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ABSTRACT

For a convex polyhedron standing with one of its face on a fixed plane we mean rolling when it is
rotated into another similar position around any of its edge lying on the plane. A set is said to be
the trace of the polyhedron P if some point of it coincides of some vertex of P in some position. In
this note we investigate the trace of deterministic and random rolling of polyhedra.
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1. Introduction

Let us take a convex polyhedron P standing with one of its face on a fixed plane Σ. We mean rolling of P
when it is rotated into another similar position around any of its edge lying on Σ. So after rolling another face
of P will lean on the plane. We take P in an arbitrary initial position and we denote by R rolling and R(P) the
position of P after R, and a word Rn . . . R2R1 means that after rotation R1 we act R2, . . . , Rn respectively, and
let Rn . . . R2R1(P) = Rn . . . R2(R1(P)).

Set of all points

MP := {X ∈ Σ : X coincides of some vertex of P in some position of P}.

We say that MP is a trace of P after all rolling and we say that P is D-polyhedron if the set MP is everywhere
dense on Σ. E.g. when P is a cube then MP is a lattice (so a cube is not D-polyhedron), and when P is a
rectangular parallelepiped with at least two edges having irrational ratio is D-polyhedron (see in [3]).

In [3] I gave a sufficient condition for a general polyhedron to be D-polyhedron, and I characterized all
regular D-polyhedra. In [4] we also charaterized all semi-regular (Archimedean) D-polyhedra. See related
problems in [5] and [1].

2. Deterministic rolling of a polyhedron

We say that a subset Y of Σ is locally-dense if there is a point P ∈ Σ and a neighborhood U(P ) of P such that
Y ∩ U(P ) is dense in U(P ).

A question may arise whether there is a polyhedron for which the set MP is "spotted", i.e. MP is locally-dense
but P is not D-polyhedron. Our first result is that the answer is no:

Theorem 2.1. If a polyhedron P is locally-dense then it is a D-polyhedron.

Definition 2.1. Let S ⊆ R2 be a subset of the plane and ε > 0. A set X is said to be (S, ε)-dense if for every
P ∈ S there is a point X ∈ X ∩ S for which d(P,X) < ε. X is said to be S-dense if it is (S, ε)-dense for every
ε > 0.
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In the rest of this paper the set S will be special; it will be a boundary of a circle.
We use the usual notations N,R,R+,Q,Q∗ = R \Q.

3. Random rolling of a polyhedron

We start again with a convex polyhedron P standing in some initial position of Σ. Assume that the touching
face F is a k−gon. Now roll P around one of the edges of F– or keep the position of P – with probability 1

k+1
uniformly at random. (For a technical reason we include the identical rotation as a rolling too). Define the trace
in a similar way as it is in the first paragraph and denote it by RAN(M). Now one can ask what the structure
of RAN(M) is. Is it true that with probability 1 after finitely many rolling P will be "close" to the initial position
of it?

In this paragraph we are going to investigate the simplest case. We say that a tetrahedron is general if the
four vertices are selected at random. Then we act a random roll on a general tetrahedron. We will show

Theorem 3.1. Let ε > 0. For almost all tetrahedron P with probability 1 there are infinitely many circle S for which
RAN(MP) ∩ S is an ε-dense set on S

4. Proofs

Proof of Theorem 2.1: Let P ∈ Σ be a point in the plane for which U(P ) ∩MP is a dense set, where
U(P ) := U∆(P ) = {Q ∈ Σ : d(P,Q) < ∆} for some radius ∆ ∈ R+, and d(·, ·) is the usual metric. Denote by
{Y1, Y2, . . . , Ys} the set of all vertices and by {F1, F2, . . . , Fr} the set of all faces of P, and write

MP(Yi, Fj) :=

= {X ∈ Σ : X coincides of vertex Yi in some position of P standing on face Fj}.

We claim that there exist a pair i, j (1 ≤ i ≤ s; 1 ≤ j ≤ r) and an U(P ′) ⊆ U(P ) for which U(P ′) ∩MP(Yi, Fj)
is a dense set. To see this, let us suppose the opposite: assume that there is a neighborhood, U(P1) ⊆ U(P )
for which U(P1) ∩MP(Y1, F1) = {∅}. Presume now that the sets U(Pz) ⊆ · · · ⊆ U(P1) ⊆ U(P ) (z ≥ 1) have been
defined for which for every pair (t, p); t+ p = k, (1 ≤ k ≤ z) we get that

U(Pk) ∩MP(Yt, Fp) = {∅}.

This process is terminated since z ≤ s+ r and since ∪t,pMP(Yt, Fp) = MP we obtain that there is a subset
U(P”) ⊆ U(P ) such that

U(P”) ∩MP = {∅}.

