. \mathcal{X} is said to be S-dense if it is (S, ε) -dense for every $\varepsilon > 0$.

Received : 16-08-2014, Accepted : 11-11-2015

^{*} Corresponding author

The author is supported by OTKA grants K-81658 and K-100291.

In the rest of this paper the set S will be special; it will be a boundary of a circle. We use the usual notations $\mathbb{N}, \mathbb{R}, \mathbb{R}^+, \mathbb{Q}, \mathbb{Q}^* = \mathbb{R} \setminus \mathbb{Q}$.

3. Random rolling of a polyhedron

We start again with a convex polyhedron \mathcal{P} standing in some initial position of Σ . Assume that the touching face \mathcal{F} is a k-gon. Now roll \mathcal{P} around one of the edges of \mathcal{F} - or keep the position of \mathcal{P} – with probability $\frac{1}{k+1}$ uniformly at random. (For a technical reason we include the identical rotation as a rolling too). Define the trace in a similar way as it is in the first paragraph and denote it by $RAN(\mathfrak{M})$. Now one can ask what the structure of $RAN(\mathfrak{M})$ is. Is it true that with probability 1 after finitely many rolling \mathcal{P} will be "close" to the initial position of it?

In this paragraph we are going to investigate the simplest case. We say that a tetrahedron is general if the four vertices are selected at random. Then we act a random roll on a general tetrahedron. We will show

Theorem 3.1. Let $\varepsilon > 0$. For almost all tetrahedron \mathcal{P} with probability 1 there are infinitely many circle S for which $RAN(\mathfrak{M}_{\mathcal{P}}) \cap S$ is an ε -dense set on S

4. Proofs

Proof of Theorem 2.1: Let $P \in \Sigma$ be a point in the plane for which $U(P) \cap \mathfrak{M}_{\mathcal{P}}$ is a dense set, where $U(P) := U_{\Delta}(P) = \{Q \in \Sigma : d(P,Q) < \Delta\}$ for some radius $\Delta \in \mathbb{R}^+$, and $d(\cdot, \cdot)$ is the usual metric. Denote by $\{Y_1, Y_2, \ldots, Y_s\}$ the set of all vertices and by $\{F_1, F_2, \ldots, F_r\}$ the set of all faces of \mathcal{P} , and write

$$\mathfrak{M}_{\mathcal{P}}(Y_i, F_j) :=$$

 $= \{X \in \Sigma : X \text{ coincides of vertex } Y_i \text{ in some position of } \mathcal{P} \text{ standing on face } F_j\}.$

We claim that there exist a pair i, j $(1 \le i \le s; 1 \le j \le r)$ and an $U(P') \subseteq U(P)$ for which $U(P') \cap \mathfrak{M}_{\mathcal{P}}(Y_i, F_j)$ is a dense set. To see this, let us suppose the opposite: assume that there is a neighborhood, $U(P_1) \subseteq U(P)$ for which $U(P_1) \cap \mathfrak{M}_{\mathcal{P}}(Y_1, F_1) = \{\emptyset\}$. Presume now that the sets $U(P_z) \subseteq \cdots \subseteq U(P_1) \subseteq U(P)$ $(z \ge 1)$ have been defined for which for every pair (t, p); t + p = k, $(1 \le k \le z)$ we get that

$$U(P_k) \cap \mathfrak{M}_{\mathcal{P}}(Y_t, F_p) = \{\emptyset\}.$$

This process is terminated since $z \leq s + r$ and since $\cup_{t,p} \mathfrak{M}_{\mathcal{P}}(Y_t, F_p) = \mathfrak{M}_{\mathcal{P}}$ we obtain that there is a subset $U(P^n) \subseteq U(P)$ such that

$$U(P") \cap \mathfrak{M}_{\mathcal{P}} = \{\emptyset\}.$$

This contradicts the fact that $U(P) \cap \mathfrak{M}_{\mathcal{P}}$ is a dense set.

So there are $i, j; 1 \le i \le s; 1 \le j \le r$ and U(P') for which $U(P') \cap \mathfrak{M}_{\mathcal{P}}(Y_i, F_j)$ is a dense set. Without loss of generality we can assume that $P' \in \mathfrak{M}_{\mathcal{P}}(Y_i, F_j)$. Let the radius of the disc U(P') be ϱ . Our task is to show that there is a radius $\delta \in \mathbb{R}^+$, such that for every point $Q \in \Sigma$, $U_{\delta}(Q) \cap \mathfrak{M}_{\mathcal{P}}$ is a dense set.

We are going to prove that $\delta = \frac{\rho}{3}$ is admissible. Write briefly $\mathfrak{M}_{\mathcal{P}}^{0} := \mathfrak{M}_{\mathcal{P}}(Y_{i}, F_{j})$

We follow an iteration process. Let $X_1 = P'$. For i = 2, 3, ... we proceed as follows: If $d(X_{i-1}, Q) < \frac{\varrho}{2}$ then we are done.

If not, pick a point $X_i \in U(X_{i-1})_{\rho} \cap \mathfrak{M}^0_{\mathcal{P}}$ for which the following two conditions are valid:

$$(i) \ d(X_i, X_{i-1}) \ge \frac{9\varrho}{10}$$

and

$$(ii) X_i X_{i-1} Q \angle < \frac{\pi}{10}.$$

An easy calculation shows that $d(X_i, Q) < d(X_{i-1}, Q) - \varrho/2$. Then increase *i* by 1 and repeat the previous steps. This process is terminated since $i \leq \frac{d(P',Q)}{\varrho/2}$. Therefore there is an $i \in \mathbb{N}$ for which $Q \in U(X_i)_{\varrho}$ and $d(X_i, Q) < \varrho/2$. It implies that

$$X_i \in U(Q)_{\varrho/3} \cap \mathfrak{M}^0_{\mathcal{P}} \subseteq X_i \in U(X_i)_{\varrho} \cap \mathfrak{M}^0_{\mathcal{P}}$$

as required.