This contradicts the fact that U(P ) ∩MP is a dense set.
So there are i, j; 1 ≤ i ≤ s; 1 ≤ j ≤ r and U(P ′) for which U(P ′) ∩MP(Yi, Fj) is a dense set. Without loss of

generality we can assume that P ′ ∈ MP(Yi, Fj). Let the radius of the disc U(P ′) be ϱ. Our task is to show that
there is a radius δ ∈ R+, such that for every point Q ∈ Σ, Uδ(Q) ∩MP is a dense set.

We are going to prove that δ = ϱ
3 is admissible. Write briefly M0

P := MP(Yi, Fj)
We follow an iteration process. Let X1 = P ′. For i = 2, 3, . . . we proceed as follows:
If d(Xi−1, Q) < ϱ

2 then we are done.
If not, pick a point Xi ∈ U(Xi−1)ϱ ∩M0

P for which the following two conditions are valid:

(i) d(Xi, Xi−1) ≥
9ϱ

10
,

and
(ii) XiXi−1Q∠ <

π

10
.

An easy calculation shows that d(Xi, Q) < d(Xi−1, Q)− ϱ/2. Then increase i by 1 and repeat the previous
steps. This process is terminated since i ≤ d(P ′,Q)

ϱ/2 . Therefore there is an i ∈ N for which Q ∈ U(Xi)ϱ and
d(Xi, Q) < ϱ/2. It implies that

Xi ∈ U(Q)ϱ/3 ∩M0
P ⊆ Xi ∈ U(Xi)ϱ ∩M0

P
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as required.
Proof of Theorem 3.1:
Let P be a general tetrahedron and denote the vertices by A1, A2, A3, A4 its vertices respectively. Denote by

σ(Ai); (i = 1, 2, 3, 4) the sum of all angles which occur at Ai on the faces.
Firstly note that for almost all P , there exists an i ∈ {1, 2, 3, 4} for which σ(Ai)/π ∈ Q∗. Indeed seven data

determine uniquely a tetrahedron; let them be

(d(A1, A2);A3A1A2∠, A1A2A3∠, A3A4A1∠, A1A3A4∠, A1A4A3∠, σ(A1)).

The set of tetrahedra P for which σ(A1)/π ∈ Q has Lebesgue measure 0 in R7. Hence for almost all
tetrahedron we have σ(A1)/π ∈ Q∗ .

Denote F1, F2, F3, F4 the faces A1A2A3, A2A3A4, A1A3A4, A1A2A4 of P respectively. Assume that P stands at
the initial position on F1.

For a random rolling of the tetrahedron P corresponds a random sequence of

F̂ := {Fi1 , Fi2 , . . . , Fij , . . . }

ij ∈ {1, 2, 3, 4}. It is easy to see, that it is a bijection between the sequence of rolling and the sequence of F̂ .
We need to look at the Erdős-Rényi type result as follows.

Lemma 4.1. Let k ∈ N. Then with probability 1 in a random sequence of Fi1 , Fi2 , . . . , Fij , . . . the longest run of the
pattern F1F3F4 is bigger than k.

It is a very special case of [1, Theorem 2].

Take two rollings that correspond to F1F3F4. At F1 the vertices A1, A2 and A3 touch the plane. After F1F3F4

denote the new position of A2 by A′
2. Then A′

2A1A2∠ = σ(A1).
Now consider a random sequence of rolling. Let ε > 0 real number be given. Since σ(A1) ∈ Q∗,

by the Dirichlet approximation theory we get that there is k0(ε) such that for every k > k0 the set
{jσ(A1)/2π}kj=1mod(1) is ε-dense. By Lemma 4.1 we obtain that there are k many consecutive repetition of
the pattern F1F3F4 in F̂ . Hence there is a circle with radius d(A1, A2) for which MP ∩ S is ε-dense in S.

Since infinitely many times there are k many consecutive repetitions of the pattern F1F3F4 in F̂ , we obtain
the theorem.

5. Concluding remarks

Considering Theorem 2.1 it is reasonable to ask the following
Problem 1: Let P be a polyhedron, S is a smooth curve, say a boundary of a circle. Assume that MP is

S-dense. Is it true that MP is locally-dense and a fortiori is a D-polyhedron?

Furthermore we mention two questions on random rolling of a polyhedron.
Problem 2: Assume that P is a D−polyhedron. Is it true that with probability of 1, RAN(M) is an everywhere

dense subset of Σ ?

Problem 3: Is it true that for almost all tetrahedron P with probability 1 RAN(MP) is a dense set?

I conjecture that the answers for these questions will be yes.
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