Proof of Theorem 3.1:

Let \mathcal{P} be a general tetrahedron and denote the vertices by A_1, A_2, A_3, A_4 its vertices respectively. Denote by $\sigma(A_i)$; (i = 1, 2, 3, 4) the sum of all angles which occur at A_i on the faces.

Firstly note that for almost all \mathcal{P} , there exists an $i \in \{1, 2, 3, 4\}$ for which $\sigma(A_i)/\pi \in \mathbb{Q}^*$. Indeed seven data determine uniquely a tetrahedron; let them be

$$(d(A_1, A_2); A_3A_1A_2 \angle, A_1A_2A_3 \angle, A_3A_4A_1 \angle, A_1A_3A_4 \angle, A_1A_4A_3 \angle, \sigma(A_1))$$

The set of tetrahedra \mathcal{P} for which $\sigma(A_1)/\pi \in \mathbb{Q}$ has Lebesgue measure 0 in \mathbb{R}^7 . Hence for almost all tetrahedron we have $\sigma(A_1)/\pi \in \mathbb{Q}^*$.

Denote F_1 , F_2 , F_3 , F_4 the faces $A_1A_2A_3$, $A_2A_3A_4$, $A_1A_3A_4$, $A_1A_2A_4$ of \mathcal{P} respectively. Assume that \mathcal{P} stands at the initial position on F_1 .

For a random rolling of the tetrahedron \mathcal{P} corresponds a random sequence of

$$\widehat{\mathcal{F}} := \{F_{i_1}, F_{i_2}, \dots, F_{i_i}, \dots\}$$

 $i_j \in \{1, 2, 3, 4\}$. It is easy to see, that it is a bijection between the sequence of rolling and the sequence of $\widehat{\mathcal{F}}$. We need to look at the Erdős-Rényi type result as follows.

Lemma 4.1. Let $k \in \mathbb{N}$. Then with probability 1 in a random sequence of $F_{i_1}, F_{i_2}, \ldots, F_{i_j}, \ldots$ the longest run of the pattern $F_1F_3F_4$ is bigger than k.

It is a very special case of [1, Theorem 2].

Take two rollings that correspond to $F_1F_3F_4$. At F_1 the vertices A_1, A_2 and A_3 touch the plane. After $F_1F_3F_4$ denote the new position of A_2 by A'_2 . Then $A'_2A_1A_2 \angle = \sigma(A_1)$.

Now consider a random sequence of rolling. Let $\varepsilon > 0$ real number be given. Since $\sigma(A_1) \in \mathbb{Q}^*$, by the Dirichlet approximation theory we get that there is $k_0(\varepsilon)$ such that for every $k > k_0$ the set $\{j\sigma(A_1)/2\pi\}_{j=1}^k \mod(1) \text{ is } \varepsilon\text{-dense.}$ By Lemma 4.1 we obtain that there are k many consecutive repetition of the pattern $F_1F_3F_4$ in $\widehat{\mathcal{F}}$. Hence there is a circle with radius $d(A_1, A_2)$ for which $\mathfrak{M}_{\mathcal{P}} \cap S$ is $\varepsilon\text{-dense in } S$.

Since infinitely many times there are *k* many consecutive repetitions of the pattern $F_1F_3F_4$ in $\widehat{\mathcal{F}}$, we obtain the theorem.

5. Concluding remarks

Considering Theorem 2.1 it is reasonable to ask the following

Problem 1: Let \mathcal{P} be a polyhedron, \mathcal{S} is a smooth curve, say a boundary of a circle. Assume that $\mathfrak{M}_{\mathcal{P}}$ is \mathcal{S} -dense. Is it true that $\mathfrak{M}_{\mathcal{P}}$ is locally-dense and a fortiori is a D-polyhedron?

Furthermore we mention two questions on random rolling of a polyhedron.

Problem 2: Assume that \mathcal{P} is a D-polyhedron. Is it true that with probability of 1, $RAN(\mathfrak{M})$ is an everywhere dense subset of Σ ?

Problem 3: Is it true that for almost all tetrahedron \mathcal{P} with probability 1 $RAN(\mathfrak{M}_{\mathcal{P}})$ is a dense set?

I conjecture that the answers for these questions will be yes.

References

[1] Dekker, T. J. On reflections in Euclidean spaces generating free products, Nieuw Arch. Wisk . 3 (1959)7, 57-60.

- [3] Hegyvári, N. On the trace of polyhedra. Geom. Dedicata 55 (1995), no. 1, 71-74.
- [4] Hegyvári, N. and Wintsche, G. The rolling polyhedra. Publ. Math. Debrecen. 52 (1998), no. 1-2, 43-54.
- [5] Wagon, S. The Banach-Tarski paradox, Cambridge Univ. Press (1986) Chap. 5 p. 69.

^[2] Erdős, P. and Rényi, A. On a new law of large numbers, J. Analyse Math. 23 (1970), 103-111

Affiliations

NORBERT HEGYVÁRI **ADDRESS:** Eötvös University, Institute of Mathematics, H-1117 Pázmány st. 1/c, Budapest, Hungary **E-MAIL:** hegyvari@elte.hu